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Formation of a two-kink soliton pair in perturbed sine-Gordon models due
to kink–internal-mode instabilities
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The existence of two-kink soliton solutions in polynomial potentials was first reported by Bazeia et al. in a
special type of scalar field systems [Phys. Rev. Lett. 91, 241601 (2003)]. A general feature of these potentials is
that they possess two minima and a local metastable minimum between them. In the present work we investigate
the appearance of this special kind of soliton in the sine-Gordon model under the perturbation of a space-dependent
force. We show that a pair of solitons is emitted during the process of kink breakup by internal mode instabilities.
A possible explanation of these phenomena is an interplay between the solitons repelling interaction and the
external force, resulting in a separation or a packing of several kinks.
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I. INTRODUCTION

The appearance of kink solitons in scalar field models
such as φ4 and sine-Gordon (SG) models depends on the
configuration of the energy potential U (φ). When the potential
has, at least, two minima, the system exhibits a solution that
connects both energetic states [1]. For example, in the case of a
φ4 model the solution connects the potential minima φ = ±1.
In the SG case, the potential supports infinite minima. Thus,
if φ varies only from 0 to 2π , the kink soliton interpolates
between the two adjacent minima φ = 0,2π . In general, it has
been proved that depending on the shape of the potential U (φ)
various classes of localized solutions in the form of kinks,
pulses, and semisolitons are possible [2].

An interesting variation of kink soliton is the two-kink
soliton introduced by Bazeia et al. [3,4] These solutions
are present in a family of models described by polynomial
potentials Up(φ) in (1,1) dimensions which support minima
at φ = 0 and ±1 for odd values of the control parameter p.
The solution connects the minima φ = ±1 passing through
the local minimum at φ = 0. Therefore, the two-kink soliton
profile consists of two standard kinks separated by a distance
which is proportional to p, the parameter that specifies the
potential.

However, further investigations [5,6] revealed that the
two-kink solution can be observed in models whose potentials
are controlled by a parameter and not by the degree of
the self-interacting scalar field. In other words, the energy
configuration of the potential can be changed by a control
parameter.

The two-kink soliton has received attention by its im-
plications in the field of string theory and specially in the
brane world [5–7]. Notwithstanding, experimental realization
of such systems are rather complicated. A more usual physical
scenario for studies in kink dynamics has been found in the
long Josephson junction (LJJ) and its discrete version called
the Josephson array. A regular kink in LJJs corresponds to
a Josephson vortex or fluxon, a quantum of magnetic flux,
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which is well described by the SG kink solution. The fusion
of two regular fluxons (kinks) into a bound state (two-kink
state) has been already reported in an annular Josephson array
subject to a constant bias current [8–10]. Similar solutions
called multikinks have been reported in the discrete version
of the SG model, also known as the Frenkel-Kontorova model
with higher order dispersive terms [11,12]. These suggests that
the two-kink solution can be observed and controlled in a more
physically realizable scenario.

In the present work, we analyze the necessary conditions
under which the formation of a two-kink soliton is possible
in a perturbed SG model, following the general approach
introduced in Ref. [13]. This procedure allows us to conduct an
exact stability analysis of the internal modes when the system
is perturbed by a suitable space-dependent force.

This work is organized as follows. In Sec. II, we review the
exact stability analysis approach in the SG model perturbed
by a external force. We report the observation of the two-
kink soliton produced by a kink breakup. In Sec. III we show
the main numerical results performed using a perturbed SG
model. An expression of the energy that permits us to predict
and control the two-kink formation is derived in Sec. IV. An
analysis of the required conditions for the appearance of the
two-kink and even the multikink (antikink) is given in Sec. V.
In Sec. VI we present a possible experimental setup based on
Josehpson junctions to study the formation of multikinks via
internal mode instabilities. Finally we present our concluding
remarks in Sec. VII.

II. STABILITY ANALYSIS

The sine-Gordon model has been applied in many branches
of physics as particle physics and condensed matter theory.
The model can describe many phenomena from domain walls
in ferromagnets and fluxons in long Josephson junctions in
solid state physics [14,15] to DNA models in biology [16].

