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Crystalline nucleation in undercooled liquids: A Bayesian data-analysis approach for a
nonhomogeneous Poisson process
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A Bayesian data-analysis approach to data sets of maximum undercooling temperatures recorded in repeated
melting-cooling cycles of high-purity samples is proposed. The crystallization phenomenon is described in terms
of a nonhomogeneous Poisson process driven by a temperature-dependent sample nucleation rate J (T ). The
method was extensively tested by computer simulations and applied to real data for undercooled liquid Ge. It
proved to be particularly useful in the case of scarce data sets where the usage of binned data would degrade the
available experimental information.
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I. INTRODUCTION

Crystalline nucleation in metastable undercooled liquids
is a fascinating phenomenon involving the ability of the
system to explore the entire available phase space and fall
into the stable equilibrium state. A basic understanding of
the phenomenon is given by the classical nucleation theory
(CNT) [1–5], based on reasonable assumptions for the free
energy associated with the formation of a crystalline nucleus
in the surrounding metastable liquid (involving volume and
surface terms estimated from macroscopic thermodynamic
quantities) and a kinetic model predicting a metastable
stationary distribution of crystalline cluster sizes. From the
above assumptions [3] the stationary state nucleation rate
I (T ) is given by the product of a weakly temperature- (T -)
dependent prefactor by an exponential term with a strong T

dependence:

I (T ) � Natk
+(n∗)Ze−β�G(n∗), (1)

where β = 1/(kBT ) with kB the Boltzmann constant, n∗ is the
number of atoms in critical nuclei, for which a maximum of
the Gibbs free energy �G(n∗) occurs, and k+(n∗) is the atomic
attachment rate to these nuclei. Z is the Zeldovich factor
resulting from the saddle point integration over the nuclei size
and Nat is the number of atoms (or potential nucleation centers
for heterogeneous nucleation) in the system. By assuming a
linear dependence for the volume Gibbs free energy difference
between solid and liquid phases around the melting point Tm

and adopting the negentropic model to estimate the interface
energy [6–8] σ = αT �Sf /(NAV 2

m)1/3 (where �Sf = λm/Tm

is the molar entropy of fusion, NA the Avogadro number, and
Vm the molar volume), the resulting leading T dependence in
the exponential term is

e−β�G(n∗) ≈ exp

(
−16π

3
α3 1

NAkB

λm

Tm

T 2

(Tm − T )2
f (θ )

)
.

(2)

The dimensionless constant α is associated with the degree of
ordering in the liquid in the neighborhood of the interface with
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the crystal nucleus and depends on the crystal structure. The
additional factor f (θ ) = (2 − 3 cos θ + cos3 θ )/4 represents
the ratio between the volumes of the spherical sector and the
entire sphere arising in heterogeneous nucleation [9] on foreign
substrates with contact angle θ .

The limits of the theory have been critically assessed
[4,5] and in recent times a renewed interest was brought
about by computer simulation work [10–14], in particular on
tetrahedral liquids [15–17], directly relevant to the present
investigation, or other systems [18] where a a metastable fluid-
fluid phase transition occurs. A complete understanding of this
phenomenon is limited by the absence of any experimental
technique able to probe what is actually going on at the
microscopic level in the regions of the fluid where nucleation
actually takes place. This is because any structural probe of
the metastable fluid will be sensitive to average bulk structural
properties dominated by uninteresting configurations, while
only a negligible fraction of the sample atoms are involved in
the successful (overcritical) nucleation process.

Much progress has been performed in relatively recent
times with the development of suitable materials-processing
techniques including containerless environments based on
drop tubes [19–24] or levitation (electromagnetic [25], aero-
dynamic [26], electrostatic [27–29]) or specific techniques
involving supported samples in environments which do not fa-
vor heterogeneous nucleation effects [30–34]. With the above
methods several metallic and insulating liquids can be brought
into a reproducible metastable undercooled state and subject
to various measurements of thermophysical or microscopic
properties. The undercooled liquid state terminates with a
nucleation event leading to macroscopic crystallization and
resulting in a sudden temperature increase of the specimen
to the equilibrium melting temperature Tm (recalescence).
For micrometric to millimetric sized samples, recalescence
occurs on the microsecond to millisecond time scale, and the
onset of crystallization is marked by a characteristic “flash”
(easily observable with a pyrometer for high-melting-point
substances). The lowest temperature T reached by the sample
prior to recalescence is itself the measurement that can be per-
formed at the lowest possible temperature in an undercooled
liquid and contains important information on the nucleation
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rate. Owing to the stochastic nature of the phenomenon, T

is a random variable depending on the nucleation rate and
thermal history of the sample. This paper is actually focused
on the understanding of this stochastic phenomenon and on
the possible data-analysis methods. The subject is not new and
several investigations of maximum undercooling temperature
data sets have been performed [31–38], developing and
exploiting the basic formalism introduced by Skripov [39].
In the present paper a Bayesian approach that turns out to
be particularly appropriate for the case of scarce data sets is
proposed and applied to a Ge recalescence experiment.

The paper is organized as follows: The main assumptions
behind the description of the crystallization events in terms of a
nonhomogeneous Poisson process will be reviewed in Sec. II.
The data-analysis inversion problem is addressed in Sec. III.
The Bayesian approach to the data analysis is illustrated in
Sec. IV. Finally in Sec. V we present a preliminary application
of the method to real data sets.

