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This hybrid method [finite-element discrete variable representation (FE-DVR)], introduced by Resigno and
McCurdy [Phys. Rev. A 62, 032706 (2000)], uses Lagrange polynomials in each partition, rather than “hat”
functions or Gaussian functions. These polynomials are discrete variable representation functions, and they are
orthogonal under the Gauss-Lobatto quadrature discretization approximation. Accuracy analyses of this method
are performed for the case of a one-dimensional Schrödinger equation with various types of local and nonlocal
potentials for scattering boundary conditions. The accuracy is ascertained by a comparison with a spectral
Chebyshev integral equation method, accurate to 1 : 10−11. For an accuracy of the phase shift of 1 : 10−8, the
FE-DVR method is found to be 100 times faster than a sixth-order finite-difference method (Numerov), it is easy
to program, and it can routinely achieve an accuracy of better than 1 : 10−8 for the numerical examples studied.
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I. INTRODUCTION

The solution of differential equations by means of ex-
pansions into discrete variable representation (DVR) basis
functions has become very popular since it was first introduced
in the early 1960s [1]. A review can be found in the
paper by Light and Carrington [2], and generalizations to
multidimensional expansions are also under development [3].

Previously, the main application of the DVR method was
for obtaining bound-state energies and wave functions. For
this purpose, the wave function is expanded into a set of
N basis functions, whose expansion coefficients are to be
determined. The calculations are of the Galerkin type, namely,
the Hamiltonian applied to the wave function is multiplied
on the left by each one of the expansion basis functions, and
the result is integrated over the full range of the domain of
the variable, leading to a set of N linear equations for the
expansion coefficients. The integrals to be evaluated are then
approximated by discrete sums over the values of the integrand
evaluated at the support points times certain weight factors
such as in the Gauss quadrature methods [4].

In the case of the solution of scattering problems, the
finite-element method (FEM) [5] has also been developed.
In this procedure, the radial range is divided into partitions,
also called elements, and the solution of the wave equation in
each partition is expanded into basis functions such as “hat”
functions, Gaussians, or polynomials of a given order, whose
expansion coefficients are to be determined. The equations for
the expansion coefficients are obtained through a Galerkin
procedure, and in many cases the integrals over the basis
functions can be done analytically. The continuity of the
wave function from one partition to the next is achieved
by imposing conditions on the expansion coefficients, as is
done, for example, in Ref. [6]. In the more recent DVR
methods, the basis functions are Lagrange polynomials whose
zeros occur at the Lobatto points [7,8], in which case the
quadrature is denoted as Gauss-Lobatto, and the basis set
of functions is denoted as Lagrange-Lobatto. This basis set
was first suggested by Manolopoulos and Wyatt [9], and an
extensive review is given in Ref. [10]. The main computational
advantage of using DVR basis functions is that the sum
mentioned above reduces to only one term, because the product

of two different DVR functions vanishes at the support points,
and only products between the same DVR functions remain.
Furthermore, within the approximation of the Gauss-Lobatto
quadrature rule, the basis functions are orthogonal. Hence the
procedure leads to a discretized Hamiltonian (N × N ) matrix,
whose eigenfunctions determine the expansion coefficients
and the eigenvalues determine the bound-state energies. There
are several types of errors introduced by this method. One is
due to the truncation of the expansion of the wave function in
terms of basis functions at an upper limit N . Another is due to
the approximation of the Gauss-Lobatto quadrature described
above in terms of discrete sums over the support points. A
third error is the accumulation of machine round-off errors.
These errors have been examined for bound-state energy
eigenvalues [3,11–13], and it is found that the convergence
of the energy with the number N of DVR basis functions is
exponential, and the nonorthogonality error becomes small as
N increases.

Very recently, a combination of the FE and DVR methods
was introduced into atomic physics by Rescigno and McCurdy
[14] for quantum scattering calculations. These calculations
use the FEM approach, but in each partition the basis
functions are Lagrange polynomials, and the support points are
Gauss-Lobatto. This “hybrid” method, denoted as FE-DVR, is
now used extensively for atomic physics calculations, such
as for multielectron density distributions in atoms [15], for
photoionizing cross sections with fast photon pulses [16,17],
and for atom-atom scattering calculations [18], to name a few.
However, in these works the accuracy of the results was not
studied in detail. The FE-DVR method has also been used
extensively for fluid dynamic calculations since the 1980s [19]
and is also used in seismology [20], where it is called the
spectral element method.