In the unperturbed version of the SG model, the solution
does not have internal modes. However, following the stability
analysis technique, it has been shown that when the system
is perturbed by an inhomogeneous external force, SG soli-
ton internal modes can exist. Furthermore, inhomogeneous
perturbations of the soliton equations in the form of both
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external forces or parametric impurities generate effective
potentials for the motion of the kink; i.e., the zeros of F (x)
represent equilibrium positions for the kink (antikink). The
activation of extra internal modes and the zeros of the force
can lead to the appearance of different phenomena such as kink
explosion, tunneling escape from potential wells, and creation
of a kink-antikink pair, among others [13,17–19].

To understand the conditions for the appearance of a two-
kink soliton solution, we review the stability conditions for a
kink in the presence of an inhomogenous external force F (x),
with at least one x∗ such that F (x∗) = 0 [13].

The perturbed Klein-Gordon equation is

φtt − φxx + ∂U

∂φ
= F (x), (1)

where U (φ) is a potential that possesses at least two minima.
The sine-Gordon and φ4 equations are particular examples of
(1) when F (x) = 0.

To solve exactly the stability problem, it is necessary to
build a general function φk with the topological properties of
the kink-soliton solution. Then, via an inverse problem, we are
able to obtain a suitable F (x) with the properties of the physical
system under study. In particular, if F (x) possesses only one
zero (F (x∗) = 0) and ∂F (x)

∂x
|x=x∗ > 0, then the point x = x∗ is

a stable (unstable) equilibrium position for the kink (antikink).
Otherwise, if ∂F (x)

∂x
|x=x∗ < 0, the equilibrium position x = x∗

is unstable (stable) for the kink (antikink).
Considering φ(x,t) = φk(x) + f (x)eλt and performing a

linear stability analysis we get the following eigenvalue
problem:

L̂f = �f, (2)

where L̂ = −∂2
x + { ∂2U

∂u2 |φ=φk(x)} and � = −λ2. The transla-
tional and internal shape modes associated to the kink can be
obtained from (2). For further explanations read [13,17–19]
and references therein.

Let us look at the perturbed SG model

φtt − φxx + sin φ = F (x), (3)

where

F (x) = 2(B2 − 1) sinh(Bx)

cosh2(Bx)
(4)

is an external force with a single zero (or equilibrium position
for the kink soliton) in x∗ = 0.

The exact stationary solution of Eq. (3) is φk(x) =
4 arctan[exp(Bx)]. This solution represents a kink-soliton at
the position x = 0. The stability problem (2) can be solved
exactly. The eigenvalues of the discrete spectrum are given by
the formula

�n = B2(� + 2�n − n2) − 1, (5)

where �(� + 1) = 2
B2 .

The integer part of � ([�]) yields the number of eigenvalues
in the discrete spectrum, which correspond to the soliton modes
(including the translational mode �0, and the internal shape
modes �n(0 < n < [�]). Everything concerning the stability
of the soliton in this situation can be obtained from the equation
for �n.

The parameter B acts as a control parameter. For B2 > 1,
the translational mode is stable, and there are no internal
(shape) modes. In this regime the kink stays at the equilibrium
position (x∗ = 0). If 1/3 < B2 < 1, then the translational
mode is unstable, but there are no internal modes. The kink
moves from its unstable equilibrium position without shape
deformations. When 1/6 < B2 < 1/3, the translational mode
and one internal shape mode arise. This internal shape mode
is stable. For B2 < 1/6 many other internal modes can appear.
For B2 < 2/[�∗(�∗ + 1)], where �∗ = (5 + √

17)/2, the first
internal mode becomes unstable. This instability leads to a kink
breakup by an internal shape instability [13,17,19].