II. NUCLEATION STATISTICS

We will assume that the crystalline nucleation process
for a given sample is described by a sample nucleation
rate J (T ) dependent on the instantaneous temperature T .
In the ideal case J (T ) corresponds to the lower possible
limit associated with homogeneous nucleation processes and
results proportional to the sample mass m: J (T ) = mIh(T ),
where Ih(T ) is the homogeneous nucleation rate per unit
mass. In real cases J (T ) will be typically dominated by
heterogeneous nucleation processes driven by impurity effects
and will still scale with m for given impurity concentrations.
The assumption of the existence of a J (T ) implies that the
temperature changes are slow compared to the time needed for
the sample to reach a metastable stationary state, which is quite
reasonable. The sample thermal history T (t) will be considered
a monotonically decreasing function of time [Ṫ (t) < 0] going
from a maximum heating temperature Tmax > Tm, through
Tm (the specimen melting point) at t = t0, and decreasing
towards the undercooling regime T < Tm. The probability
Pl(t) that the sample remains liquid at time t is described by a
nonhomogeneous Poisson process since the rate is dependent
on time through the parameter T and is given by

Pl(t) = exp

(
−

∫ t

t0

J (T (t ′))dt ′
)

, (3)

where the integral in the exponential assumes stochastic
independence among the nucleation probability in successive
infinitesimal time slices dt ′ and runs from t0: the time from
which J > 0. This probability can be conveniently expressed
as a function of T using the thermal history T (t) as a
substitution variable in the integral [T (t0) = Tm, T (t) = T ,
and dT = Ṫ dt ′ = −(−Ṫ )dt ′]. Then the probability that the
sample remains liquid when it has reached temperature T <

Tm is

Pl(T ) = exp

[
−

∫ Tm

T

J (T ′)
Cr (T ′)

dT ′
]

, (4)

where the minus sign was explicitly introduced to make
−Ṫ (t(T ′)) = Cr (T ′) > 0 (i.e., the positive sample cooling
rate as a function of the dummy integration variable T ′) and

the integration boundaries accordingly exchanged to express
Pl(T ) as the negative exponential of the forward integration
of a positive quantity. The sample nucleation rate vanishes,
J (T ) = 0, for T � Tm and is expected to display a monotonic
steep increase when the temperature T decreases below Tm.
For this reason, upon decreasing T this probability [starting at
Pl(Tm) = 1] will initially remain Pl(T � Tm) � 1 but, around
some typical maximum undecooling temperature Tu, will
display a rapid drop to 0. So the maximum undercooling
temperature in repeated cooling processes with rate Cr (T ) >

0, obtained by any equivalent thermal history T (t) with
arbitrary time origin, will be a random variable T described
by the cumulative distribution function Pl(T ). The probability
density of this random variable is obtained from

g(T ) = dPl(T )

dT
= J (T )

Cr (T )
Pl(T )

= J (T )

Cr (T )
exp

[
−

∫ Tm

T

J (T ′)
Cr (T ′)

dT ′
]

, (5)

and is expected to be a narrow distribution peaked around a
typical undercooling temperature Tu.

Equations (4) and (5) are the solution for the problem
of finding the distribution of the random variable maximum
undercooling temperature for a given sample nucleation rate
J (T ) and cooling rate Cr (T ). This distribution will depend on
the sample mass m (and impurity concentration) and Cr (T )
and, provided a functional expression for J (T ) is given, can
be calculated analytically or numerically. It is also possible to
generate a sample of independent random numbers distributed
according to Eq. (5) by extracting a uniform random number
x in the interval [0,1) and solving for T the expression
x = Pl(T ), i.e., inverting Eq. (4).

III. DATA ANALYSIS AND INVERSION

The theoretical treatment of the nonhomogeneous Poisson
process illustrated in Sec. II provides a solution for the
direct problem of finding the distribution of the undercooling
temperature random variable. The experimental information
that can be obtained from repeated melting and undercooling
experiments is a set {Ti} of temperature values for this random
variable. The objective of any data-analysis approach is to
derive J (T ), or any related information, from this data set,
corresponding to the inverse problem to that solved in Sec. II.
Owing to the stochastic nature of the phenomenon a statistical
analysis is required.

An obvious approach consists in realizing that J (T ) appears
in the integrand of Eq. (4) with the T variable in the
lower boundary of the integral. By differentiating the natural
logarithm of Pl(T ) with respect to T , the integrand function at
T is directly obtained, that is,

J (T ) = d ln[Pl(T )]

dT
Cr (T ) = 1

Pl

dPl

dT
Cr (T ). (6)

Equivalently this result is obtained by inverting Eq. (5). The
application of the above expression requires knowledge of
the random variable distribution and in particular of the
ratio between probability density and cumulative distributions
involved in the logarithmic derivative. Clearly the experiment
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will provide a statistical approximation to the above functions
represented by suitable histograms of the data set, and this
will introduce statistical uncertainties. It is also clear that the
set of recalescence temperatures will be confined within a
narrow temperature interval and the retrievable information
on J (T ) will be limited to this interval with the highest
information content in the temperature region of maximum
data density. This approach has been previously exploited by
Perepezko and co-workers in various investigations [31–33]
and independently in a previous work from our group [34].
Expressions quoted in Refs. [31–33] can be recognized as
equivalent implementations of Eq. (6).

This approach, which is certainly known and exploited
in different scientific contexts, as originally quoted, has the
great advantage of being model independent in the sense
that no assumptions are made on J (T ) and the resulting
functional shape with uncertainty bounds comes directly from
the application of Eq. (6) and related expressions. On the
other hand, this direct inversion formula suffers from practical
limitations associated with the statistical uncertainty. As a
matter of fact, obtaining a numerous and homogeneous set
of recalescence temperatures for a given sample is not an
easy job, whatever experimental technique is used. Techniques
using supported samples are more affected by possible changes
in the sample contamination [31–34], and the succession
of maximum undercooling temperatures has to be critically
inspected in order to extract a subset of successive values
obtained under comparable sample conditions. Typical sets
recorded with levitation techniques [37,38] are also limited to
a few hundred repetitions. Drop tube experiments [19–21,24]
performed on high-purity specimens typically allow a single
trial per sample. So very often the only pieces of available
information on the undercooling ability of a well-characterized
specimen are scarce data sets, and the statistical analysis
embodied in Eq. (6) requiring data binning has some practical
limitations. Lastly a further drawback of this approach is that
the resulting estimate for J (T ) is given by a sequence of values
with uncertainty, but no constraint is introduced to account for
the expected smooth functional dependence of J (T ).

