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N-order bright and dark rogue waves in a resonant erbium-doped fiber system
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The rogue waves in a resonant erbium-doped fiber system governed by a coupled system of the nonlinear
Schrödinger equation and the Maxwell-Bloch equation (NLS-MB equations) are given explicitly by a Taylor
series expansion about the breather solutions of the normalized slowly varying amplitude of the complex field
envelope E, polarization p, and population inversion η. The n-order breather solutions of the three fields are
constructed using a Darboux transformation (DT) by assuming periodic seed solutions. Moreover, the n-order
rogue waves are given by determinant forms with n + 3 free parameters. Furthermore, the possible connection
between our rouge waves and the generation of supercontinuum generation is discussed.
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I. INTRODUCTION

In recent years, long haul optical communication through
fibers has attracted considerable interest in research activities
among scientists all over the world. In particular, it has been
demonstrated that the soliton-type pulse propagation will play
a vital role in the ultrafast communication systems. They are
considered to be futuristic tools in achieving low-loss, cost-
effective, high-speed communication throughout the world.
Soliton-type pulse propagation through nonlinear optical fibers
is realized by means of the exact counterbalance between the
major constraints of the fiber, viz., group velocity dispersion
(linear effect), which broadens the pulse, and the self-phase
modulation (nonlinear effect), which contracts the pulse. The
propagation of optical pulses through a nonlinear fiber in the
picosecond regime is described by the well-known nonlinear
Schrödinger (NLS) equation, which was first proposed by
Hasegawa and Tappert in 1973 [1].

To make the soliton-based communication systems highly
competitive, reliable, and economical when compared to
the conventional systems, attenuation in a fiber must be
compensated. A different type of optical soliton is associated
with the self-induced transparency (SIT) effect in resonant
absorbers. The soliton pulse propagation in an erbium-doped
fiber amplifier utilizes the SIT phenomenon, first discovered
by McCall and Hahn [2]. In 1967 McCall and Hahn proposed
a type of optical soliton in a two-level resonant system. Above
a well-defined threshold intensity, short resonant pulses of a
given duration will propagate through a normally absorbing
medium with anomalously low attenuation. This happens
when the pulse width is short, compared to the relaxation times
in the medium, and the pulse center frequency is in resonance
with a two-level absorbing transition. After a few classical
absorption lengths, the pulse achieves a steady state in which its
width, energy, and shape remain constant. The pulse velocity
has greatly reduced from the normal velocity of light in such
media. With these properties, the pulse propagation of this
type is called a “self-induced transparency” (SIT) soliton and
is frequently described by the Maxwell-Bloch (MB) equations:

Ez = p,

pt = i ω0p − f qη, (1)

ηt = f (qp∗ + q∗p).

Here E and p are complex variables, η is a real variable,
ω0 is a real constant, and f is the character describing the
interaction between the resonant atoms and the optical field.
The asterisk symbol denotes the complex conjugate. These
equations can be extended to the case of fiber amplifiers.
When Er is doped with the core of the optical fibers, then
the nonlinear wave propagation can have both effects due to
silica and Er impurities. Er impurities give an SIT effect to
the optical pulse, whereas the silica material gives the NLS
soliton effect. So if we consider these effects for a large
width pulse, then the system dynamics will be governed by
the coupled system of the NLS equation and the MB equation
(NLS-MB system). Considering the erbium doped in nonlinear
silica wave guides, for the first time, the combined NLS-MB
system was proposed by Maimistov and Manykin [3,4] in
1983. They have also constructed the Lax pair and used the
inverse scattering transform technique for the generation of
soliton solution. The NLS-MB equations read as [3–5]

Et = i
[

1
2Exx + |E|2E] + 2p,

px = 2i ω0p + 2Eη, (2)

ηx = −(Ep∗ + E∗p).

The above equations have also been reduced through Painleve
analysis [6]. Further, Kakei and Satsuma [7] also reported
the Lax pair and the multisoliton solution of the NLS-MB
equations. The integrability aspects of NLS-MB system with
variable dispersion, the study of propagation of optical solitons
in coupled NLS-MB, and random nonuniform-doped media
have been reported earlier wherein the spectral parameter
was kept constant. The coexistence of the NLS soliton
and SIT soliton has already been confirmed experimentally
[10,11]. The propagation and switching of SIT in nonlinear
directional couplers with two-level atom nonlinearity has been
recently investigated numerically by retaining the transverse
dependence of the optical field and atomic variable. Recent
experiments by Nakazawa et al. have confirmed guided wave
SIT soliton formation and propagation by employing a few
meters of erbium-doped fiber [8–11].

Recently, considering all higher-order effects in the prop-
agation of femtosecond pulses, the coupled Hirota and
Maxwell-Bloch (CH-MB) equations have been proposed and
analyzed for soliton solutions [12]. Some generalizations of
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NLS-MB equations, for instance, the CH-MB equations and
the NLS-MB equations with variable dispersion and nonlinear
effects, are discussed [13–15]. The single soliton and the single
breather solutions [16] of the NLS-MB equations are given by
the Darboux transformation (DT) [17,18]. A soliton solution
for the generalized coupled variable coefficient NLS-MB
system was also investigated by the DT [19] and the Hirota
method [20].

In recent years, in addition to solitons in different optical
systems, the study of rogue waves has also attracted consider-
able interest because of their potential applications in different
branches of physics, including oceanography [21–24], which
occurs due to either modulation instability [25–31] or a
random initial condition [24,32]. The first-order rogue wave
is most likely to appear as a single-peak hump with two caves
in a plane with a nonzero boundary. One of the possible
generating mechanisms for rogue waves is the creation of
breathers which can be realized by modulation instability.
Then, larger rogue waves can build up when two or more
breathers collide into each other [33–39]. Recently more
general higher-order rogue waves were obtained, such as
showing that these general Nth-order rogue waves contain
(N − 1) free irreducible complex parameters [37]. Rogue
waves can also be observed in space plasmas [40–45] and
optics when propagating high-power optical radiation through
photonic crystal fibers [46–48]. Considering all higher-order
effects in the propagation of femtosecond pulses, rogue waves
can also be observed in a system modeled by the Hirota
equation [49–51]. Furthermore, rogue waves have not only
been observed in continuous media but have also been reported
in discrete systems, such as the systems of the well-known
Ablowitz-Ladik (A-L) equation [52].

Though the rogue waves have been reported in different
branches of physics where the system dynamics is governed
by a single equation, to the best of our knowledge, they have
been observed and reported seldom in the coupled systems. For
example, rogue waves of the coupled NLS were constructed
in the literature [53–55]. Very recently, several kinds of matter
rogue waves [56] have been reported in the F = 1 spinor Bose-
Einstein condensate system controlled by a three-component
NLS equation. In experiment, the rogue waves in a multistable
system [57] are revealed by experiments with an erbium-doped
fiber laser driven by harmonic pump modulation. So it is our
primary interest to analyze the possibility of rogue waves in
coupled systems, such as the NLS-MB system.

It is well known that the dark soliton [58] of the defocusing
nonlinear Schrödinger (NLS) equation is essentially different
from that of the bright soliton. For the past two decades or so,
intensive research has been carried by several groups about
theoretical and experimental aspects of dark bright solitons. It
is quite natural to ask a question: Is there any possibility of
observing dark rouge waves in soliton equations? In general,
the first-order dark rogue wave has one down dominant peak
and two small lumps. Because of the singularity [17,18] of
the solution for the defocusing NLS equation generated by
using DT, we cannot get defocusing dark rogue waves this
way. Fortunately we have obtained dark and bright rogue
waves [59] of the NLS-MB equations from a Taylor series
expansion of the first-order breather solutions, which are
generated from a periodic seed by the DT. But we did not

provide a detailed analysis of their dynamical evolution and
higher-order rogue waves. The aim of this paper is twofold.
First, the determinant representation of the n-fold DT of the
NLS-MB equations is similar to the case of the NLS equation
DT [60]. Second, the rogue waves of the three optical fields
are constructed by determinant forms. It should be noted that
the rogue waves of the fields p and η are dark. Furthermore,
the connection between our rogue waves and the generation of
supercontinuum generation will be discussed.