The main purpose of the present study is to investigate the
accuracy of the FE-DVR method for the scattering conditions,
since all the errors described above (the Gauss-Lobatto
integration error, the truncation errors of the expansions, and
the accumulation of round-off errors) are still present. In
our study, a method of imposing the continuity of the wave
function and of the derivative from one partition to the next is
explicitly given, and the accuracy is obtained by comparing the
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results of the FE-DVR calculation for particular solutions of
a one-dimensional Schrödinger equation with a spectral [21]
Chebyshev expansion method [22], S-IEM. The accuracy of
the latter is of the order of 1 : 10−11, as is demonstrated in
Appendix A. In our present formulation of the FE-DVR, the
so-called bridge functions used in Refs. [14–18] in order to
assure the continuity of the wave function are not used, but
they are replaced by our present method.

In Sec. II, the FE-DVR method is described, in Sec. III, the
accuracy is investigated by means of numerical examples, and
Sec. IV contains the summary and conclusions. Appendix A
contains a short review of the S-IEM method, in Appendix B
an estimate of the accumulation of errors is presented, and in
Appendix C a comparison with the finite difference Numerov
(or Milne’s) method is presented.

II. THE FE-DVR METHOD

The FE-DVR version of the finite-element method differs
from the conventional FEM in that the basis functions for the
expansion of the solution ψ(x) in each partition are N “discrete
variable representation” functions, which in the present case
are Lagrange polynomials �i(x), i = 1,2, . . . ,N , of a given
order N − 1,

�i(x) =
N∏

k=1

(x − xk)

(xi − xk)
,k �= i (1)

defined, for example, in Eq. (25.2.2) of Ref. [23], and in
section 3.3(i) of Ref. [4]. These functions are widely used
for interpolation procedures and are described in standard
computational textbooks. This FE and DVR combination was
introduced in Ref. [14], and it has the advantage that integrals
involving these polynomials amount to sums over the functions
evaluated only at the support points. In the present case,
the support points are Lobatto points xj and weights wj ,
j = 1,2, . . . ,N, defined in Eq. (25.4.32) of Ref. [23], in terms
of which a quadrature over a function f (x) in the interval
[−1,+1] is approximated by

∫ +1

−1
f (x) dx �

N∑
j=1

f (xj )wj . (2)

If f is a polynomial of degree �2N − 3, then Eq. (2) will
be exact. This, however, is not the case for the product of
two Lagrange polynomials �i(x)�j (x), a polynomial of order
2(N − 1). In the Gauss-Lobatto quadrature approximation
[7,8], given by the right-hand side of Eq. (2), these Lagrange
polynomials are orthogonal to each other, but they are not
rigorously orthogonal [12] because the left-hand side of
Eq. (2) is not equal to the right-hand side. If the integral limits
are different from ±1, such as

∫ b

a
f (r)dr , then the variable r

can be scaled to the variable x. Our method differs from that
of Ref. [14] in that we do not use their “bridge” functions,
but rather ensure continuity of the solution and its derivative
from one partition to the next by using only the Lagrange
functions. Since the Lobatto points are not evenly spaced,
expansion (2) converges uniformly, which is a general feature
of spectral methods [21]. A further DVR advantage is that the

Gauss-Lobato approximation of the integral∫ 1

−1
�i(x)f (x) �j (x)dx � δi,jwjf (xi) (3)

is diagonal in i,j and is given by only one term. The
convolution∫ 1

−1
�i(x)

∫ 1

−1
K(x,x ′)�j (x ′)dx ′ dx � wiwjK(xi,xj ) (4)

is also approximated by one nondiagonal term only, which is a
marked advantage for solving nonlocal or coupled channel
Schrödinger equations. The kinetic energy integral can be
expressed in the form∫ 1

−1
�i(x)

d2

dx2
�j (x)dx = −

∫ 1

−1
�′

i(x)�′
j (x)dx + δi,N�′

j (1)

− δi,1�
′
j (−1) (5)

after an integration by parts. In the above, the prime denotes
d/dx. The integral on the right-hand side of this equation can
be done exactly with the Gauss-Lobatto quadrature rule (2),
since the integrand is a polynomial of order 2N − 4, which is
less than the required 2N − 3.