IV. A BAYESIAN APPROACH

In the attempt to provide an alternative data-analysis
scheme for these experiments we explored the possibility
of adopting a Bayesian statistical approach [40] following
current trends in many scientific fields. The way this approach
was implemented starts from the observation that the narrow
distribution of maximum undercooling temperatures is able
to provide information on J (T ) only in a limited temperature
range. So it is possible to find approximations for J (T ) in
the temperature range of interest (depending only on a few
parameters, indicated as A,B in the following) that can be
used to predict the resulting distributions.

In the Bayesian approach the probability density of the
model parameters, with the condition that a given data set of
undercooling temperatures {Ti} is obtained, is given by

f (A,B|{Ti}) = φ({Ti}|A,B) p(A,B)∫
dAdB φ({Ti}|A,B) p(A,B)

, (7)

where p(A,B) represents the prior probability distribution
for the parameters and φ({Ti}|A,B) is the likelihood function
representing the probability density for the data set {Ti} given
the values for the model parameters. The denominator accounts
for the correct normalization of the distribution. In the absence
of any prior information on the parameters, p(A,B) can be
regarded as uniform in the allowed parameter range, and in
practice omitted in Eq. (7) apart from the resulting integration
boundaries in the denominator. In the case of stochastically
independent undercooling temperatures Ti , which is reason-
able if they are obtained in subsequent melting-undercooling
cycles under stable sample conditions, the likelihood function
is given by the product of the probability densities calculated
for the various observed temperatures. Therefore the resulting
probability density in the parameter space is proportional to
the likelihood function regarded as a function of the model
parameters:

f (A,B|{Ti}) ∝ φ({Ti}|A,B) =
∏

i

g(Ti |A,B). (8)

In Eq. (8) the normalization denominator was omitted for
simplicity. The probability densities g(Ti |A,B) are given by
Eq. (5), once J (T ) has been suitably parametrized. It should
be emphasized here that within a given functional model the
undercooling temperature distribution g(T |A,B) is insensitive
to the specific choice of the parameters (A,B), and various
functional combinations giving the same J (T ) can be used.
However, when these expressions are evaluated as a function
of the parameters (A,B), such as in Eq. (8), this choice matters
as well as the assumption of a uniform prior which is strictly
associated with the parameter definition. So the parameter
choice and the assumptions on their prior distribution are
important elements of the Bayesian approach contributing to
the shape of the distribution.

Suitable parametrizations for J (T ) are certainly those
suggested by the CNT and they can be used to calculate Eq. (5)
using a numerical approach.

A. Empirical models

For practical purposes it is convenient to use empirical
expressions leading to analytically solvable integrals. The
simplest expression is

J (T ) = Ae−B(T −T0), (9)

where T0 is a reference undercooling temperature and A =
J (T0) and B = − d ln J (T )

dT
|T0 . Equation (9) is not intended to

represent J (T ) in a wide temperature interval but only to model
its functional shape in a narrow interval in the spirit of a
Taylor expansion of its logarithm around T0. The rationale is
that typical undercooling temperatures are expected to occur
in a narrow interval where the information on J (T ) can be
obtained. In the same spirit Cr (T ) will be approximated by its
value at T0, Cr = Cr (T0). With this trivial model we have

Pl(T ) = exp

(
− A

BCr

[e−B(T −T0) − e−B(Tm−T0)]

)
, (10)
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and the resulting probability density is

g(T |A,B) = A

Cr

e−B(T −T0)Pl(T )

= Ae−B(T −T0)

Cr

exp

(
− A

BCr

[e−B(T −T0) − e−B(Tm−T0)]

)
. (11)

A sample of random temperatures distributed according to
Eq. (11) can be obtained from uniformly distributed pseudo-
random numbers from computer routines x ∈ U [0:1) using the
inverse of Eq. (10):

Tr = T0 − 1

B
ln

(
−BCr

A
ln x + e−B(Tm−T0)

)
. (12)

In all the above expressions the term e−B(Tm−T0) accounts for
the fact that in Eq. (9) J (T ) does not strictly vanish at Tm. For
realistic parameter values it gives a negligible contribution.

A more realistic model for J (T ) should contain an expo-
nential temperature dependence in agreement with the CNT
prediction. A very general elementary integrable expression is

J (T ) = Af ′(T )e−Bf (T ). (13)

In the framework of the negentropic model of the interface
energy [6–8], we assume

f (T ) = φ

(
T 2

(Tm − T )2
− ψ

)
, f ′(T ) = 2φT Tm

(Tm − T )3
,

(14)

where φ and ψ are constants that can be conveniently
determined to maintain for A and B the same meaning as
in model (9) with respect to the reference temperature T0. We
find

φ = (Tm − T0)3

2T0Tm

(
1 + 1

B

Tm + 2T0

T0(Tm − T0)

)
(15)

and

ψ = T 2
0

(Tm − T0)2
− 1

φB
ln f ′(T0). (16)

An elementary integration yields

Pl(T ) = exp

(
− A

BCr

e−Bf (T )

)
(17)

and correspondingly

g(T |A,B) = A

Cr

f ′(T )e−Bf (T ) exp

(
− A

BCr

e−Bf (T )

)
.