The organization of this paper is as follows. In Sec. II,
the determinant representation of the n-fold DT and formulas
of E[n], p[n], and η[n] is expressed by eigenfunctions of the
spectral problem. In Sec. III, a Taylor series expansion of the
breather solutions is generated by n-fold DT from a periodic
seed solution with a constant amplitude to construct the bright
and dark rogue waves. Moreover, the n-order rogue waves
are given by determinant forms with n + 3 free parameters.
Finally, we summarize the results in Sec. IV.

II. DARBOUX TRANSFORMATION

The linear spectral problem of the NLS-MB equations can
be expressed as [4]

�x = U�, (3)

�t = V �, (4)

where

� =
(

�1

�2

)
,

U =
[

λ E

−E∗ −λ

]
≡ λσ3 + U0,

V = i

([
1 0
0 −1

]
λ2 +

[
0 E

−E∗ 0

]
λ

+ 1

2

[|E|2 Ex

E∗
x −|E|2

])
+ 1

λ − i ω0

(
η −p

−p∗ −η

)
≡ iσ3λ

2 + iλV1 + i

2
V0 + 1

λ − i ω0
V−1,

and λ is the complex eigenvalue parameter.
It is easy to prove that the spectral problems (3) and (4) are

transformed to

�[1]
x = U [1]�[1], U [1] = (Tx + T U )T −1, (5)

�[1]
t = V [1]�[1], V [1] = (Tt + T V )T −1, (6)

under a gauge transformation

�[1] = T �. (7)

Here T is a 2 × 2 matrix, which is determined by the cross-
differentiating (5) and (6):

U [1]
t −V [1]

x + [U [1],V [1]] = T (Ut − Vx + [U,V ])T −1. (8)

This implies that, in order to make Eqs. (3) and (4) invariant
under the transformation (7), it is crucial to search a matrix T

such that U [1] and V [1] have the same forms as U and V . At
the same time the old potential (or seed solutions) (E, p, η) in
spectral matrices U and V is mapped into different potentials
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(or different solutions) (E[1], p[1], η[1]) in terms of different
spectral matrices U [1] and V [1].

A. One-fold Darboux transformation of NLS-MB equations

In order to be self-contained, we shall recall the one-fold
DT [16] of NLS-MB equations. Considering the application
of the representation for the n-fold DT by means of the
determinant [60] of eigenfunctions with different eigenvalues
in the following context, we need to introduce 2n eigenfunc-
tions by fk = fk(λk) = ( fk1

fk2
) associated with an eigenvalue λk ,

and λk = λm if k = m, where k = 1,2,3, . . . ,2n but λk �= λ.
Additionally, the eigenfunctions for distinct eigenvalues are
linearly independent, i.e., fk and fm are linearly independent
if k �= m.

The elements of one-fold DT [16] are parameterized by the
eigenfunction fk associated with λk as

T1(λ; λ1,λ2) = λI + S =
⎛⎝ ˜(T1)11

|W2|
˜(T1)12
|W2|˜(T1)21

|W2|
˜(T1)22
|W2|

⎞⎠ , (9)

where I is a unit matrix, and

S =

⎛⎜⎜⎜⎜⎝
∣∣∣∣∣−λ1f11 f12

−λ2f21 f22

∣∣∣∣∣
|W2|

∣∣∣∣∣f11 −λ1f11

f21 −λ2f21

∣∣∣∣∣
|W2|∣∣∣∣∣−λ1f12 f12

−λ2f22 f22

∣∣∣∣∣
|W2|

∣∣∣∣∣f11 −λ1f12

f21 −λ2f22

∣∣∣∣∣
|W2|

⎞⎟⎟⎟⎟⎠ ,

W2(f1,f2) =
(

f11 f12

f21 f22

)
, det(T1) = (λ − λ1)(λ − λ2),

˜(T1)11 =
∣∣∣∣∣∣

1 0 λ

f11 f12 λ1f11

f21 f22 λ2f21

∣∣∣∣∣∣,
˜(T1)12 =

∣∣∣∣∣∣
0 1 0

f11 f12 λ1f11

f21 f22 λ2f21

∣∣∣∣∣∣,
˜(T1)21 =

∣∣∣∣∣∣
1 0 0

f11 f12 λ1f12

f21 f22 λ2f22

∣∣∣∣∣∣,
˜(Tn)22 =

∣∣∣∣∣∣
0 1 λ

f11 f12 λ1f12

f21 f22 λ2f22

∣∣∣∣∣∣.
With the transformed potentials,

U
[1]
0 = U0 − [σ3,T1],

(10)
V

[1]
−1 = T1

∣∣
λ=iω0

V−1T1
−1
∣∣
λ=iω0

,

the resulting solutions of E[1], p[1], and η[1] are given by

E[1] = E − 2S12, (11)

p[1] = − 1

det(T1)
[−2η(T1)11(T1)12 + p∗(T1)12(T1)12

−p(T1)11(T1)11]|λ=iω0, (12)

η[1] = 1

det(T1)
[η((T1)11(T1)22 + (T1)12(T1)21)

−p∗(T1)12(T1)22 + p(T1)11(T1)21]|λ=iω0, (13)

and the resulting eigenfunction f
[1]
k of λk corresponding to the

resulting potentials is

f
[1]
k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∣∣∣∣∣
fk1 fk2 λkfk1

f11 f12 λ1f11

f21 f22 λ2f21

∣∣∣∣∣∣∣∣
|W2|∣∣∣∣∣∣∣∣

fk1 fk2 λkfk2

f11 f12 λ1f12

f21 f22 λ2f22

∣∣∣∣∣∣∣∣
|W2|

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In order to satisfy the constraints of S ′ and V ′
−1 in Ref. [16],

set

λ2 = −λ∗
1,f2 =

(−f ∗
12

f ∗
11

)
. (14)

B. n-fold Darboux transformation for NLS-MB equations

In this subsection, our primary aim is to establish the
determinant representation of the n-fold DT for NLS-MB
equations as we have done for the case of the NLS equation
[60]. According to the form of T1 in Eq. (9), the n-fold DT
should be of the form Tn = Tn(λ) = λnI + t1λ

n−1 + t2λ
n−2 +

· · · + tn−1λ + tn, where ti are 2 × 2 matrices, i = 1,2, . . . ,n,
and Tn leads to the determinant representation of Tn by means
of its kernel. Specifically, from algebraic equations,

f
[n]
k = Tn(λ; λ1,λ2, . . . ,λ2n−1,λ2n)|λ=λi

fk

=
n∑

l=0

tlλ
l
kfk = 0,i = 1,2, . . . ,2n − 1,2n, (15)

with

t0 =
(

1 0
0 1

)
,

coefficients tl , l = 1,2, . . . ,n are solved by Cramer’s rule. Thus
we obtain the determinant representation of the Tn.

Theorem 1. The n-fold DT of the NLS-MB equations
is Tn = Tn(λ) = λnI + t1λ

n−1 + t2λ
n−2 + · · · + tn−1λ + tn,

where ti are 2 × 2 matrices, i = 1,2, . . . ,n. The final form
of Tn(λ) has the form

Tn = Tn(λ; λ1,λ2, . . . ,λ2n−1,λ2n) =
⎛⎝ ˜(Tn)11

|W2n|
˜(Tn)12

|W2n|˜(Tn)21
|W2n|

˜(Tn)22
|W2n|

⎞⎠ , (16)

where I is a unit matrix, and expressions for t1 and components
of Tn are given in Appendix A.

It is easy to construct a simple form of the determinant of
Tn:

det(Tn) = (λ − λ1)(λ − λ2) · · · (λ − λ2n−1)(λ − λ2n).

Next, we consider the transformed resulting solutions
(E[n],p[n],η[n]) of NLS-MB equations corresponding to the
n-fold DT.