For the case of a local potential V with angular momentum
number L = 0, the equation to be solved is(

d2

dr2
+ k2

)
ψ(r) = V (r)ψ(r), (6)

and for a nonlocal potential K , the term V (r)ψ(r) is replaced
by

∫ ∞
0 K(r,r ′)ψ(r ′)dr ′. The wave number k is in units

of fm−1 and the potential V is in units of fm−2, where
quantities in energy units are transformed to inverse length
units by multiplication by the well known factor 2m/h̄2. In the
scattering case, the solutions ψ(r) are normalized such that for
r → ∞ they approach

ψ(r) → sin(kr) + tan(δ) cos(kr), (7)

and with that normalization one finds

tan(δ) = −1

k

∫ ∞

0
sin(kr)V (r)ψ(r)dr, (8)

as is well known [24].
The FE-DVR procedure is as follows. We divide the

radial interval into NJ partitions (also called elements in
the finite-element calculations [5]), and in each partition
we expand the wave function into N Lagrange functions
�i(r), i = 1,2, . . . ,N ,

ψ (J )(r) =
N∑

i=1

c
(J )
i �i(r), b

(J )
1 � r � b

(J )
2 . (9)

The starting and end points of each partition are denoted
as b

(J )
1 and b

(J )
2 , respectively. We define the value and the

derivative of the wave function at the end point of the previous
partition as

ψ (J−1)
(
b

(J−1)
2

) = c
(J−1)
N , (10)
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where c
(J−1)
N is the last coefficient of the expansion (9) of

ψ (J−1), and

A(J−1) ≡ d

dr
ψ (J−1)

(
b

(J−1)
2

) =
N∑

i=1

c
(J−1)
i � ′

i

(
b

(J−1)
2

)
, (11)

respectively, where � ′
i(r) = d�i(r)/dr. The result (10) follows

from the fact that �i(b2) = 0 for i = 1,2, . . . ,N − 1, and
�N (b2) = 1. For the first partition, we arbitrarily take a guessed
value of A(0) for the nonexisting previous partition, and later
we renormalize the whole wave function by comparing it to a
known value. That is equivalent to renormalizing the value of
A(0). In finite-element calculations, continuity conditions of the
wave function from one partition to the next are also imposed.
However, the method described below applies specifically to
the case in which the basis functions in each element are of the
DVR type, rather than general polynomials of a given order [6].

By performing the Galerkin integrals of the Schrödinger
equation over the �i in each partition J ,

〈�i(T + V − k2)ψ (J )〉

=
∫ b

(J )
2

b
(J )
1

�i(r)(T + V − k2)ψ (J )(r)dr = 0, i = 1,2, . . . ,N,

(12)

we obtain a homogeneous matrix equation in each partition
for the coefficients c

(J )
i , i = 1,2, . . . ,N ,

M (J ) 
c(J ) = 0, (13)

where 
c(J ) represents the (N × 1) column vector of the
coefficients c

(J )
i , and where the matrix elements of M are

given by Mij = 〈�i(T + V − k2)�j 〉. Here T = −d2/dr2.

The continuity conditions are imposed by transforming the
homogeneous equation (13) of dimension N into an inhomo-
geneous equation of dimension N − 2 whose driving terms
are composed of the function ψ and dψ/dr evaluated at the
end of the previous partition. These conditions are given by

c
(J )
1 = c

(J−1)
N , (14)

where use has been made of �i(b1) = 0 for i = 2, . . . ,N , and
�1(b1) = 1, and

dψ (J−1)
(
b

(J−1)
2

)
dr

=
N∑

i=1

c
(J )
i � ′

i

(
b

(J )
1

) = A(J−1). (15)

These two conditions can be written in the matrix form

F11α + F12β = γ, (16)

where

F11 =
(

1 0
�′

1 �′
2

)(J )

b
(J )
1

, F12 =
(

0 0 · · · 0
�′

3 �′
4 · · · �′

N

)(J )

b
(J )
1

,

(17)

where

α =
(

c1

c2

)(J )

, (18)

where

β =

⎛
⎜⎜⎝

c3

c4
...

cN

⎞
⎟⎟⎠

(J )

, (19)

and where

γ =
(

cN

A

)(J−1)

. (20)

With that notation, Eq. (13) can be written in the form(
M11 M12

M21 M22

)(
α

β

)
= 0, (21)

where the matrix M (J ) has been decomposed into four
submatrices M11,M12,M21, and M22, which are of dimension
2 × 2,2 × (N − 2),(N − 2) × 2, and (N − 2) × (N − 2), re-
spectively. The column vector α can be eliminated in terms of
β and γ by using Eq. (16),

α = F−1
11 (−F12β + γ ), (22)

and the result when introduced into Eq. (21) leads to an
inhomogeneous equation for β,(−M21F

−1
11 F12 + M22

)
β = −M21F

−1
11 γ. (23)

Once the vector β is found from Eq. (23), then the
components of the vector α can be found from Eq. (22), and
the calculation can proceed to the next partition.