The study of internal modes can give an insight of the un-
derneath kink dynamics. Different phenomena as length-scale
competition can be understood based on stability conditions
[20]. Despite the particular construction of the external force,
any physical model topologically equivalent will exhibit the
same dynamical behavior around an equilibrium position.
This scenario is also valid for any F (x) with several zeros.
Additionally, the stability conditions are stated in terms of
the control parameter B. Therefore, we can easily control the
kink dynamics by varying the external force parameters. This
is specially important in experimental realizations of these
physical systems.

Previous numerical simulations performed close to the
threshold B2 < 2/[�∗(�∗ + 1)] have shown the emission of a
kink-antikink pair. However, for lower values of B, below the
threshold, there is not any numerical exploration. Indeed, our
main focus is to explore numerically this region. In the next
section, we show our main numerical results in this direction.

III. NUMERICAL SIMULATIONS

In numerical simulations we consider the perturbed SG
model (3) where F (x) is given by (4). Such a force creates
a potential barrier at x∗ = 0. The simulations are carried out
using a lattice from −60 to 60 in the x direction. The values of
the system parameters are chosen as dt = 0.1 for the time
step, γ = 0.01 for the damping coefficient, and tmax = 60
for the time of integration. The damping is introduced in the
numerical simulations in order to reduce the numerical noise.
The stability conditions are still valid. The initial conditions
are

φ(x,t = 0) = 4 arctan(ex), (6)

φt (x,t = 0) = 0. (7)

These conditions represent a stationary kink-soliton placed
initially at the equilibrium position x∗ = 0. To examine the
accuracy of the simulation, we start with values of the control
parameter B greater than one. Initially, the kink soliton
translational mode is stable. The kink remains motionless at
its equilibrium position. According to the stability analysis,
for 1/3 < B2 < 1, the kink moves apart from x∗ = 0. Indeed,
a continuous displacement of the soliton is observed.

The first internal shape mode appears for 1/6 < B2 < 1/3.
Despite the initial deformation, the stability of the shape mode
prevents the breakup of the kink. For B2 < 5 + √

17/2 the
kink soliton breaks up, and the formation of a kink-antikink
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FIG. 1. Numerical simulation of (3) with F (x) given by (4) under
the threshold of shape instability (B = 0.2564). We can observe the
formation of a two-kink soliton pair.

pair is observed. All the simulations exhibit a good agreement
with the theory and the previous results (see Refs. [13,17,19]).

Beyond the shape instability threshold, an additional de-
forming structure is observed over each kink. Just below the
threshold, this structure is not stable and disappears after some
transient state. The final configuration is the expected kink-
antikink-kink. Nevertheless, for B = 0.2564, the deforming
structure is stable and generates a pair of two-kink solitons.
Figure 1 shows the process described above. Both solitons
are moving in opposite directions. Meanwhile, a motionless
antikink soliton appears interpolating between −4π and 2π .
If we continue decreasing the value of B, a multikink soliton
pair is emitted and a large antikink (interpolating between 8π

and −7π ) is formed at x∗ = 0 (see Fig. 2).
To obtain a clearer description of the mechanism involved

in the formation of the two-kink pair, we perform a similar
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FIG. 2. Numerical simulations of (3) given by (4) for a lower
value of B (B = 0.2000). A multikink soliton pair is emitted in
opposite directions.
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FIG. 3. Numerical simulations of (8) with F (x) given by (9) and
B = 0.1100. The formation of the two-kink soliton is not observed.

numerical study with the φ4 model:

φtt − φxx − 1
2φ + 1

2φ3 = F (x). (8)

For this case F (x) is given by

F (x) = 1

2

(4B2 − 1) sinh(Bx)

cosh3(Bx)
. (9)

Stability analysis establishes the instability threshold of the
first internal shape mode at B2 < 11−√

117
8 . As expected, the

breakup of a kink results from numerical simulations at this
value. Below the shape instability threshold the formation of
the two-kink soliton is not observed at any value of the control
parameter B. Figure 3 displays the temporal evolution of a φ4

kink perturbed by (9) for B = 0.11.
The simulations in both systems reveal that a multiple

ground state degeneracy in the energy potential U (φ) is
necessary for the existence of the two-kink soliton. According
to the stability analysis, an internal shape mode instability leads
to a kink-antikink pair creation. Notwithstanding, if the total
energy is large enough, the multiple degeneracy of the ground
state of U (φ) allows additional kink-antikink pairs to appear.
A degeneracy similar to that appearing in the φ4 model cannot
form a two-kink soliton pair (Fig. 3) even if the amplitude of
the external force is very large.