Corollary 1. For the n-fold DT, the transformed potentials
are

U
[n]
0 = U0 − [σ3,Tn],

(17)
V

[n]
−1 = Tn

∣∣
λ=iω0

V−1Tn
−1
∣∣
λ=iω0

,
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which leads to the resulting solutions E[n], p[n], and η[n] of the form

E[n] = E − 2(t1)12, (18)

p[n] = − 1

det(Tn)
[−2η(Tn)11(Tn)12 + p∗(Tn)12(Tn)12 − p(Tn)11(Tn)11]|λ=iω0 , (19)

η[n] = 1

det(Tn)
{η[(Tn)11(Tn)22 + (Tn)12(Tn)21] − p∗(Tn)12(Tn)22 + p(Tn)11(Tn)21}|λ=iω0, (20)

and the resulting eigenfunction f
[n]
k of λk is

f
[n]
k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fk1 fk2 λkfk1 λkfk2 λ2
kfk1 λ2

kfk2 . . . λn−1
k fk1 λn−1

k fk2 λn
kfk1

f11 f12 λ1f11 λ1f12 λ2
1f11 λ2

1f12 . . . λn−1
1 f11 λn−1

1 f12 λn
1f11

f21 f22 λ2f21 λ2f22 λ2
2f21 λ2

2f22 . . . λn−1
2 f21 λn−1

2 f22 λn
2f21

f31 f32 λ3f31 λ3f32 λ2
3f31 λ2

3f32 . . . λn−1
3 f31 λn−1

3 f32 λn
3f31

...
...

...
...

...
...

...
...

...
...

f2n1 f2n2 λ2nf2n1 λ2nf2n2 λ2
2nf2n1 λ2

2nf2n2 . . . λn−1
2n f2n1 λn−1

2n f2n2 λn
2nf2n1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|W2n|∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fk1 fk2 λkfk1 λkfk2 λ2
kfk1 λ2

kfk2 . . . λn−1
k fk1 λn−1

k fk2 λn
kfk2

f11 f12 λ1f11 λ1f12 λ2
1f11 λ2

1f12 . . . λn−1
1 f11 λn−1

1 f12 λn
1f12

f21 f22 λ2f21 λ2f22 λ2
2f21 λ2

2f22 . . . λn−1
2 f21 λn−1

2 f22 λn
2f22

f31 f32 λ3f31 λ3f32 λ2
3f31 λ2

3f32 . . . λn−1
3 f31 λn−1

3 f32 λn
3f32

...
...

...
...

...
...

...
...

...
...

f2n1 f2n2 λ2nf2n1 λ2nf2n2 λ2
2nf2n1 λ2

2nf2n2 . . . λn−1
2n f2n1 λn−1

2n f2n2 λn
2nf2n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|W2n|

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Note that

λ2k = −λ∗
2k−1, f2k =

(−f ∗
2k−12

f ∗
2k−11

)
(21)

in order to satisfy the constraints of DT.

III. N-ORDER BRIGHT AND DARK ROGUE WAVES GENERATED BY N-ORDER BREATHER SOLUTIONS

By using the results of DT discussed above, breather solutions of E, p, and η of NLS-MB equations are generated
by assuming a periodic seed solution. Then we can construct the explicit bright and dark rogue waves of the NLS-MB equations
through a Taylor series expansion of the breather solutions.

Substituting E = d exp[iρ], p = if E, η = 1 into the spectral problem Eqs. (3) and (4), and using the method of separation
of variables and the superposition principle, the eigenfunction f2k−1 associated with λ2k−1 is given by(

f2k−11(x,t,λ2k−1)

f2k−12(x,t,λ2k−1)

)
=
(

C1� (x,t,λ2k−1)[1,2k − 1] − C2�
∗(x,t, − λ∗

2k−1)[2,2k − 1]

C1� (x,t,λ2k−1)[2,2k − 1] + C2�
∗(x,t, − λ∗

2k−1)[1,2k − 1]

)
, (22)

where (
� (x,t,λ2k−1)[1,2k − 1]

� (x,t,λ2k−1)[2,2k − 1]

)
=
(

d exp
[

i
2ρ + ic(λ2k−1)

][
i
(
c1(λ2k−1) + b

2

) − λ2k−1
]

exp
[− i

2ρ + ic(λ2k−1)
]) ,

� (x,t,λ2k−1) =
(

� (x,t,λ2k−1)[1,2k − 1]

� (x,t,λ2k−1)[2,2k − 1]

)
.

Note that � (x,t,λ2k−1) is the basic solution of the spectral
problem [Eqs. (3) and (4)]. Here a, b, d, t, z ∈ R, C1, C2 ∈ C:

c(λ2k−1) = c1(λ2k−1)x + c2(λ2k−1)t,

c1(λ2k−1) =
√

d2 −
(

ib

2
− λ2k−1

)2

,

c2(λ2k−1) =
(

iλ2k−1 − b

2
− if

λ2k−1 − iω0

)
c1(λ2k−1),

ρ = a t + b x,

f = 1

2

(
a + b2

2
− d2

)
,

and (−b + 2ω0)f = 2 is used for f .
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FIG. 1. (Color online) The first-order breather |E[1]|2 given with
specific parameters d = 1, b = 2, ω0 = 1

2 , α1 = 4
5 . There are one

upper peak and two caves in each periodic unit.

A. The n-order breather solutions of NLS-MB equations

For simplicity, under the condition C1 = C2 = 1, let
λ2k−1 = α2k−1 + i b

2 , such that Im( ib
2 − λ2k−1) = 0 and

c1(λ2k−1) =
√

d2 − Re2(λ2k−1) ∈ R, and using Eq. (21), then
substituting eigenfunctions Eq. (22) into Eq. (16), we obtain
the determinant representation of DT in the form which is
discussed in Appendix B.

Using Eq. (A1) in Eqs. (18)–(20) with the choice of
Eq. (A2), we can construct E[n], p[n], and η[n]. For brevity,
in the following, we are giving only an explicit expression of
E[1] with specific parameters d = 1, b = 2, ω0 = 1

2 :

E[1] = E + 4α1
v3

v4
exp[i(−5t + 2x)],

v3 = −α1 cos(2w1) + [
2 cos(w1) + 2

√
1 − α2

1 sin(w1)α1

+ 2α2
1 cos(w1)

]
cosh(w2) + [

2iα2
1 sin(w1)

− 2i sin(w1) − 2iα1 cos(w1)
√

1 − α2
1

]
sinh(w2)

− 2α1 −
√

1 − α2
1 sin(2w1)

+ i

√
1 − α2

1 sinh(2w2) − α1 cosh(2w2),

v4 = 2α2
1 cos(2w1) − 2

[
4α1 cos(w1)

+ 2 sin(w1)
√

1 − α2
1

]
cosh(w2)

− 2
[−1 − α2

1 − cosh(2w2) −
√

1 − α2
1α1 sin(2w1)

]
,

w1 = −2
√

1 − α2
1x + 12

5

√
1 − α2

1 t,

w2 = 26

5

√
1 − α2

1 t.

The dynamical evolution of |E[1]|2, |p[1]|2, and η[1] for the
parametric choice d = 1, b = 2, ω0 = 1

2 , α1 = 0.8 is plotted
in Figs. 1–3, which confirms the direct verification of the
periodic as well as decaying properties of typical breather
solutions. The breather of E[1] is almost same as that of the
NLS equation, which has one upper peak and two caves in each
periodic unit. On the other hand, we observe that the resulting

FIG. 2. (Color online) The first-order dark breather |p[1]|2 for the
values used in Fig. 1. There are a upper ring and three down peaks in
each periodic unit.

kinds of breathers for p[1] and η[1] are also different. It is
interesting to note that the resulting breather p[1] admits one
upper ring and three down peaks in each periodic unit, whereas
the resulting breather η[1] has two lumps and one down peak
in each periodic unit. Moreover, these two breathers can be
called dark breathers because the down amplitude is dominant
in both the cases. The above discussed properties are clearly
seen in Figs. 1–3.

B. The first-order rogue waves generated
by first-order breather solutions

Similarly, under the condition C1 = C2 = 1, substituting
eigenfunctions Eq. (22) into Eqs. (18)–(20) with λ1 = α1 +
i b

2 , by assuming α1 → d(d > 0), E[1], p[1], and η[1] become
rational solutions {Ẽ[1], p̃[1], η̃[1]} in the form of rogue waves
[59]. When x → ∞, t → ∞ in the above expressions, after
some manipulations, we find

|Ẽ[1]|2 → d2, |p̃[1]|2 → d2(
b
2 − ω0

)2 , and η̃[1] → 1.

FIG. 3. (Color online) The first-order dark breather η[1] for the
values used in Fig. 1. There are two lumps and one down peak in
each periodic unit.
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FIG. 4. (Color online) The first-order rogue wave |Ẽ[1]|2 with
specific parameters d = 1, b = 2, ω0 = 1

2 . There are one upper peak
and two caves.