If one expresses the inverse of F11 analytically,

F−1
11 =

(
1 0

− �′
1

�′
2

1
�′

2

)
, (24)

then one finds

F−1
11 γ =

(
c

(J−1)
N

− �′
1

�′
2
c

(J−1)
N + A(J−1)

�′
2

)
(25)

and

F−1
11 F12 =

(
0 0 · · · 0
�′

3
�′

2

�′
4

�′
2

· · · �′
N

�′
2

)
. (26)

Inserting (24) into Eq. (22), one finds that c
(J )
1 = c

(J−1)
N , but

c
(J )
2 is a function of c

(J−1)
N , A(J−1), and the vector β.

III. ACCURACY

We have tested the accuracy for cases with angular
momentum L = 0 for two local potentials VM and VWS, shown
in Fig. 1, and for a nonlocal potential K(r,r ′) of the Perey-Buck
type [25]. Potential VM is of a Morse type with a repulsive core
near the origin, given by

VM (r) = 6 exp(−0.3 r + 1.2)[exp(−0.3 r + 1.2) − 2], (27)

and VWS is a short-ranged simple Woods-Saxon potential given
by

VWS(r) = −3.36/{1 + exp[(r − 3.5)/0.6]}. (28)
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FIG. 1. (Color online) Morse (VM ) and Woods-Saxon (VWS)
potentials as a function of radial distance r . These potentials are
given by Eqs. (27) and (28), respectively.

The coefficients 6 and −3.36 are in units of fm−2, the
distances r are in units of fm, and all other factors are
such that the arguments of the exponents are dimensionless.
These potentials are shown in Fig. 1, and the respective wave
functions are shown in Fig. 2. The choice of these potentials
is motivated by the difference in the degree of computational
difficulty that they offer in the solution of the Schrödinger
equation. The potential VWS has no repulsive core near the
origin and is of short range. Hence the corresponding wave
function does not have large derivatives near the origin, and
it need not be calculated out to distances larger than 20 fm,
where the potential is already negligible, of the order of 10−11.
In contrast, neither of these two features applies for the case of
VM . To obtain an accuracy of 1 : 10−11, the wave function
has to be calculated out to 100 fm, as is indeed done in
the calculation of the benchmark S-IEM solution, and the
repulsive core near the origin is more difficult to treat. The
nonlocal potential K is described in Eq. (3) of Ref. [26]
together with the Appendix of Ref. [25]. The accuracy of the
corresponding wave function obtained with the S-IEM method
for this nonlocal potential is illustrated in Fig. 7 of Ref. [26].
For the nonlocal case, only one partition is used in the FE-DVR
method, which extends from r = 0 to Rmax, but in view of Eq.
(4), the calculation is very efficient.
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FIG. 2. (Color online) The wave functions for the local potentials
VM and VWS, and for the nonlocal potential K , described in the text.
The wave number is k = 0.5 fm−1 and the potentials VM and VWS are
illustrated in Fig. 1.
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FIG. 3. (Color online) Accuracy of the FE-DVR solution of the
Schrödinger equation for the Woods-Saxon potential VWS displayed
in Fig. 1. The wave number is k = 0.5 fm−1, the size of each partition
is 1 fm, and there are 20 Lobatto points per partition. The graph shows
the accuracy of the wave function ψ by displaying the absolute value
of the difference between the FE-DVR and the S-IEM wave functions.
The latter is deemed accurate to 1 : 10−11.

To ascertain the accuracy of the FE-DVR method, the
solutions of Eq. (6) are compared with the solutions obtained
by the spectral integral equation method (S-IEM) [22], whose
accuracy is 1 : 10−11, as described in Appendix A. The numer-
ical FE-DVR solutions are first normalized by a comparison
with the S-IEM solutions at one chosen radial position near
the origin, and the error of the normalized FE-DVR function
is determined by a comparison with the S-IEM function at all
other radial points r. Since the S-IEM function depends on
the values of the potential at all points [0 � r � Rmax], the
S-IEM calculation has to be carried out to a distance Rmax