(18)

The random sample of recalescence temperatures can be
obtained with the transformation

Tr = Tm

1 + [
ψ − 1

φB
ln

(−BCr

A
ln x

)]−1/2 . (19)

The functional factor f ′(T ) in Eq. (13) has the only purpose
of allowing for an elementary integration in Eq. (4); its
contribution to the overall shape of J (T ) is small because
it is not in the exponential term. A similar idea was already
adopted in previous investigations [35–38] where an exact
CNT expression was approximately integrated assuming a
small prefactor contribution; here an exact integration is
performed on an approximate expression. Clearly, further

investigation may suggest the adoption of improved functional
models.

The two models here introduced are useful to illustrate the
method and will be proven to be adequate. The models appear
to depend on A, B, and T0, but only two parameters are actually
independent since the same functional form can be obtained
using a different reference temperature T0 by suitably changing
the values of A and B. This is obvious for model (9) since a T0

translation simply involves a redefinition of A (B is constant),
but a similar argument applies also to Eq. (13). Namely, with
φB and φA exp(φψB) constants the same T dependence in
both preexponential and exponential terms is obtained.

B. Numerical simulations

In order to assess the validity of the data-analysis approach
and to compare models (9) and (13) we performed a numerical
simulation. We used parameters roughly appropriate for the
case of heterogeneous nucleation of Ge, using Tm = 1200 K,
A = 1 Hz, and B = 0.1 K−1, at T0 = 1000 K and Cr =
10 K/s. Random samples of undercooling temperatures were
generated using (12) and (19) and the related histograms
are compared with the predicted distributions in Fig. 1. The
undercooling temperature distribution shows the characteristic
asymmetric shape due to the exponential increase of J (T ) at
lower temperature. The two models yield slightly different
distributions, with Eq. (13) resulting in the narrower g(T )
peak owing to the greater nucleation rate variation. The
histograms were obtained for samples of 100 000 simulated
undercooling temperatures to show the close agreement with
the predicted distributions. For realistic data sets of a few
hundreds of undercooling temperatures the two models give
less distinguishable results within the statistical uncertainty,
especially for larger and more realistic B values, leading to
narrower distributions. The model functions J (T ) and the
resulting estimated values from Eq. (6) are compared in Fig. 2.
Model (9) is tangent to Eq. (13) at T0 and can be regarded
as its first-order Taylor expansion, which is expected to be
sufficiently accurate in a narrow temperature interval around
T0. Model (13) can be regarded as a further approximation
to ln[J (T )] with a curvature specified according to the CNT
predictions and the correct limiting behavior for T → Tm.
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FIG. 1. Simulated undercooling temperature distributions using
model (9), dashed line, and (13), solid line, with the same parameters
Tm = 1200 K, A = 1 Hz, and B = 0.1 K−1, at T0 = 1000 K and
Cr = 10 K/s.
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FIG. 2. Sample nucleation rate J (T ) on a semilogarithmic plot
associated with models (9), dashed straight line, and (13), solid curve.
The noisy data points refer to the application of the inversion formula
(6) to the data sets of N = 100 000 undercooling temperatures binned
every 1 K.

Samples with 100 000 data points allow the model functional
shapes to be retrieved; obviously this will not be the case for
scarce data sets.

C. Likelihood function simulations

In order to implement the Bayesian data-analysis approach
the probability density in parameter space, which is propor-
tional to the likelihood function in the case of a uniform
prior, has to be evaluated according to Eq. (8) using the
product of the appropriate number of functions of the type
(18) associated with the undercooling temperature data set.
In this analysis the reference temperature T0 is unknown
and will be indicated as the parameter Tu, representing a
typical undercooling reference temperature around which the
information on J (T ) can be retrieved. The actual choice for
the parameters and their prior distribution becomes important
here. We decided to use ln (A) instead of A as the parameter
since ln(A) is in the exponent of J (T ), similarly to B, and
this choice results in more symmetrical distributions. Owing
to the nonlinear relationship, a uniform prior with constant
u( ln(A),B) = u in ln(A) does not correspond to a uniform
prior in A, since p(A,B) ∝ A−1 because u d(ln A) = p(A)dA.
In a similar manner the numerator of Eq. (7) transforms as

φ({Ti}|A,B)A−1dA = φ({Ti}|eln A,B)d(ln A). (20)

As a consequence, to represent the likelihood function it is
possible to use a product of Eqs. (11) or (18), maintaining the A

parameter with the dimensions of a rate, but plotting them on a
ln A scale. This corresponds to the substitution A = exp(ln A),
leading to the correct probability density accounting for the
assumed prior distribution. Any possible assumption on the
prior distribution will eventually become less important for
large data sets. For scarce data sets the Bayesian approach
forces one to define any assumption on the prior.

In order to understand the principle of application of this
method it is instructive to visualize the likelihood function (8)
associated with simulated samples of undercooling tempera-
tures. The probability density in the two-parameter (ln A,B)
space can be easily plotted in three dimensions (3D). For this
purpose we adopted model (13) with Cr = 10 K/s, Tm =

0.2
0.5 1 2A (Hz) 0.0

0.1

0.2

B (K−1)

φ

FIG. 3. Likelihood functions in the (ln A,B) parameter space
associated with a simulated data set of 20 undercooling temperatures
(with Tm = 1200 K, A = 1 Hz, and B = 0.1 K−1, at T0 = 1000 K)
for Tu = 998 K (surface on the right side) and Tu = 1008 K (surface
on the left side). The probability densities are not normalized.

1200 K, A = 1 Hz, and B = 0.1 K−1, at T0 = 1000 K, and
simulated two data sets of N = 20 and N = 100 undercooling
temperatures. The 3D shape of the f (ln A,B|{Ti}) distributions
(apart from normalization) and the effect of the choice of Tu

in the data analysis are illustrated in Fig. 3 reporting two∏
i g(Ti |A,B) functions for N = 20 for slightly different Tu.