In addition to the above conditions, from |Ẽ[1]|2x = 0 and
|Ẽ[1]|2t = 0, we also observe that the maximum amplitude of
|Ẽ[1]|2 occurs at t = 0 and x = 0 and is equal to 9d2, and the
minimum amplitude of |Ẽ[1]|2 occurs at t = 0 and x = ±

√
3

2d

and is equal to 0. By using a similar procedure discussed above,
we can also obtain the extreme value of |p̃[1]|2 and η̃[1].

Figure 4 is plotted for the rogue wave |Ẽ[1]|2 with specific
parameters d = 1, b = 2, ω0 = 1

2 . From Fig. 4, we infer the
following interesting results: (1) |Ẽ[1]|2 → 1 by assuming
x → ∞, t → ∞, which gives the asymptotic plane; (2) the
maximum amplitude of |Ẽ[1]|2 occurs at t = 0 and x = 0 and
is equal to 9, and the minimum amplitude of |Ẽ[1]|2 occurs at
t = 0 and x = ±

√
3

2 and is equal to 0. As the general expression
of the extreme values of |p[1]|2 and η̃[1] is quite complicated in
nature, for simplicity, we discuss only these solutions under a
certain choice of parameters.

Figure 5 is plotted for the rogue wave |p̃[1]|2 on a (x-t)
plane with the above parameters. Like in the earlier case, here
as well we observe the following salient features: (1) the height
of the asymptotical plane is 4 because |p̃[1]|2 → 4, when x →
∞, t → ∞; (2) the maximum amplitude of |p̃[1]|2 occurs in
the form of a ring curve on a (x-t) plane defined by

−507

16
t2 + 1681

8
t4 + 25

8
x4 − 55

128
+ 65

16
x2

+ 277

4
x2t2 − 15x3t + 65

4
xt − 123xt3 = 0

FIG. 5. (Color online) The first-order dark rogue wave |p̃[1]|2 for
the values used in Fig. 4. There are one upper ring and three down
peaks.

FIG. 6. (Color online) The first-order dark rogue wave η̃[1] for the
values used in Fig. 4. There are two lumps and one down peak.

and is equal to 5, and the minimum amplitude of |p̃[1]|2 occurs
at four points:{(

t = +5 + √
5

52
, x = +19 + 9

√
5

52

)
,(

t = +5 − √
5

52
, x = +19 − 9

√
5

52

)
,(

t = −5 + √
5

52
, x = −19 + 9

√
5

52

)
,(

t = −5 − √
5

52
, x = −19 − 9

√
5

52

)}

and is equal to 0; 3) the extreme value of the amplitude |p̃[1]|2
occurs at t = 0 and x = 0 and is equal to 4

25 . We also observe
that the middle down peak in Fig. 5 has two subpeaks. Due to
the direction of the observation of the figure, these two close
subpeaks are not clearly distinguished from the figure; we just
find three down peaks.

Figure 6 is plotted for the rogue wave η̃[1] with specific
parameters as in Fig. 4. From the figure, we observe the
following results: 1) the height of the asymptotical plane is 1
because η̃[1] → 1 by letting x → ∞, t → ∞; 2) the maximum

FIG. 7. (Color online) The second-order rogue wave |Ē[2]|2 given
by Eq. (25) with specific parameters d = 1, b = 2, ω0 = 1

2 , K0 = 1,

J0 = 0, J1 = 100.
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FIG. 8. (Color online) Contour plot of the wave amplitudes of
|Ē[2]|2 for the values used in Fig. 7.

amplitude of η̃[1] occurs at two points:{(
t = +5 + √

5

52
, x = +19 + 9

√
5

52

)}
and {(

t = −5 + √
5

52
, x = −19 + 9

√
5

52

)}

and is equal to
√

5, and the minimum amplitude of η̃[1] occurs
at two points:{(

t = +5 − √
5

52
, x = +19 − 9

√
5

52

)}
and {(

t = −5 + √
5

52
, x = −19 + 9

√
5

52

)}

and is equal to −√
5; (3) the extreme value of the amplitude

η̃[1] occurs at t = 0 and x = 0 and is equal to − 11
5 . Like in

FIG. 9. (Color online) The second-order dark rogue wave |p̄[2]|2
given by Eq. (26) for the values used in Fig. 7.

FIG. 10. (Color online) Contour plot of the wave amplitudes of
|p̄[2]|2 for the values used in Fig. 7.

Fig. 5, here also we observe that the down peak in Fig. 6 has
two subpeaks.

C. The higher-order rogue waves and their determinant forms

In order to emphasize the richness of the higher-order rogue
waves, we can modify C1 and C2 in Eq. (22) as the following:

C1 =K0 + exp

⎧⎨⎩ic1(λ2k−1)
k−1∑
j=0

Jj

[
λ2k−1 −

(
d + i

b

2

)]j

⎫⎬⎭ ,

C2 =K0 + exp

⎧⎨⎩−ic1(λ2k−1)
k−1∑
j=0

Jj

[
λ2k−1 −

(
d + i

b

2

)]j

⎫⎬⎭,

(23)

where K0, Jj ∈ C. Note that λ2k−1 = d + i b
2 is the zero point

of c1(λ2k−1).
Based on Sec. III B, higher-order rogue waves can be

constructed by the breather solutions. In other words, let
λ2k−1 → d + i b

2 in n-order breather solutions; n-order rogue
waves can be given. Generally, in comparison to the method of

FIG. 11. (Color online) The second-order dark rogue wave η̄[2]

given by Eq. (27) for the values used in Fig. 7.
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FIG. 12. (Color online) Contour plot of the wave amplitudes of
η̄[2] for the values used in Fig. 7.

limiting the breather solutions, the method of making a rational
eigenfunction below may be more direct, and the rogue wave
can be shown by determinant forms.

FIG. 13. (Color online) The second-order rogue wave |Ē[2]|2
given by Eq. (25) with specific parameters d = 2, b = 0, ω0 = 1

2 ,

K0 = 1, J0 = 0, J1 = 0.

Substituting Eq. (23) into Eq. (22), by assuming λ2k−1 →
d + i b

2 , eigenfunction f2k−1 associated with λ2k−1 becomes a
rational eigenfunction fr as follows:

(
fr1

fr2

)
=

⎛⎜⎜⎝
−
{

(2dK0 + 2d)x + 2
[

2i

(b−2ω0)
(
d+ 1

2 ib−iω0

) + id − b
]
(K0 + 1)dt + 2J0d + K0 + 1

}√
2d exp(K)

−
{
−(2dK0 + 2d)x − 2

[
2i

(b−2ω0)
(
d+ 1

2 ib−iω0

) + id − b
]
(K0 + 1)dt − 2J0d + K0 + 1

}√
2d exp(−K)

⎞⎟⎟⎠ ,

K = 1

2
i

[
−8 + b3 − 2b2ω0 − 2d2b + 4d2ω0

2(b − 2ω0)
t + bx

]
. (24)

Substituting eigenfunctions Eq. (24) into Eqs. (11)–(13), we
can get the first-order rogue waves {Ē[1], p̄[1], η̄[1]} in the form
of determinant. The dynamical evolution of |Ē[1]|2, |p̄[1]|2, and
η̄[1] for the parametric choice d, b, ω0, K0, J0 is respectively
similar to Figs. 4–6, but we can control the position of
the first-order rogue waves by choosing the parameters K0

and J0.

FIG. 14. (Color online) The second-order dark rogue wave |p̄[2]|2
given by Eq. (26) for the values used in Fig. 13.

Theorem 2. For the n-fold DT, the n-order rogue waves
Ē[n], p̄[n], and η̄[n] are of the form

Ē[n] = E − 2(t̄r1)12, (25)

p̄[n] = − 1

det(T̄rn)
[−2η(T̄rn)11(T̄rn)12 + p∗(T̄rn)12(T̄rn)12

−p(T̄rn)11(T̄rn)11]|λ=iω0 , (26)

FIG. 15. (Color online) The second-order dark rogue wave η̄[2]

given by Eq. (27) for the values used in Fig. 13.

066603-8



N -ORDER BRIGHT AND DARK ROGUE WAVES IN A . . . PHYSICAL REVIEW E 86, 066603 (2012)

FIG. 16. (Color online) The third-order rogue wave |Ē[3]|2 given
by Eq. (25) with specific parameters d = 1, b = 2, ω0 = 1

2 , K0 = 1,

J0 = 0, J1 = 0, J2 = 8000.