large enough so that the contribution from V (r � Rmax) is
smaller than the desired accuracy of the S-IEM solution. The
same is not the case for the FE-DVR solutions ψFE−DVR(r),
since the unnormalized solution depends only on the potentials
for distances less than r . However, if the normalization of the
wave function (7) is to be accomplished by matching it to
sin(kr) and cos(kr) at Rmax in the asymptotic region, then the
numerical errors that accumulated out to Rmax will affect the
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FIG. 4. (Color online) The accuracy of the FE-DVR wave
function for the potential VM as obtained by comparison with the
S-IEM result. The latter is accurate to 1 : 10−11. The wave number is
k = 0.5 fm−1, the number of Lobatto points per partition is 20, and
the size of each partition is 1 fm.
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FIG. 5. (Color online) Same as Fig. 3 for the nonlocal Perey-
Buck potential K(r,r ′). The wave number is k = 0.5 fm−1; only one
partition was used in the full radial interval from 0 to 15 fm using a
total of 130 Lobatto grid points. The accuracy of 10−8 is consistent
with the estimate made in Eq. (B4) in Appendix B.

wave function at all distances. These errors can be avoided by
an iterative procedure for the large distance part of the wave
function, as will be described in a future publication [27].

The results for potentials VWS and VM are shown Figs. 3 and
4, respectively. In both cases, the error of the wave function
starts with 10−11 at small distances, and it increases to 10−10

as the distance increases, due to the accumulation of various
errors. The accuracy for the nonlocal potential K is shown
in Fig. 5. The accuracy of the integral (8), for a fixed size
of all partitions as a function of the number N of Lobatto
points in each partition, is shown in Fig. 6, where the open
circles represent an upper limit of the estimated accuracy as
developed in Appendix B, of order (N − 2)3. This figure is
important because it shows the nearly exponential increase
of accuracy as N increases, until the accumulation of errors
overwhelms this effect once the value of N increases beyond
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FIG. 6. (Color online) Accuracy of the integral∫ 100
0 sin(kr) VM (r) ψ(r) dr, obtained with the FE-DVR method as

a function of the number of Lobatto points in each partition. The
length of each partition is 1.0 fm and the number of partitions is
100. The potential is VM , the wave number is k = 0.5 fm−1, and the
accuracy is obtained by comparison with the S-IEM result, which is
accurate to 1 : 10−11. The open circles represent an estimate of the
upper bound for the accumulation of roundoff errors, given by Eq.
(B1) in Appendix B.
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FIG. 7. (Color online) Accuracy of the integral∫ 100
0 sin(kr) VM (r) ψ(r) dr , Eq. (8), as a function of the

length of each partition, into which the radial interval [0,100 fm] is
divided. The total number N = 20 of Lobatto points in each partition
is kept constant. The conditions are the same as in Fig. 6. This figure
shows that the accuracy decreases exponentially with the size of the
partition. For 20 partitions, the computation time is 0.060 s; for 100
partitions, it is 0.075 s.

a certain value, 20 for the case of Fig. 6. The accuracy of the
integral (8) for a fixed number N per partition, but for several
different partition sizes, is displayed in Fig. 7. This figure
shows that the accuracy decreases exponentially with the size
of the partition, which can be interpreted as an exponential
increase of the accuracy with the number of Lobatto points in
each partition of fixed length.

Finally, the FE-DVR computing time as a function of the
number N of Lobatto points in each partition is displayed in
Fig. 8, where it is also compared with an estimate described
in Appendix B of the number of floating point operations
expected. According to this estimate, the time per floating point
operation turns out to be � 10−8 in a MATLAB computation
performed on a desktop using an Intel TM2 Quad, with a CPU
Q 9950, a frequency of 2.83 GHz, and a RAM of 8 GB. The
dashed line represents the total time required for a comparable
S-IEM computation. That comparison shows that the FE-DVR
method can be substantially faster than S-IEM even though the
former has many more support points, depending on the radial
range and on the accuracy required. Further details are given
in Table II in Appendix A.

A comparison between the FE-DVR and a finite-difference
sixth-order Numerov method of the accuracy of tan(δ) is
illustrated in Fig. 9.

This comparison shows that for an accuracy of tan(δ) of
�10−8, the FE-DVR method requires 15 times fewer mesh

TABLE I. Accuracy and computing time for the S-IEM method.