IV. ENERGY CONSIDERATIONS

As we have mentioned above, the appearance of the
two-kink soliton is linked to the successive emission of
kink-antikink pairs. Such an emission requires an extra amount
of energy to be able to afford consecutive pairs formation.
This energy is given by the external force and consequently a
function of parameter B. Next, we show that the formation of
a two-kink soliton can be predicted and controlled by varying
external parameters.

The energy carried by a kink, in the unperturbed SG
model, described by φ0 = 4arctan(e±γ (x−vt)) is E = 8γ where
v stands for the kink velocity and γ = 1/(1 − v2).
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The perturbed nonlinear Klein-Gordon equation (1) can be
derived from the following Lagrangian density:

L = 1
2φ2

t − 1
2φ2

x − U (φ) + F (x)φ, (10)

with the associated Hamiltonian density

H = 1
2φ2

t + 1
2φ2

x + U (φ) − F (x)φ. (11)

The energy conservation law can be written as dH
dt

= 0,
where H = ∫ ∞

−∞ H dx. If φk = 4arctan(eBx) and U (φ) = (1 −
cos φ), then the total energy can be written as

HT = Hk + Hext, (12)

where Hk = 4
B

(B2 + 1) represents the energy associated with
the solution φk . Hext is the extra energy given by the external
force. Replacing F (x) by expression (4), we obtain that

Hext = −8(B2 − 1)
∫ ∞

−∞

sinh(Bx)

cosh2(Bx)
arctan(eBx) dx. (13)

After an integration by parts, Hext reads

Hext = −8(B2 − 1)

B

[
2eBxarctan(eBx) + 1

e2Bx + 1

]∣∣∣∣
∞

−∞

= 8(B2 − 1)

B
. (14)

Therefore, the expression for the total energy is

HT = 4

B
(3 − B2). (15)

As we can see, the total energy increases with decreasing
values of B. From the stability conditions, the first emission
of a pair kink-antikink takes place when B2 < 1/6. Using
(15) with B2 = 1/6, we are able to estimate the energy
minimum value for the first kink-antikink pair creation: HT =
34

√
6/3 ≈ 27.76. By comparison with the energy related to

φk , it is clear that the external force provides enough energy
to produce an additional kink-antikink pair.

Using this criterion, we can get an estimate of the control
parameter B at which the formation of the two-kink soliton
pair takes place. The required energy to produce at least seven
motionless solitons is HT = 56. From (15), we obtain that
the value of the control parameter that fulfills this condition
is B = 0.2111 (the numerical simulations yield a close value,
B = 0.2465). The reason for this difference can be understood
by considering that the effective mass of propagative solitons
differs from the motionless ones, resulting in a lower energy.
In fact, numerical and experimental works report that the
formation of bound states of kinks or multikink solitons can
lead to a decrease of the associated energy due to a grow of
their velocity [8–10]. Despite that, the energy criteria provide
a very good estimation of the number of solitons produced
after a kink internal mode instability.

V. FORMATION OF A PAIR OF TWO-KINK SOLITON

Formerly, we have discussed about the relevance of the
emission of successive kink-antikink pairs in the two-kink
formation. However, once two consecutive emissions of pairs
are attained, the formation of a bound state between two kinks
(antikinks) requires an additional ingredient.

Time

Space

ϕ(x,t) 

15

0

FIG. 4. (Color online) Space-time diagram of the two-kink
soliton pair formation under the threshold of shape instability
(B = 0.2564). Inset: Schematic plot that illustrates the direction of
solitonic interaction forces (blue arrows) and the unstable (repeller)
equilibrium position (dashed red arrow).