η̄[n] = 1

det(T̄rn)
[η((T̄rn)11(T̄rn)22 + (T̄rn)12(T̄rn)21)

−p∗(T̄rn)12(T̄rn)22 + p(T̄rn)11(T̄rn)21]|λ=iω0 . (27)

The final form of T̄rn(λ) is given in Appendix C.
Case 1. When n = 2, substituting Eq. (B1) into

Eqs. (25)–(27) can give the second-order rogue waves with
five free parameters. Note that under the condition J1 
 J0, the
second-order rogue wave can split into three first-order rogue
wave (triplets rogue wave) [61] rather than two. The dynamical
evolution of |Ē[2]|2, |p̄[2]|2, and η̄[2] for the parametric choice
d = 1, b = 2, ω0 = 1

2 , K0 = 1, J0 = 0, J1 = 100 is plotted
in Figs. 7, 9, and 11 and their corresponding density plots
are shown in Figs. 8, 10, and 12. There is another kind
of second-order rogue wave; for example, |Ē[2]|2 is higher
than the second-order rogue wave above. The dynamical
evolution of |Ē[2]|2, |p̄[2]|2, and η̄[2] for the parametric choice
d = 2, b = 0, ω0 = 1

2 , K0 = 1, J0 = 0, J1 = 0 is plotted
in Figs. 13–15. Note that eigenvalue λ1 = λ3 is real. The
eigenvalue of rogue waves is different from the eigenvalue
of solutions given in the past.

Case 2. When n = 3, substituting Eq. (B1) into
Eqs. (25)–(27) can give the third-order rogue waves with
six free parameters. Note that under the condition J2 
 Ji

FIG. 17. (Color online) The third-order dark rogue wave |p̄[3]|2
given by Eq. (26) for the values used in Fig. 16.

FIG. 18. (Color online) The third-order dark rogue wave η̄[3]

given by Eq. (27) for the values used in Fig. 16.

(i = 0,1) or J1 
 Ji(i = 0,2), the third-order rogue wave
can split into six first-order rogue waves instead. Circular
rogue wave [62] may be constructed by the condition J2 
 J1

and J2 
 J0. The dynamical evolution of |Ē[3]|2, |p̄[3]|2, and
η̄[3] for the parametric choice d = 1, b = 2, ω0 = 1

2 ,K0 = 1,

J0 = 0, J1 = 0, J2 = 8000 is plotted in Figs. 16–18. At the
same time, rogue wave triplets may be constructed by the
condition J1 
 J2 and J1 
 J0. The dynamical evolution
of |Ē[3]|2, |p̄[3]|2, and η̄[3] for the parametric choice d = 1,

b = 2, ω0 = 1
2 , K0 = 1, J0 = 0, J1 = 100, J2 = 0 is plot-

ted in Figs. 19–21. Similarly, there is another kind third-
order rogue wave; for example, |Ē[3]|2 is higher than third-
rogue above. The dynamical evolution of |Ē[3]|2, |p̄[3]|2,
and η̄[3] for the parametric choice d = 4

3 , b = 0, ω0 = 1
2 ,

K0 = 1, J0 = 0, J1 = 0, J2 = 0 is plotted in Figs. 22–24.
Note that eigenvalue λ1 = λ3 = λ5 is real. The eigenvalue of
rogue waves is different from the eigenvalue of solutions given
in the past. According to analysis above, the n-order rogue
waves may be controlled by n + 3 free parameters.

From the above discussions, it is interesting to point out
that the down amplitudes are dominant in the profile of rogue

FIG. 19. (Color online) The third-order rogue wave |Ē[3]|2 given
by Eq. (25) with specific parameters d = 1, b = 2, ω0 = 1

2 , K0 = 1,

J0 = 0, J1 = 100, J2 = 0.
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FIG. 20. (Color online) The third-order dark rogue wave |p̄[3]|2
given by Eq. (26) for the values used in Fig. 19.

waves p̃[1] and η̃[1], so they are another kind of rogue wave
when compared with the typical bright rogue wave Ẽ[1],
corresponding to the dark breathers in Figs. 2 and 3. So
from our earlier understanding of breathers in other physical
systems, we call this type of solutions dark rogue waves.
Moreover, the dark rogue wave p̃[1] has one upper ring and
three down peaks, and dark rogue wave η̃[1] has two lumps
and one down peak. According to analysis, the n-order rogue
waves must be generated by an n-order breather solution.

From the detailed literature on rogue waves, to the best of
our knowledge, so far only bright rogue waves have been
analyzed in detail, but there have been few reports about
dark rogue waves in a physical system. In the case of bright
optical rogue waves, many results have actually connected the
generation of supercontinuum generation (SCG) with rogue
waves [63]. In recent years, the supercontinuum white coherent
source has attracted a lot of attention because of its potential
applications in optical coherence tomography, spectroscopy,
wavelength division multiplexing, etc. As reported in Ref. [64],
the modulational instability (MI) conditions for the generation
of ultrashort pulses have already been investigated in erbium-

FIG. 21. (Color online) The third-order dark rogue wave η̄[3]

given by Eq. (27) for the values used in Fig. 19.

FIG. 22. (Color online) The third-order rogue wave |Ē[3]|2 given
by Eq. (25) with specific parameters d = 4

3 , b = 0, ω0 = 1
2 , K0 = 1,

J0 = 0, J1 = 0, J2 = 0.

doped nonlinear fiber, and occurrences of nonconventional side
bands have also been observed. This type of nonconventional
side band will be very useful to generate a large MI bandwidth,
which in turn generates very short pulses. In this way, we
believe that our rogue wave results in this paper can also be
connected to the generation of SCG. Similarly, the occurrence
of dark rogue waves can also be connected to the results of
Ref. [64], in the following manner: In our previous work [64],
it has been shown that both bright and dark SIT solitons can
be generated in the case of the anomalous and normal group
velocity dispersion (GVD), in contrast to the well-established
results in conventional fiber, where bright and dark solitons
exist in the anomalous and normal GVD regions, respectively.
From the above results, it is clear that the formation of dark
rogue waves can also be connected in a similar way. Thus, it
is interesting to analyze the relation connecting the MI, SCG,
and rogue wave formation in an optical system.

IV. CONCLUSION

In this article, we have reported the rogue waves of the three
physical fields E,p, and η in a resonant erbium-doped fiber
system, which is governed by the NLS-MB equations. These
rogue waves are constructed by a Taylor series expansion of the
corresponding breather solutions of the NLS-MB equations.
As expected, in contrast to the usual bright rogue wave E,

FIG. 23. (Color online) The third-order dark rogue wave |p̄[3]|2
given by Eq. (26) for the values used in Fig. 22.
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FIG. 24. (Color online) The third-order dark rogue wave η̄[3]

given by Eq. (27) for the values used in Fig. 22.

we observe dark rogue waves for p and η. The main feature
of the dark rogue wave is the appearance of two (or more)
dominant down peaks in its profile. In particular, there is one
upper ring in the profile of the p, so it may be called the
dark-ring rogue wave. The explicit form of Ē[n], p̄[n], and η̄[n]

is given by the determinant representation of the n-fold DT.
The rogue waves in previous section can also be connected to
the supercontinuum generation.

As we have already described in the introduction, the
singularity [17] of the solutions generated by the DT is
the main constraint to generating the dark rogue waves of
the defocusing NLS equation. This perhaps shows that the dark

rogue wave of the defocusing NLS equation can be investigated
by another way, such as by means of Hirota method. From
the determinant representation of the Tn, it is interesting to
generate the higher-order rogue waves so that the dynamical
interactions of rogue waves can be analyzed.

In recent years, considering variable dispersion, variable
nonlinearity and variable gain or loss, the investigation of
solitons in nonautonomous nonlinear evolution equation equa-
tions has also attracted a lot of attention among researchers
[65–68]. For example, Serkin and his coworkers have proposed
a method to analyze the nonautonomous soliton equations
[66–68], and the interaction of solitons in a variable coefficient
higher-order NLS equation has been investigated in detail [65].
Using the results of the above papers and making use of our
results in this paper, one can also construct the multi-olitons,
breathers, and rogue wave solutions of the variable coefficient
NLS-MB system. Moreover, it is also possible to obtain a new
type of rogue waves for other important coupled system in
optics, such as CH-MB equations [69] and variable coefficient
CH-MB equations [70,71].