Tol. Part′ (ns) Points Error [tan(δ)] Time (s)

10−12 37 629 0.178
10−10 25 425 4.6 × 10−12 0.181
10−8 17 289 7.7 × 10−11 0.171
10−6 11 187 5.2 × 10−7 0.165
10−4 7 119 2.8 × 10−4 0.162
10−2 5 85 6.5 × 10−2 0.161
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FIG. 8. (Color online) The computing time in MATLAB for the
calculations described in Fig. 6. The estimate is given by Eq. (B1),
with the factor 10−16 replaced by 2 × 10−8. The latter represents the
time for each floating point operation. The dashed line represents the
computing time for the S-IEM calculation, described in Fig. 6.

points, and is approximately 100 times faster than the Numerov
method. More details are presented in Appendix C.

IV. SUMMARY AND CONCLUSIONS

The accuracy of a hybrid finite-element method (FE-DVR)
has been examined for the solution of the one-dimensional
Schrödinger equation with scattering boundary conditions.
This method [14] uses as basis functions the discrete variable
representation Lagrange polynomials �i(r), i = 1,2, . . . ,N,

on a mesh of N Lobatto support points. The accuracy of the
FE-DVR method is obtained by comparison with a spectral
method S-IEM, whose accuracy is of the order of 1 : 10−11. An
important advantage of a discrete variable representation basis
is the ease and accuracy with which integrals can be performed
using a Gauss-Lobatto integration algorithm that furthermore
renders the matrix elements 〈�i(V − E)�j 〉 diagonal. This
feature permits one to easily solve the Schrödinger equation
also in the presence of nonlocal potentials with a kernel
of the form K(r,r ′), as is demonstrated in one of our
numerical examples. Another advantage is that the Galerkin
matrix elements of the kinetic energy operator T need not
be recalculated anew for each partition because they are the
same in all partitions to within a normalization factor that only
depends on the size of the partition. A further advantage is that
the convergence of the expansion (9) with the number N of
basis functions is exponential, in agreement with what is the
case for bound-state finite-element calculations with Lobatto
discretizations [12]. A possible disadvantage may be that if the
number of the Lagrange polynomials in each partition is very

TABLE II. Accuracy and computing time for the FEM-DVR
method.

No. of points Error [tan(δ)] Time (s)

2000 10−10 0.075
1300 10−8 0.050
1200 10−6 0.047
1000 10−4 0.045
700 10−2 0.042
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FIG. 9. (Color online) This accuracy comparison for tan(δ) is
performed for the potential VM and k = 0.5 fm−1 in the radial interval
[0,100 fm]. The partition sizes in the FE-DVR method have a length
of 1 fm each, and the number of Lobatto points in each partition is
given by 1/100th of the total number of points. Numerov is a sixth-
order finite-difference method with equidistant points, as described
in Appendix C.

large and/or the number of partitions is large, as is the case for
long-ranged potentials, then the accumulation of roundoff and
algorithm errors may become unacceptably large.

In summary, for scattering solutions of the Schrödinger
equation, the accuracy of the FE-DVR method increases
exponentially with the number of Lagrange polynomials
in each partition until the accumulation of roundoff and
truncation errors overwhelms the result. The FE-DVR can
easily achieve an accuracy of the order of 10−10 for the
scattering phase shifts for either local or nonlocal short-ranged
potentials; it is less complex than the spectral S-IEM method,
but it is comparable with regard to the amount of computing
time; and, in addition, it is substantially more efficient than
a finite-difference Numerov method. The latter result is
demonstrated by the fact that the FE-DVR was found to be
100 times faster than the Numerov method for an accuracy of
10−8 of the scattering phase shift.
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APPENDIX A: THE S-IEM METHOD

A version of the spectral method employed here was
developed recently [22]. It consists in dividing the radial
interval into partitions of variable size, and obtaining two
independent solutions of the Schrödinger Eq. (6) in each
partition, denoted as Y (x) and Z(x). These solutions are
obtained by transforming Eq. (6) into an equivalent Lippmann-
Schwinger integral equation (LS) and solving the latter by
expanding the solution into Chebyshev functions, mapped to
the interval [−1,+1]. The corresponding discretized matrices
are not sparse, but are of small dimension equal to the number
of Chebyshev points per partition. The solution ψ in each
partition is obtained by a linear combination of the two
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FIG. 10. (Color online) The partition distribution for the S-IEM
method in the radial interval [0,100 fm] for two different numbers
N of the Chebyshev expansion functions in each partition. The end
point b2 of each partition is shown on the vertical axis, and the
corresponding partition number is shown on the horizontal axis. The
potential is VM , and the wave number is k = 0.5 fm−1. The accuracy
parameter “tol.” in each partition is 10−12. The computation time for
each case is approximately the same, 0.2 s, and the accuracy of the
wave function in both cases is the same, 1 : 10−11.

independent functions Y (x) and Z(x), with coefficients that
are determined from the solution of a matrix equation of
dimension twice as large as the number of partitions, but the
corresponding matrix is sparse. Details are given in Ref. [22],
and a pedagogical version is found in Ref. [28].