The likelihood functions are peaked around the most probable
(ln A,B) couple for the given Tu. The ln(A) and B random
variables are not stochastically independent: f (ln A,B|{Ti})
cannot be written as the product of two independent functions
of ln A and B, and in general is an asymmetric peak.
Confidence intervals for the (ln A,B) couple can be in principle
obtained using a suitable contour f (ln A,B|{Ti}) = const,
which encloses the desired percentage (confidence level) of the
corresponding probability. This is, however, not easy for the
presence of asymmetry and the normalization requirement. A
Gaussian approximation for the peak shape, however, becomes
progressively more accurate as N increases and may be
adopted under certain conditions. For small N finding the
correct normalization for f (ln A,B|{Ti}) is anyway a difficult
task.

In general the ln A and B random variables are also
correlated, but this correlation depends on the choice of Tu.
This effect is clearly visible in Fig. 4, reporting a sequence
of contour plots for two data sets with N = 20 and N = 100
and the same sequence of Tu values. The change in the tilt
of the main axes of the contour plots in going from “high”
Tu (negative correlation) to “low” Tu (positive correlation) is
evident. This is explained by the fact that interception of a
given data set from lower temperatures can be equivalently
obtained with larger or smaller ln A and simultaneously larger
or smaller negative slopes. The opposite occurs when the
reference temperature is greater then those in the data set. From
the above considerations it appears quite natural to choose
the best Tu value for a given data set in such a way that the
correlation among the ln A and B parameters is negligible.
This will allow one to express the confidence interval in the
simplest way as a couple of optimal values with error bars
(and no correlation coefficient). The parameter Tu therefore
assumes the meaning of a reference temperature where the data
set {Ti} allows one to determine independently the coefficients
of the expansion for the logarithm of the sample nucleation
rate, ln A and B. The comparison between the N = 20 and
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FIG. 4. Contour plots of the likelihood functions in the (ln A,B)
parameter space associated with a simulated data set of 20 under-
cooling temperatures (top panel) and 100 undercooling temperatures
(middle panel). The four sets of contours correspond to Tu =
995,1000,1005,1010 K from right to left. The bottom panel reports a
scatter plot of the Metropolis Monte Carlo simulation on the N = 100
data set; see Sec. IV D.

N = 100 data sets in Fig. 4 is also useful to appreciate the
corresponding reduction of uncertainty in parameter space.
Equivalent contours appear to be shrunk by a factor

√
5 as

expected from elementary statistical arguments.

D. Metropolis Monte Carlo sampling

The graphical method illustrated in the previous section
is not particularly useful for the application of the Bayesian
approach to real (or simulated) data sets to solve both
the problems of normalizing f (ln A,B|{Ti}) and finding the
appropriate Tu to obtain uncorrelated variables. Both these
aspects can be elegantly tackled using a numerical approach
based on the Metropolis Monte Carlo method (MMC) [41]. In
this approach a driven random walk in the (ln A,B) parameter
space is generated from a starting point (ln A0,B0) by tossing
trial uniform random displacements in suitable ranges ±δ ln A

and ±δB, refusing the move, i.e., maintaining the previous
position, with probability 1 − p if

p = f (ln Atrial,Btrial|{Ti})
f (ln Aold,Bold|{Ti}) < 1, (21)

and accepting the move in all other cases. The random walk
will first approach the region of maximum f (ln A,B|{Ti})
(equilibration), thus performing a parameter fitting, and will
subsequently be trapped around the likelihood function peak,
simulating the allowed statistical fluctuations in parameter
space. The theory of this Markov process assures that after
equilibration the random walk sequence provides an unbiased
sampling of the f (ln A,B|{Ti}) probability density. The
absence of normalization requirements for f in the acceptance

rule makes this method efficiently applicable in all those
cases where a probability density normalization is difficult
to calculate. The resulting f (ln A,B|{Ti}) is obtained by a
statistical analysis of the random walk (after equilibration)
and is approximated by the corresponding histogram, suitably
normalized. The application of this MMC method to such a
simple two-parameter space is a trivial computational task.
The maximum of the likelihood function can be reached
rapidly from any starting point and the process can run for
several millions of steps to achieve the required statistical
accuracy. The Cln A,B = 〈(ln A − ¯ln A)(B − B̄)〉 correlation
can be computed. If this parameter is not sufficiently small Tu

can be changed and another run performed till the uncorrelated
parameter conditions is satisfied.

To illustrate this method a MMC random walk was
generated by changing Tu every 5000 steps. The corresponding
couples of (ln A,B) values obtained for the N = 100 simulated
data set are reported in a scatter plot representation in
the bottom panel of Fig. 4. It can be appreciated that the
scatter plot, after equilibration, reproduces the shapes of the
distributions of the corresponding contours of the likelihood
function reported in the middle panel of the same figure. The
dependence of the correlation Cln A,B on Tu was investigated
in an extended run performed scanning Tu every 1 K using
Ne = 500 equilibration steps and acquiring statistics for the
successive Ns = 50 000 steps. The results are reported in
Fig. 5, showing the Tu dependence of the dimensionless
correlation coefficient ρln A,B = Cln A,B/(σln AσB), normalized
to the standard deviations of the respective variables σln A and
σB . In the same figure the simulated data set is reported as
marks at the corresponding temperatures in the Tu scale on
the ρ = 0 line. The large variation of ρln A,B obtained on
scanning Tu through the temperature range of the data set
and the principle for choosing the optimal Tu for ρln A,B ≈ 0
can be appreciated. This optimal value is close to but does
not coincide with the average undercooling temperature, and
the numerical simulation approach is an effective means to
optimize this choice. In a standard data-analysis scheme the
numerical procedure is obviously implemented with a more
efficient zero-search algorithm starting from the average {Ti}
and there is no need to scan Tu as was done here for illustrative
purposes. After the first trial run the displacement ranges can
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FIG. 5. Dimensionless correlation coefficient ρln A,B as a function
of Tu for the simulated data set of 100 undercooling temperatures
marked as thin vertical segments on the ρ = 0 line.
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be conveniently set to δ ln A = ξσln A and δB = ξσB with ξ