ACKNOWLEDGMENTS

This work is supported by the NSF of China under Grants
Nos. 10971109 and 11271210 and the K. C. Wong Magna Fund
at Ningbo University. J.H. is also supported by the Natural
Science Foundation of Ningbo under Grant No. 2011A610179.
K.P. thanks the DST, DAE-BRNS, and UGC, government
of India, for financial support through major projects. We
thank Prof. Yishen Li (USTC, Hefei, China) for his useful
suggestions on the rogue wave.

APPENDIX A

In this appendix, we give expressions for t1 and elements of Tn:

t1 =
⎛⎝ ˜(Qn)11

|W2n|
˜(Qn)12

|W2n|˜(Qn)21
|W2n|

˜(Qn)22
|W2n|

⎞⎠ ,

W2n =

⎛⎜⎜⎜⎜⎜⎜⎝
f11 f12 λ1f11 λ1f12 λ2

1f11 λ2
1f12 . . . λn−1

1 f11 λn−1
1 f12

f21 f22 λ2f21 λ2f22 λ2
2f21 λ2

2f22 . . . λn−1
2 f21 λn−1

2 f22

f31 f32 λ3f31 λ3f32 λ2
3f31 λ2

3f32 . . . λn−1
3 f31 λn−1

3 f32
...

...
...

...
...

...
...

...
...

f2n1 f2n2 λ2nf2n1 λ2nf2n2 λ2
2nf2n1 λ2

2nf2n2 . . . λn−1
2n f2n1 λn−1

2n f2n2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

˜(Tn)11 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 λ 0 λ2 0 . . . λn−1 0 λn

f11 f12 λ1f11 λ1f12 λ2
1f11 λ2

1f12 . . . λn−1
1 f11 λn−1

1 f12 λn
1f11

f21 f22 λ2f21 λ2f22 λ2
2f21 λ2

2f22 . . . λn−1
2 f21 λn−1

2 f22 λn
2f21

f31 f32 λ3f31 λ3f32 λ2
3f31 λ2

3f32 . . . λn−1
3 f31 λn−1

3 f32 λn
3f31

...
...

...
...

...
...

...
...

...
...

f2n1 f2n2 λ2nf2n1 λ2nf2n2 λ2
2nf2n1 λ2

2nf2n2 . . . λn−1
2n f2n1 λn−1

2n f2n2 λn
2nf2n1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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˜(Tn)12 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 λ 0 λ2 . . . 0 λn−1 0

f11 f12 λ1f11 λ1f12 λ2
1f11 λ2

1f12 . . . λn−1
1 f11 λn−1

1 f12 λn
1f11

f21 f22 λ2f21 λ2f22 λ2
2f21 λ2

2f22 . . . λn−1
2 f21 λn−1

2 f22 λn
2f21

f31 f32 λ3f31 λ3f32 λ2
3f31 λ2

3f32 . . . λn−1
3 f31 λn−1

3 f32 λn
3f31

...
...

...
...

...
...

...
...

...
...

f2n1 f2n2 λ2nf2n1 λ2nf2n2 λ2
2nf2n1 λ2

2nf2n2 . . . λn−1
2n f2n1 λn−1

2n f2n2 λn
2nf2n1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

˜(Tn)21 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 λ 0 λ2 0 . . . λn−1 0 0

f11 f12 λ1f11 λ1f12 λ2
1f11 λ2

1f12 . . . λn−1
1 f11 λn−1

1 f12 λn
1f12

f21 f22 λ2f21 λ2f22 λ2
2f21 λ2

2f22 . . . λn−1
2 f21 λn−1

2 f22 λn
2f22

f31 f32 λ3f31 λ3f32 λ2
3f31 λ2

3f32 . . . λn−1
3 f31 λn−1

3 f32 λn
3f32

...
...

...
...

...
...

...
...

...
...

f2n1 f2n2 λ2nf2n1 λ2nf2n2 λ2
2nf2n1 λ2

2nf2n2 . . . λn−1
2n f2n1 λn−1

2n f2n2 λn
2nf2n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

˜(Tn)22 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 λ 0 λ2 . . . 0 λn−1 λn

f11 f12 λ1f11 λ1f12 λ2
1f11 λ2

1f12 . . . λn−1
1 f11 λn−1

1 f12 λn
1f12

f21 f22 λ2f21 λ2f22 λ2
2f21 λ2

2f22 . . . λn−1
2 f21 λn−1

2 f22 λn
2f22

f31 f32 λ3f31 λ3f32 λ2
3f31 λ2

3f32 . . . λn−1
3 f31 λn−1

3 f32 λn
3f32

...
...

...
...

...
...

...
...

...
...

f2n1 f2n2 λ2nf2n1 λ2nf2n2 λ2
2nf2n1 λ2

2nf2n2 . . . λn−1
2n f2n1 λn−1

2n f2n2 λn
2nf2n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

˜(Qn)11 =

∣∣∣∣∣∣∣∣∣∣∣∣

f11 f12 λ1f11 λ1f12 λ2
1f11 λ2

1f12 . . . λn−1
1 f12 λn

1f11

f21 f22 λ2f21 λ2f22 λ2
2f21 λ2

2f22 . . . λn−1
2 f22 λn

2f21

f31 f32 λ3f31 λ3f32 λ2
3f31 λ2

3f32 . . . λn−1
3 f32 λn

3f31
...

...
...

...
...

...
...

...
...

f2n1 f2n2 λ2nf2n1 λ2nf2n2 λ2
2nf2n1 λ2

2nf2n2 . . . λn−1
2n f2n2 λn

2nf2n1

∣∣∣∣∣∣∣∣∣∣∣∣
,

˜(Qn)12 = −

∣∣∣∣∣∣∣∣∣∣∣∣

f11 f12 λ1f11 λ1f12 λ2
1f11 λ2

1f12 . . . λn−1
1 f11 λn

1f11

f21 f22 λ2f21 λ2f22 λ2
2f21 λ2

2f22 . . . λn−1
2 f21 λn

2f21

f31 f32 λ3f31 λ3f32 λ2
3f31 λ2

3f32 . . . λn−1
3 f31 λn

3f31
...

...
...

...
...

...
...

...
...

f2n1 f2n2 λ2nf2n1 λ2nf2n2 λ2
2nf2n1 λ2

2nf2n2 . . . λn−1
2n f2n1 λn

2nf2n1

∣∣∣∣∣∣∣∣∣∣∣∣
,

˜(Qn)21 =

∣∣∣∣∣∣∣∣∣∣∣∣

f11 f12 λ1f11 λ1f12 λ2
1f11 λ2

1f12 . . . λn−1
1 f12 λn

1f12

f21 f22 λ2f21 λ2f22 λ2
2f21 λ2

2f22 . . . λn−1
2 f22 λn

2f22

f31 f32 λ3f31 λ3f32 λ2
3f31 λ2

3f32 . . . λn−1
3 f32 λn

3f32
...

...
...

...
...

...
...

...
...

f2n1 f2n2 λ2nf2n1 λ2nf2n2 λ2
2nf2n1 λ2

2nf2n2 . . . λn−1
2n f2n2 λn

2nf2n2

∣∣∣∣∣∣∣∣∣∣∣∣
,

˜(Qn)22 = −

∣∣∣∣∣∣∣∣∣∣∣∣

f11 f12 λ1f11 λ1f12 λ2
1f11 λ2

1f12 . . . λn−1
1 f11 λn

1f12

f21 f22 λ2f21 λ2f22 λ2
2f21 λ2

2f22 . . . λn−1
2 f21 λn

2f22

f31 f32 λ3f31 λ3f32 λ2
3f31 λ2

3f32 . . . λn−1
3 f31 λn

3f32
...

...
...

...
...

...
...

...
...

f2n1 f2n2 λ2nf2n1 λ2nf2n2 λ2
2nf2n1 λ2

2nf2n2 . . . λn−1
2n f2n1 λn

2nf2n2

∣∣∣∣∣∣∣∣∣∣∣∣
.