One of the features of the S-IEM method is that the size of
each partition is adaptively determined such that the accuracy
of the functions Y (x) and Z(x) is equal to or better than a
predetermined accuracy parameter tol., which in the present
case is tol. = 10−12. In the region where the potential V is
small, the corresponding partition size is large. When the
number of Chebyshev expansion functions N per partition
is large, the size of the partitions is correspondingly large. As
is illustrated in Fig. 10, when N is increases from 17 to 33, the
number of partitions decreases from 29 to 6, yet the accuracy
of the respective wave functions is approximately the same,
1 : 10−11, and the computing time is also approximately the
same, 0.2 s.

For the present S-IEM benchmark calculations, the value
of N is 17, and for the case of VM the maximum value of r

is 100 fm. Such a large value is required because the potential
decays slowly with distance and becomes less in magnitude
than 5 × 10−12 only beyond r = 100 fm. Had the potential
been truncated at a smaller value of r, then the truncation error
would have propagated into all values of the wave function
and rendered it less accurate. The accuracy of the S-IEM wave
function can be seen from Fig. 11, which compares two S-
IEM wave functions with accuracy parameters tol. = 10−11

and 10−12, respectively. The result is that the accuracy of the
IEM wave function for N = 17 and Rmax = 100 fm and tol. =
10−11 is 4 × 10−11, and that for tol. = 10−12 the accuracy is
better than 10−11.

The wave functions are normalized such that their asymp-
totic value is given by Eq. (7). The corresponding values of
tan(δ), Eq. (8), for potentials VM and VWS and a wave number
k = 0.5 fm−1 are 2.699 470 250 2 and −1.710 734 422 7,

0 50 100
10

−14

10
−12

10
−10

r (fm)

er
ro

r 
o

f Ψ

FIG. 11. (Color online) The y axis illustrates the absolute value
of the difference between two S-IEM wave functions, calculated
with accuracy parameters tol. = 10−11 and 10−12, respectively, for
potential VM and k = 0.5 fm−1. This difference is less than 4 × 10−11

for all values of r.

respectively. Table I shows the number of partitions, the
accuracy of tan(δ), and the computing time of the S-IEM
method for various tolerance parameters input into the code
for the potential VM, with k = 0.5. The number of Chebyshev
polynomials in each partition is 17; the total number of points
displayed in the third column is equal to 17 times the number
of partitions. The error of tan(δ) is obtained by comparing the
value of tan(δ) for a particular tolerance parameter with the
value obtained for tol. = 10−12.

For the case of a nonlocal potential K , the division of the
radial interval into partitions is not made because the effect
of the nonlocal potential would extend into more than one
partition, making the programming more cumbersome. For the
case of a kernel K(r,r ′), described in Ref. [26], the accuracy
of the S-IEM result [26] is also good to 1 : 10−11, as is shown
in Fig. 7 of Ref. [26].

For comparison with the S-IEM method, some characteris-
tics of the FE-DVR method are shown in Table II. The potential
and the wave number are the same as in Table I, the radial
interval [0,100 fm] is divided into 100 partitions of length 1
fm each, and the number of Lobatto points per partition in all
partitions is the same but is progressively varied from 20 to
7, as shown in the table. If one compares the entries in Table
I with those in Table II that correspond to approximately the
same accuracy of 108 for tan(δ), one notices that the FE-DVR
method needs approximately seven times more support points
than the S-IEM does, yet the computing time is between two
and three times less. This remark attests to the efficiency of
the FE-DVR method.