(a dimensionless constant) chosen to maximize the diffusion
in the parameter space. We adopted ξ = 1.5, achieving an
acceptance rate around 57%. The statistical uncertainty in
ρln A,B depends on the number of MMC steps, and in the case of
|ρln A,B | � 0.2 the standard deviation in successive equivalent
runs is found to be about

√
ν/Ns , where the empirical factor

ν (found to be ≈6.7) accounts for the correlated nature of
the random walk used to evaluate the statistics. The apparent
noise in Fig. 5 is due to this effect for Ns = 50 000. In
practice by using Ns = 100 000 ρln A,B is determined with a
statistical accuracy in the 0.01 range. In these conditions the
numerical statistical accuracy for the (practically uncorrelated)
ln A and B parameters is much smaller than their uncertainty
represented by σln A and σB .

Because of the two-dimensional nature of the parameter
space the joint confidence intervals for a given confidence
level c are represented by suitable contours of the probability
density. In the assumption of an uncorrelated two-dimensional
Gaussian distribution the confidence interval sections are
extended by η = √−2 ln(1 − c) times the standard deviations
of the corresponding variables, and the corresponding contour
is located at exp(−η2/2) = 1 − c of the value at the maximum.
Thus the joint confidence interval drawn at 1σ contains only
c � 39.3% of the probability. In order to include 95% of the
probability (c = 0.95), η � 2.448.

E. Methods and models performances

In order to understand the advantage of the Bayesian
approach over the direct binning approach, both data-analysis
methods were applied to the N = 100 simulated data set. The
results are both compatible with the adopted J (T ) model and
are compared in Fig. 6. The binning method was implemented
by subdividing the sample into ten temperature intervals
containing ten data points each. There is of course a certain
arbitrariness in this choice that affects the results in conjunction
with the sample statistical fluctuations. The Bayesian approach
instead exploits the assumption of the existence of an analytical
J (T ) function to explain the entire data set and the limited
number of estimated parameters is reflected in an overall
smaller statistical uncertainty. The binning approach becomes
progressively less applicable or useful for less numerous sam-
ples. The Bayesian analysis is instead in principle applicable
even if only a single maximum undercooling temperature
is available. On the other hand it is clear that the main
limitation of the Bayesian method is the requirement for a
model assumption. It should be pointed out here that it is
not necessary to assume the validity of the CNT or a specific
J (T ) model for an extended T range. It is sufficient to assume
that ln[J (T )] is a continuous and derivable function in the
T range of interest. Clearly, if J (T ) is expected to display an
extremely discontinuous T dependence the models considered
in this paper require improvement, but this is very unlikely.

An indication of the effects and limitations associated with
model assumptions can be obtained by investigating the ability
of model (9) to approximate data simulated according to model
(13). The contour plots of the likelihood function for model
(9) are compared with the equivalent quantities for model (13)
in Fig. 7 for the usual N = 100 data set. The best B value
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J
(s

−1
)

T (K)

FIG. 6. Comparison of the performance of the Bayesian approach
with the binning method. The adopted J (T ) model is reported as
a short-dashed curve. The N = 100 simulated data set is marked
with thin vertical lines at the bottom. The horizontal line with small
ticks indicates the adopted binning. The ◦ data points with error
bars, reported at the central bin T , refer to the statistical evaluation
according to Eq. (6) and [34]. The Bayesian analysis provides an
estimate of A (• with error bar) and B at Tu, determining the shape of
J (T ) according to model (13) (thick solid curve) with an uncertainty
fan associated with ±σB (thin solid curves), traced over the region of
the central 90th percentile of the simulated data. All errors refer to
one standard deviation.

for model (9) is roughly constant with Tu at variance with the
case of model (13). This is explained by the fact that in this
functional model a change in T0 does not affect B but only A.
The different slopes between the sequences of centroids should
not concern the reader. The real comparison should be made on
the central profiles corresponding to ρ ≈ 0. In this case model
(9) leads to a B value overestimated by 12% and a comparable
A value with respect to model (13), used to simulate the data.
The effect is explained by the extension of the undercooling
data into a region of a steep decrease of J (T ), as shown in
Fig. 2, that model (9) attempts to fit with a slightly larger
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FIG. 7. Contour plots of the likelihood function drawn at levels
0.1, 0.3, 0.5, 0.7, and 0.9 of its maximum for model (13), solid curves,
and (9), dashed curves, for the optimal Tu (central), Tu + 5 K (left),
and Tu − 5 K (right). The outer curves include approximately (in the
Gaussian approximation) 90% of the probability.
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B value. For these N = 100 samples the difference between
the two models is comparable with the parameter uncertainty.
In other words, the systematic error made by assuming the
“wrong” model (9) is of the order of the statistical uncertainty.
In the case of less numerous or narrower {Ti} distributions
the performances of the two models are comparable. In real
applications the issue of the systematic uncertainty associated
with the assumption of an incorrect empirical model is clearly
important and not easy to assess. It can be argued, however,
that by assuming model (13), which accounts for the correct
curvature and asymptotic behavior of the exponential term
predicted by the CNT, the systematic errors are anyway smaller
than the differences with the analysis based on model (9), with
zero curvature, and generally will be smaller than the statistical
uncertainty.