APPENDIX B

A determinant representation of nth-order DT is constructed in the following form:

Tn = Tn(λ; λ1,λ2, . . . ,λ2n−1,λ2n) =
⎛⎝ ̂(Tn)11

|W̄2n|
̂(Tn)12

|W̄2n|̂(Tn)21

|W̄2n|
̂(Tn)22

|W̄2n|

⎞⎠ (B1)
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with

t1 =
⎛⎝ ̂(Qn)11

|W̄2n| − ̂(Qn)12

|W̄2n|̂(Qn)21

|W̄2n| − ̂(Qn)22

|W̄2n|

⎞⎠ ,

W̄2n =

⎛⎜⎜⎜⎜⎜⎜⎝

1 γ1 λ1 λ1γ1 λ2
1 . . . λn−1

1 λn−1
1 γ1

−γ ∗
1 1 λ∗

1γ
∗
1 −λ∗

1 −λ∗
1

2γ ∗
1 . . . −(−λ∗

1)n−1γ ∗
1 (−λ∗

1)n−1

1 γ3 λ3 λ3γ3 λ2
3 . . . λn−1

3 λn−1
3 γ3

...
...

...
...

...
...

...
...

−γ ∗
2n−1 1 λ∗

2n−1γ
∗
2n−1 −λ∗

2n−1 −λ∗
2n−1

2γ ∗
2n−1 . . . −(−λ∗

2n−1)n−1γ ∗
2n−1 (−λ∗

2n−1)n−1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

̂(Tn)11 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 λ . . . λn−1 0 λn

1 γ1 λ1 . . . λn−1
1 λn−1

1 γ1 λn
1

−γ ∗
1 1 λ∗

1γ
∗
1 . . . −(−λ∗

1)n−1γ ∗
1 (−λ∗

1)n−1 −(−λ∗
1)nγ ∗

1

1 γ3 λ3 . . . λn−1
3 λn−1

3 γ3 λn
3

...
...

...
...

...
...

...
−γ ∗

2n−1 1 λ∗
2n−1γ

∗
2n−1 . . . −(−λ∗

2n−1)n−1γ ∗
2n−1 (−λ∗

2n−1)n−1 −(−λ∗
2n−1)nγ ∗

2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

̂(Tn)12 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 . . . 0 λn−1 0
1 γ1 λ1 . . . λn−1

1 λn−1
1 γ1 λn

1

−γ ∗
1 1 λ∗

1γ
∗
1 . . . −(−λ∗

1)n−1γ ∗
1 (−λ∗

1)n−1 −(−λ∗
1)nγ ∗

1

1 γ3 λ3 . . . λn−1
3 λn−1

3 γ3 λn
3

...
...

...
...

...
...

...
−γ ∗

2n−1 1 λ∗
2n−1γ

∗
2n−1 . . . −(−λ∗

2n−1)n−1γ ∗
2n−1 (−λ∗

2n−1)n−1 −(−λ∗
2n−1)nγ ∗

2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

̂(Tn)21 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 λ . . . λn−1 0 0
1 γ1 λ1 . . . λn−1

1 λn−1
1 γ1 λn

1γ1

−γ ∗
1 1 λ∗

1γ
∗
1 . . . −(−λ∗

1)n−1γ ∗
1 (−λ∗

1)n−1 (−λ∗
1)n

1 γ3 λ3 . . . λn−1
3 λn−1

3 γ3 λn
3γ3

...
...

...
...

...
...

...
−γ ∗

2n−1 1 λ∗
2n−1γ

∗
2n−1 . . . −(−λ∗

2n−1)n−1γ ∗
2n−1 (−λ∗

2n−1)n−1 (−λ∗
2n−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

̂(Tn)22 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 . . . 0 λn−1 λn

1 γ1 λ1 . . . λn−1
1 λn−1

1 γ1 λn
1γ1

−γ ∗
1 1 λ∗

1γ
∗
1 . . . −(−λ∗

1)n−1γ ∗
1 (−λ∗

1)n−1 (−λ∗
1)n

1 γ3 λ3 . . . λn−1
3 λn−1

3 γ3 λn
3γ3

...
...

...
...

...
...

...
−γ ∗

2n−1 1 λ∗
2n−1γ

∗
2n−1 . . . −(−λ∗

2n−1)n−1γ ∗
2n−1 (−λ∗

2n−1)n−1 (−λ∗
2n−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

̂(Qn)11 =

∣∣∣∣∣∣∣∣∣∣∣∣

1 γ1 λ1 λ1γ1 λ2
1 . . . λn−1

1 γ1 λn
1

−γ ∗
1 1 λ∗

1γ
∗
1 −λ∗

1 −λ∗
1

2γ ∗
1 . . . (−λ∗

1)n−1 −(−λ∗
1)nγ ∗

1

1 γ3 λ3 λ3γ3 λ2
3 . . . λn−1

3 γ3 λn
3

...
...

...
...

...
...

...
...

−γ ∗
2n−1 1 λ∗

2n−1γ
∗
2n−1 −λ∗

2n−1 −λ∗
2n−1

2γ ∗
2n−1 . . . (−λ∗

2n−1)n−1 −(−λ∗
2n−1)nγ ∗

2n−1

∣∣∣∣∣∣∣∣∣∣∣∣
,

̂(Qn)12 =

∣∣∣∣∣∣∣∣∣∣∣∣

1 γ1 λ1 λ1γ1 . . . λn−1
1 λn

1

−γ ∗
1 1 λ∗

1γ
∗
1 −λ∗

1 . . . −(−λ∗
1)n−1γ ∗

1 −(−λ∗
1)nγ ∗

1

1 γ3 λ3 λ3γ3 . . . λn−1
3 λn

3
...

...
...

...
...

...
...

−γ ∗
2n−1 1 λ∗

2n−1γ
∗
2n−1 −λ∗

2n−1 . . . −(−λ∗
2n−1)n−1γ ∗

2n−1 −(−λ∗
2n−1)nγ ∗

2n−1

∣∣∣∣∣∣∣∣∣∣∣∣
,

066603-13



JINGSONG HE, SHUWEI XU, AND K. PORSEZIAN PHYSICAL REVIEW E 86, 066603 (2012)

̂(Qn)21 =

∣∣∣∣∣∣∣∣∣∣∣

1 γ1 λ1 λ1γ1 λ2
1 . . . λn−1

1 γ1 λn
1γ1

−γ ∗
1 1 λ∗

1γ
∗
1 −λ∗

1 −λ∗
1

2γ ∗
1 . . . (−λ∗

1)n−1 (−λ∗
1)n

1 γ3 λ3 λ3γ3 λ2
3 . . . λn−1

3 γ3 λn
3γ3

...
...

...
...

...
...

...
...

−γ ∗
2n−1 1 λ∗

2n−1γ
∗
2n−1 −λ∗

2n−1 −λ∗
2n−1

2γ ∗
2n−1 . . . (−λ∗

2n−1)n−1 (−λ∗
2n−1)n

∣∣∣∣∣∣∣∣∣∣∣
,

̂(Qn)22 =

∣∣∣∣∣∣∣∣∣∣∣

1 γ1 λ1 λ1γ1 λ2
1 . . . λn−1

1 λn
1γ1

−γ ∗
1 1 λ∗

1γ
∗
1 −λ∗

1 −λ∗
1

2γ ∗
1 . . . −(−λ∗

1)n−1γ ∗
1 (−λ∗

1)n

1 γ3 λ3 λ3γ3 λ2
3 . . . λn−1

3 λn
3γ3

...
...

...
...

...
...

...
...

−γ ∗
2n−1 1 λ∗

2n−1γ
∗
2n−1 −λ∗

2n−1 −λ∗
2n−1

2γ ∗
2n−1 . . . −(−λ∗

2n−1)n−1γ ∗
2n−1 (−λ∗

2n−1)n

∣∣∣∣∣∣∣∣∣∣∣
.