APPENDIX B: THE ROUNDOFF ERRORS IN THE FE-DVR
METHOD

The notation is as follows: N is the number of Lobatto
points in each partition, which is also equal to the number
of Lagrange polynomials in each partition, and Np is the
number of partitions. The largest contribution to the roundoff
errors is expected to arise from the solution of Eq. (23) for
the N − 2 expansion coefficients. This equation is of the type
M̄β = b, where β is the column vector of the N − 2 expansion
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FIG. 12. (Color online) The error of the Numerov wave function
at r = 18 fm as a function of the number N of mesh points in the
interval [0,20 fm]. The distance h between points is 20/N . For each
h, the wave function is normalized to the S-IEM wave function
at r = 2 fm. The wave number is k = 0.5 fm−1 and the potential
is VM.

coefficients and M̄ is a matrix of dimension N − 2, whose
solution requires 4 × (N − 2)3 floating point operations. For
the case in which the floating point roundoff error of the
computer is ε and the errors accumulate linearly, an upper
bound for the total error εT is

εT ≈ 4NP (N − 2)3ε. (B1)

For Np = 100 and ε = 10−16, which is the value for the
calculations done in MATLAB, one obtains an upper bound
for the values of εT that are plotted in Fig. 6 as a function
of N ,

εT ≈ 4 × 10−14(N − 2)3ε. (B2)

The floating point error that occurs in the calculation of
the Lagrange functions �i(x) is much smaller. The numerator
contains N factors x − xi , each of which can be written as
	i + ε, where 	i is proportional to the length of each partition.
Hence the error of the product is ≈	N + N	N−1ε, where 	

is an average value of x − xi. A similar argument holds for the
denominator, and if the error of the numerator adds linearly to
the error of the denominator, then an upper bound for the total
error of a Lagrange function is �2Nε/	. This is much less
than the error in Eq. (B1).

For the case of the nonlocal calculation, the conditions
above are different. There is only one partition of length L =
15 fm, the number of Lobatto points is 130, and the order of
each polynomial �(r) is 129. The error in the calculation of the
Lagrange polynomials, or their derivatives at each mesh point,
is � 2(N − 1)ε/	. Since the error in the calculation of the
matrix element of (d2/dr2) has N terms according to Eq. (5),
that could lead to an error of �2N (N − 1)ε/	, assuming that
all ε errors add linearly. The solution of Eq. (23) requires
4(N − 2)3 operations, and thus an upper bound of the total
linear accumulation of ε errors is

�2N (N − 1)(ε/L)4(N − 2)3 = 1.8 × 10−6. (B3)

TABLE III. The Numerov/FE-DVR ratio of the required total
number of mesh points and the respective computational times.

Accuracy tan(δ) Ratio of no. of points Time ratio

10−6 � 1 20
10−8 15 100

Since the ε errors do not accumulate linearly, the expected
upper bound for the error could be

�2(N − 1)(ε/L)4(N − 2)3 = 1.4 × 10−8. (B4)

The above estimate is consistent with the accuracy found
numerically in Fig. 5.

APPENDIX C: COMPARISON WITH
A FINITE-DIFFERENCE METHOD

The finite-difference method used for this comparison is
Milne’s corrector method, also referred to as the Numerov
method, given by Eq. 25.5.21 in Ref. [23]. In this method,
the error of the propagation of the wave function from two
previous points to the next point is of order h6, where h is the
radial distance between the consecutive equispaced points. The
calculation is done for the potential VM and for k = 0.5 fm−1

as follows.
A value of h is selected and the Milne wave function is

calculated starting at the two initial points r = h and 2h by a
power series expansion of the wave function for the potential
VM . The values of the wave function for the additional points
3h,4h, . . . are obtained from Milne’s method out to the point
r = 20 fm. The wave function is normalized to the S-IEM
value at r = 2 fm, and the error at r = 18 fm is obtained by
comparison with the S-IEM value at that point. The result for
a sequence of h values is illustrated in Fig. 12. For each value
of h, the wave function is calculated out to r = 100 fm by
Numerov’s method, and the integral (8) is calculated by the
extended Simpson’s rule, given by Eq. (25.4.6) in Ref. [23].
The error is determined by a comparison with the S-IEM result
2.699 470 250 2 for tan(δ). A comparison with the FE-DVR
method is shown in Fig. 9, and Table III displays the ratio
Numerov/FE-DVR of the total number of points and of the
time of the two methods for two accuracies of tan(δ). More
details of the error and the computing time for the Numerov
method are displayed in Table IV.

The calculation is done in MATLAB performed on a desktop
using an Intel TM2 Quad, with a CPU Q 9950, a frequency of
2.83 GHz, and a RAM of 8 GB.

TABLE IV. Accuracy and computing time for the Numerov
method.

No. of points Error [tan(δ)] Time (s)

12 800 1.23 × 10−9 51
6400 9.41 × 10−9 5.8
3200 7.50 × 10−8 2.1
1600 5.99 × 10−7 1.0
800 4.76 × 10−6 0.72
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