In a system with no external forces [F (x) = 0], two single
solitons interact with each other through a repulsive force
which decays with the distance between their mass centers
[21]. Such an interaction will separate them, preventing a
binding process. On the other hand, the zeros of the external
force [e.g., Eq. (4)] are equilibrium positions. When these
positions are unstable, the kink solitons move away from them.
This cause an opposite effect to the repulsive force. Making
possible the formation of a two-kink soliton (see Fig. 4). Inset
in Fig. 4 shows a schematic representation of this interplay.
Two kink solitons are located on the right (or on the left) of
the unstable equilibrium point located at x∗ = 0. Both kinks
move away from this equilibrium point (red arrow) preventing
the separation (blue arrows).

To understand this phenomenon, we introduce a new state
which represents two standard kinks separated by a distance d

and parametrized by B:

φk0 = 4 arctan(eB(x+d)) + 4 arctan(eB(x−d)). (16)

Following an inverse problem method,

F0(x) = sin[φk0 ] − φk0 xx, (17)

we are able to build a suitable model which supports the two-
kink soliton solution under the presence of an external forcing.
The calculated external force F0 is

F0(x) = 2(B2 − 1)[α+β+ + α−β−]

+ 4[α+β+α2
− + α−β−α2

+], (18)

where α± = sech [B(x ± d)] and β± = tanh [B(x ± d)].
It is easy to observe that the above function represents

an external force parametrized by B with three equilibrium
positions located at x∗ = 0 and x∗ = ±d. In Fig. 5 we illustrate
the force F0 for different values of d. The equilibrium position
(zero of function F0) located at x∗ = 0 represents a stable
(unstable) point for a kink (antikink) (blue filled dot) while
x∗ = ±d act on a kink (antikink) as unstable (stable) points
(red circles).

For d = 0 the separation between different equilibrium
positions is a minimum and ∂F (x)

∂x
|x∗=0 is a maximum. The

effective potential created by F0 at x = 0 restrains the repulsive
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FIG. 5. (Color online) Function F0(x) given by Eq. (18) at B =
0.5000 for different values of d . The zeros of the force act as stable
(Filled blue dots) or unstable (Open red circles) equilibrium positions.

interaction force between the two kinks. Thus, for values of B

below the shape instability threshold the initial state remains
located at x∗ = 0 without any deformation. In Fig. 6 we can
observe this behavior.

For values of d �= 0, ∂F (x)
∂x

|x∗=0 diminishes as d increases.
An initial separation of the two original kinks is observed. This
effect is displayed in Fig. 7. However, x∗ = ±d act as repelling
points. Thus, the two kinks will separate from each other until
they reach an equilibrium between both unstable positions (see
Fig. 7). The numerical simulation also reveals that the kink
asymptotic zones (wings) undergo a shape instability close
to x∗. However, the energy is not enough (above the critical
threshold) to produce an additional kink-antikink pair.

Next, we discuss the dynamics when the shape mode
is unstable and d �= 0. At a first stage, the initial two
kinks repel each other, moving towards the points x∗ = ±d.
Notwithstanding, the shape instability is strong enough to
produce a kink breakup creating two kinks, moving in opposite
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FIG. 6. (Color online) Numerical simulation of (3) with F0(x)
given by (18), d = 0, B = 0.5000, dt = 0.1, γ = 0.01, and tmax =
60. The original state composed of two kinks remains located at
x = 0 without any deformation. Dotted blue line: External force F0(x)
illustrated in order to show equilibrium positions (not scaled).
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FIG. 7. (Color online) Numerical simulation of (3) with F0(x)
given by (18), d = 20, B = 0.5000, dt = 0.1, γ = 0.01, and tmax =
60. The original state composed of two kinks separates, reaching
an equilibrium between both unstable positions located at x = ±d .
Dotted blue line: External force F0(x) illustrated in order to show
equilibrium positions (not scaled).