Here
γ2k−1 = v1

v2
,

v1 =
{

2i
(
α2

2k−1 − d2
)

sin

[√
d2 − α2

2k−1(−s2x + s4t)

s2

]
cos

[√
d2 − α2

2k−1(−s2x + s4t)

s2

]

+ i
(−α2

2k−1 + d2
)

sin

[
2
√

d2 − α2
2k−1(−s2x + s4t)

s2

]
− 2dα2k−1 cosh

⎛⎝2
√

d2 − α2
2k−1s3t

s2

⎞⎠
+ 2d2 cos

[
2
√

d2 − α2
2k−1(−s2x + s4t)

s2

]
+ 2id sinh

(
2
√

d2 − α2
2k−1s3t

s2

)√
d2 − α2

2k−1

}
exp(−is1),

v2 = (−2d2 + 2α2
2k−1

)
sinh

(√
d2 − α2

2k−1s3t

s2

)
cosh

(√
d2 − α2

2k−1s3t

s2

)
+ 2d2 cosh

(
2
√

d2 − α2
2k−1s3t

s2

)
(B2)

+ (
d2 − α2

2k−1

)
sinh

(
2
√

d2 − α2
2k−1s3t

s2

)
− 2

√
d2 − α2

2k−1d sin

[
2
√

d2 − α2
2k−1(−s2x + s4t)

s2

]

− 2dα2k−1 cos

[
2

√
d2 − α2

2k−1(−s2x + s4t)

s2

]
,

s1 = −b(1/2b − ω0)x + [2 + 2(1/2b − ω0)(1/4b2 − 1/2d2)]t

−1/2b + ω0
,

s2 = (−1/2b + ω0)[(1/2b − ω0)2 + d2],

s3 = −dω0(d2 + ω2
0) − 3/2dbω0(1/2b − ω0) + 1/2db(d2 + 1/4b2) + d,

s4 = −1/2b2(d2 + 1/4b2) + bω0(d2 + ω0
2) + 3/2b2ω0(1/2b − ω0) + 1/2b − ω0.

APPENDIX C

Here we give the construction of T of T̄rn(λ) in detail:

T̄rn = T̄rn(λ) =
⎛⎝ ˜(Trn)11

|Wr2n|
˜(Trn)12

|Wr2n|˜(Trn)21
|Wr2n|

˜(Trn)22
|Wr2n|

⎞⎠ , (C1)

t̄r1 =
⎛⎝ ˜(Qrn)11

|Wr2n|
˜(Qrn)12

|Wr2n|˜(Qrn)21
|Wr2n|

˜(Qrn)22
|Wr2n|

⎞⎠ ,
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Wr2n =

⎛⎜⎜⎜⎜⎜⎜⎝

h1
01 h1

02 h1
11 h1

12 . . . h1
n−11 h1

n−12

−h1∗
02 h1∗

01 h1∗
12 −h1∗

11 . . . (−1)nh1∗
n−12 (−1)n−1h1∗

n−11

h3
01 h3

02 h3
11 h3

12 . . . h3
n−11 h3

n−12
...

...
...

...
...

...
...

−h2n−1∗
02 h2n−1∗

01 h2n−1∗
12 −h2n−1∗

11 . . . (−1)nh2n−1∗
n−12 (−1)n−1h2n−1

n−11
∗

⎞⎟⎟⎟⎟⎟⎟⎠ ,

˜(Trn)11 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 λ 0 . . . λn−1 0 λn

h1
01 h1

02 h1
11 h1

12 . . . h1
n−11 h1

n−12 h1
n1

−h1∗
02 h1∗

01 h1∗
12 −h1∗

11 . . . (−1)nh1∗
n−12 (−1)n−1h1∗

n−11 (−1)n+1hn2
1∗

h3
01 h3

02 h3
11 h3

12 . . . h3
n−11 h3

n−12 h3
n1

...
...

...
...

...
...

...
...

−h2n−1∗
02 h2n−1∗

01 h2n−1∗
12 −h2n−1∗

11 . . . (−1)nh2n−1∗
n−12 (−1)n−1h2n−1∗

n−11 (−1)n+1hn2
2n−1∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

˜(Trn)12 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 λ . . . 0 λn−1 0
h1

01 h1
02 h1

11 h1
12 . . . h1

n−11 h1
n−12 h1

n1

−h1∗
02 h1∗

01 h1∗
12 −h1∗

11 . . . (−1)nh1∗
n−12 (−1)n−1h1∗

n−11 (−1)n+1hn2
1∗

h3
01 h3

02 h3
11 h3

12 . . . h3
n−11 h3

n−12 h3
n1

...
...

...
...

...
...

...
...

−h2n−1∗
02 h2n−1∗

01 h2n−1∗
12 −h2n−1∗

11 . . . (−1)nh2n−1∗
n−12 (−1)n−1h2n−1∗

n−11 (−1)n+1hn2
2n−1∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

˜(Trn)21 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 λ 0 . . . λn−1 0 0
h1

01 h1
02 h1

11 h1
12 . . . h1

n−11 h1
n−12 h1

n2

−h1∗
02 h1∗

01 h1∗
12 −h1∗

11 . . . (−1)nh1∗
n−12 (−1)n−1h1∗

n−11 (−1)nh1∗
n1

h3
01 h3

02 h3
11 h3

12 . . . h3
n−11 h3

n−12 h3
n2

...
...

...
...

...
...

...
...

−h2n−1∗
02 h2n−1∗

01 h2n−1∗
12 −h2n−1∗

11 . . . (−1)nh2n−1∗
n−12 (−1)n−1h2n−1∗

n−11 (−1)nh2n−1∗
n1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

˜(Trn)22 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 λ . . . 0 λn−1 λn

h1
01 h1

02 h1
11 h1

12 . . . h1
n−11 h1

n−12 h1
n2

−h1∗
02 h1∗

01 h1∗
12 −h1∗

11 . . . (−1)nh1∗
n−12 (−1)n−1h1∗

n−11 (−1)nh1∗
n1

h3
01 h3

02 h3
11 h3

12 . . . h3
n−11 h3

n−12 h3
n2

...
...

...
...

...
...

...
...

−h2n−1∗
02 h2n−1∗

01 h2n−1∗
12 −h2n−1∗

11 . . . (−1)nh2n−1∗
n−12 (−1)n−1h2n−1∗

n−11 (−1)nh2n−1∗
n1

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

˜(Qrn)11 =

∣∣∣∣∣∣∣∣∣∣∣

h1
01 h1

02 h1
11 h1

12 . . . h1
n−12 h1

n1

−h1∗
02 h1∗

01 h1∗
12 −h1∗

11 . . . (−1)n−1h1∗
n−11 (−1)n+1hn2

1∗

h3
01 h3

02 h3
11 h3

12 . . . h3
n−12 h3

n1
...

...
...

...
...

...
...

−h2n−1∗
02 h2n−1∗

01 h2n−1∗
12 −h2n−1∗

11 . . . (−1)n−1h2n−1∗
n−11 (−1)n+1hn2

2n−1∗

∣∣∣∣∣∣∣∣∣∣∣
,

˜(Qrn)12 = −

∣∣∣∣∣∣∣∣∣∣∣

h1
01 h1

02 h1
11 h1

12 . . . h1
n−11 h1

n1

−h1∗
02 h1∗

01 h1∗
12 −h1∗

11 . . . (−1)nh1∗
n−12 (−1)n+1hn2

1∗

h3
01 h3

02 h3
11 h3

12 . . . h3
n−11 h3

n1
...

...
...

...
...

...
...

−h2n−1∗
02 h2n−1∗

01 h2n−1∗
12 −h2n−1∗

11 . . . (−1)nh2n−1∗
n−12 (−1)n+1hn2

2n−1∗

∣∣∣∣∣∣∣∣∣∣∣
,

˜(Qrn)21 =

∣∣∣∣∣∣∣∣∣∣∣

h1
01 h1

02 h1
11 h1

12 . . . h1
n−12 h1

n2

−h1∗
02 h1∗

01 h1∗
12 −h1∗

11 . . . (−1)n−1h1∗
n−11 (−1)nh1∗

n1

h3
01 h3

02 h3
11 h3

12 . . . h3
n−12 h3

n2
...

...
...

...
...

...
...

−h2n−1∗
02 h2n−1∗

01 h2n−1∗
12 −h2n−1∗

11 . . . (−1)n−1h2n−1∗
n−11 (−1)nh2n−1∗

n1

∣∣∣∣∣∣∣∣∣∣∣
,
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˜(Qrn)22 = −

∣∣∣∣∣∣∣∣∣∣∣

h1
01 h1

02 h1
11 h1

12 . . . h1
n−11 h1

n2

−h1∗
02 h1∗

01 h1∗
12 −h1∗

11 . . . (−1)nh1∗
n−12 (−1)nh1∗

n1

h3
01 h3

02 h3
11 h3

12 . . . h3
n−11 h3
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