V. APPLICATIONS TO UNDERCOOLED LIQUID Ge

An extended experimental program has been undertaken
over recent years to investigate the nucleation properties of
supported Ge samples. The interest in elemental Ge stems
from the existing competition between covalent and metallic
bonding possibly leading to a liquid-liquid phase transition
line between high- and low-density liquids (HDL-LDL) in the
undercooled range, with potential effects on the crystalline
nucleation barrier, as recently highlighted in a computer
simulation work on silicon [17]. The specific motivation of
this research was to reproduce on millimeter sized Ge droplets
equivalent experimental conditions to those encountered in
supported micrometer sized powder Ge samples dispersed in
boron nitride (BN) probed by x-ray absorption temperature
scans [30], which are suitable to reach a high degree of
undercooling (of even 300 K). For this purpose we used a
high-vacuum chamber, a BN crucible placed on a resistive
heater, and a pyrometric temperature probe coupled to a
PC-based acquisition system as previously described [34].
Over 20 zone-refined 99.9999% Ge samples in a mass
range 1 � m � 500 mg were processed by carefully melting
the samples, avoiding overheating above the evaporation
threshold, and allowing the chamber to outgas for about 1
h to recover high-vacuum conditions under continuous turbo-
molecular pumping. The sample was successively subjected to
repeated melting-cooling cycles (typically heating for 30 s and
switching off the heater for 20 s) with continuous monitoring
at 2000 Hz rate of the surface temperature of the sample.
A number of recalescence events from a few tens to a few
hundreds were recorded for each sample, according to the
sample performance. Examples of sequences of maximum
undercooling temperatures obtained in successive melting-
cooling cycles for two representative Ge samples of different
masses are reported in Fig. 8. The cycle history of the sample
performance is conceptually equivalent to similar results
reported by other groups [32,33]. Here the contamination
effects are severe and the samples often display changes in the
degree of possible undercooling. In particular, in many cases
the sample is observed to improve the undercooling ability
after the first few melting cycles. We believe that this is due
to the progressive removal of the native oxide of Ge which
decomposes and is pumped out under high-temperature high-
vacuum conditions. This process occurs in the first sample
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FIG. 8. (Color online) Sequence of maximum undercooling
temperatures obtained in successive melting-cooling cycles for two
representative Ge samples.

melting cycle and normally continues in the next cycles. We
usually observed that after this first stage the sample reaches
stable undercooling capabilities, indicating the achievement
of the best stationary purity conditions we could obtain. After
a few tens to a few hundred cycles the undercooling sample
properties are subject to degradation in an irreversible manner.
We attribute this effect to an irreversible sample contamination
from heater and/or crucible sources.

In order to extract a sequence of undercooling temper-
atures associated with stationary contamination conditions,
the performance histories (similar to Fig. 8) have to be
carefully inspected to find homogeneous contiguous subse-
quences. Although strictly valid for Gaussian distributions,
the statistical t test for consistency between the mean values
of two subsamples can be applied to determine the maximum
acceptable extension of homogeneous subsequences. Obvi-
ously the effect of adding or eliminating data points on a single
subsequence can be directly verified. Subsequences associated
with both cleaner and contaminated conditions can often be
extracted from a single sample run. Each subsequence can be
processed with the Bayesian data-analysis method proposed
in this paper and the corresponding sample nucleation rate
can be determined. The list of samples considered in the
present investigation and the properties of the corresponding
subsequences are reported in Table I. The sequences of
maximum undercooling temperatures are shown in Fig. 9.

The result of the Bayesian analysis for the sample nu-
cleation rates J (T ) is reported in Fig. 10. It should be
emphasized that the graphical representation of the uncertainty
in both ln(A) and B refers to one standard deviation only.
For a 95% confidence level the confidence interval should be
extended to about 2.45σ . The results are spread over the entire
diagram range, also owing to the difference in the sample
masses. Dividing J (T ) by the corresponding sample masses,
the resulting substance nucleation rate data (per unit mass),
reported in Fig. 11, display a greater compatibility among
selected subsets.

Theoretical predictions for the nucleation rate can be
obtained in the framework of the classical nucleation theory for
both homogeneous and heterogeneous nucleation. The leading
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TABLE I. List of samples, labeled with lower-case letters,
investigated in the present analysis. The corresponding masses m,
cooling rates Cr , and model parameters resulting from the Bayesian
analysis of the sequence of Nrec events are also reported with statistical
errors indicated in parentheses.

Sample m (mg) Cr (K/s) Nrec Tu (K) A (Hz) B (K−1)

a 44.2 22.5 77 1059.2 2.25(26) 0.158(16)
b 11.5 20.0 268 1076.8 3.40(21) 0.275(13)
c 3.7 22.5 75 1056.1 2.98(35) 0.233(23)
d 432.0 12.2 71 1112.1 0.519(26) 0.049(8)
e 90.6 16.2 95 1071.6 1.21(12) 0.118(11)
f 184.1 14.5 137 1077.7 0.88(7) 0.084(6)
g 8.4 24.3 39 1061.0 3.6(6) 0.259(16)
h 1.3 23.2 8 1048.6 3.5(1.3) 0.28(8)

exponential term was calculated according to Eq. (2) using λ =
36.940 kJ/mol and α = 0.537 [42], a value which is believed
appropriate for the diamond structure and found consistently
slightly lower than that for closer packed structures. Even if
it is an ideal limiting case, it is instructive to estimate the
attachment rate in Eq. (1) for the homogeneous nucleation
limit using the approximation [3]

k+(n∗) � 6D

δ2
4(n∗)2/3

, (22)

where D = D(T ) is the Ge self-diffusion coefficient, δ

represents a typical diffusion distance (approximated by the
cubic root of the atomic volume), and 4(n∗)2/3 is an estimate
of the number of possible attachment sites on the surface
of the nucleus. Owing to a partial cancellation between
(n∗)2/3 and the Zeldovich factor Z = √

βC/(2π ), where C =
− ∂2�G(n)

∂n2 |n∗ , the resulting prefactor is

k+(n∗)Z � 4.5
D(T )

δ

(
αλm(

NAV 2
m

)1/3
kBTm

)1/2

, (23)

and its T dependence appears dominated by D(T ). This latter
physical quantity can be estimated from the results of ab
initio molecular dynamics simulations [43] interpolated by
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FIG. 9. (Color online) Sequences of maximum undercooling
temperatures used for the present analysis collected under stable
conditions for the corresponding samples listed in Table I. The
horizontal dotted lines refer to the optimal Tu values.
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FIG. 10. Sample nucleation rates resulting from the Bayesian
analysis of representative data sets. The • symbols are located at
the corresponding reference temperatures Tu and A values on a
logarithmic scale. The error bar is one standard deviation. The solid
curve is the most probable sample nucleation rate adopting model
(13) and the dashed curves represent the fan associated with ±σB .
The curves are traced over the region of the central 90th percentile of
the observed undercooling temperatures.

an Arrhenius empirical function

D(T ) = 2.0 × 10−7e3700/T (K) (m2/s), (24)

in reasonable agreement with recent quasielastic neutron
scattering measurements [44] in the stable liquid T range.

The nucleation rate computed according to the CNT for the
homogeneous case is, as expected, several orders of magnitude
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FIG. 11. (Color online) Ge nucleation rates resulting from the
Bayesian analysis of representative data sets reporting the data of
Fig. 10 divided by the corresponding sample mass. The data should
ideally coalesce into a single master curve. The departure from this
scenario indicates a variability in the concentration of impurities
acting as heterogeneous nucleants. Representative estimates of the
heterogeneous nucleation rate for different values of f (θ ) are reported
as the labeled dotted curves (green).

066701-9



A. FILIPPONI, A. DI CICCO, AND E. PRINCIPI PHYSICAL REVIEW E 86, 066701 (2012)

lower than the range of Fig. 11. Estimates of the heterogeneous
nucleation rate can, however, be obtained, according to Eq. (2),
by introducing the corrective f (θ ) factor, θ being the contact
angle, in the exponential term and reducing the prefactor
by several orders of magnitude to match the observed range
(this should reflect the number of active impurities which is
much lower than the number of atoms in the system). Two
representative curves are reported in Fig. 11, which roughly
match the results (samples h, c, and g) for f (θ ) = 0.030
(θ � 37.5◦) and (samples a, e, and possibly f) for f (θ ) = 0.013
(θ � 30◦). The data set b is still compatible with f (θ ) = 0.030
but with a much higher impurity concentration. Sample d is
apparently associated with an even lower f (θ ).

The scenario that emerges from these results is that
the limited Ge undercooling ability is due to the presence
of impurities and dominated by heterogeneous nucleation
phenomena. The analysis indicates the presence of at least
two major impurity substrates characterized by the above,
relatively small, contact angles. In light of the recent findings
[17] information about the T dependence of the Ge nucleation
rate may provide an insight into the nucleation kinetics and
barrier, possibly resulting from the interplay between HDL
and LDL, the latter acting as a heterogeneous substrate for the
tetrahedral crystal nucleation also in the presence of foreign
impurities. The present results are however still limited in T

range and maximum undercooling temperature. Further insight
can be obtained by a more extended analysis involving other
samples, other subsequences, other crucible and substrate
materials. Such an analysis is however in progress and beyond
the scope of this article.

VI. CONCLUSIONS

In this paper we have proposed a Bayesian data-analysis
approach applicable to data sets of maximum undercooling
temperatures reached by undercooled liquid samples subject
to continuous radiation cooling prior to recalescence and
crystallization. The assumptions are that the temperature
random variable is the result of a nonhomogeneous Poisson
process with a temperature-dependent sample nucleation rate
J (T ). The adopted model J (T ) function mimics the functional
form predicted by the classical nucleation theory, and the
Bayesian approach is able to retrieve optimal values and
confidence intervals for the parameters representing the central

value and temperature slope of the logarithm of J (T ). The
method has been extensively tested against simulated data
with success. The Bayesian approach provides the shape of
the two-dimensional probability density of the parameters
compatible with the given data set, from which suitable
confidence intervals can be determined. The implementation
of a Metropolis Monte Carlo simulation in parameter space is
very effective for parameter fitting, to optimize the reference
temperature which minimizes parameter correlation, and to
determine the confidence intervals associated with statistical
uncertainty.

The method was applied to milligram weight undercooled
liquid Ge droplets supported by BN crucibles melted us-
ing a resistive heater. This environment introduces foreign
impurities acting as heterogeneous nucleants which limit
the undercooling ability of the specimen to a maximum of
about 170 K. The impurity concentration displays a strong
variability among samples and as a function of the processing
history. The model functional form for J (T ) of Eq. (13),
owing to the correct exponential T dependence and in spite
of its ad hoc prefactor, was found to mimic reliably the
nucleation rate expressions suggested by the CNT. The results
of the analysis were interpreted in terms of heterogeneous
nucleation processes involving at least two impurity substrates
characterized by different contact angles. These results provide
a solid benchmark for the validation of the method.

The scientific relevance of this investigation resides in
the possibility to use BN as a confinement environment for
micrometric sized Ge droplet samples suitable to achieve a
deep undercooling and usable for several x-ray measurements,
and also at high pressure. Understanding the undercooling
behavior of the Ge/BN system is therefore a prerequisite for
the correct interpretation of the sample properties and behavior.
For the present methodological paper, however, the selected
experiment represents a challenging case of samples in a
mass range covering nearly three orders of magnitude in a
contaminated environment. The method was able anyway to
provide useful information and should be therefore applicable
[45] in a straightforward manner to experiments performed in
containerless environments and/or cleaner conditions, similar
to those currently performed by several groups [31–38].
Further applications, possible improvements of the functional
models, and comparisons with different approaches will be
greatly encouraged by the present findings.
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