directions and a two-antikink soliton in both sides of x∗ = 0.
The kink created on the left (right) of the point x = d (x = −d)
is attracted by the position x = 0 (stable position for a kink),
giving rise to a packed state (a multikink soliton) located at
x = 0. The same behavior is observed for the two-antikink
formed at x = ±d (stable position for antikinks), where we
can see a “packed” state of two antikinks. Meanwhile, the two
kinks formed on the right (left) of the point x = d (x = −d)
are repelled by this point and they move away from it. Figure
8 shows the whole dynamics described above. The dynamics
described above also explain the apparent nonexistence of a
multi-antikink in our original perturbed SG model. For an
antinkink, the point x∗ = 0 is a stable equilibrium. The point
x = 0 represents a stable equilibrium position for antikinks.
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FIG. 8. (Color online) Numerical simulation of (3) with F0(x)
given by (18), d = 20, B = 0.2000, dt = 0.1, γ = 0.01, and tmax =
60. Separation, breakup, and packing processes of solitons in
sequence. Dotted blue line: External force F0(x) illustrated in order
to show equilibrium positions (not scaled).
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The attraction by x = 0 compresses them together such that
there is no distance of separation between different antikinks,
forming a packed state. Figures 1 and 2 exhibit the formation
of packed states of three-antikink and seven-antikink solitons,
respectively.

Note that despite the special construction of (18) using the
geometrical theory of dynamical systems, all the results can
be extended to any model topologically equivalent to those
shown here. Therefore, similar systems which possess the
same topological characteristics of the force could display
a two-kink soliton formation.

VI. TWO-KINK SOLITONS IN JOSEPHSON JUNCTIONS

The initial formulation of a family of scalar models where
the two-kink soliton appears as a solution was motivated for its
implications on the field of the string theory, particularly, in the
brane world. In this context, the soliton structure (considered
as a defect or a domain wall) can be used to mimic a thick
brane (membrane) on a hyperdimensional volume [5–7].

Recent works, however, have shed light on new experimen-
tal perspectives in which the two-kink soliton can be studied.
In Ref. [22] the authors showed that a domain wall profile
in a magnetic material can be manipulated by geometrical
constraints so that a two-kink soliton can be formed.

In this regard, an interesting experimental device in soli-
ton dynamics is the long Josephson junction (LJJ) and its
discrete version, the Josephson array. A regular kink in a
LJJ corresponds to a Josephson vortex or fluxon, a quantum
of magnetic flux. The fusion of two regular fluxons (kinks)
into a bound state (two-kink soliton state) has already been
reported in an annular Josephson array subject to a constant
bias current [8–10]. These works refer to the surface losses as
the responsible for soliton bunching in LJJs.

Moreover, additional works [23,24] have described a
method to create Fluxon-antifluxon (kink-antikink) states
using a “current dipole.” The technique consists in injecting
into the junction a relatively large current that is collected
back at another point of the same electrode, which is separated
from the injection spot by a small distance D. A remarkable

feature of this setup is that the injected-current profile displays
a spatially dependance similar to the external force (4). The
amplitude of the external force is proportional to the current
I analogously to our control parameter B. Based on this,
we propose a possible experiment in order to observe the
formation of a two-kink soliton due to an internal mode
instability in a real physical system such as a Josephson
junction. The experimental setup, consisting of a LJJ driven
by a current dipole and a bias current, reproduces the forcing
conditions of our numerical simulations. The motion of the
soliton can be measured by analyzing the current-voltage
characteristics. The soliton velocity is proportional to the
voltage V . It has been reported that the velocity of a two-kink
state is significantly higher than the velocity of a single kink,
rendering the formation of bound states as the two-kink soliton
easy to detect [8–10]. Thus, Joshepson junctions represent a
very practical way to explore the formation of multikink states.
This has interesting implications in the field of high-energy
particles and cosmology, where the formation of particles in
the presence of external fields represents an active research
field.

VII. CONCLUSIONS

We show the formation of a two-kink soliton pair in the
perturbed sine-Gordon model due to internal mode instabili-
ties. The conditions for the formation of this kind of solutions
are a combination of instabilities in the shape internal modes
and an effective potential created by an external force. These
results show that the external force plays an important role in
the formation process of other types of solutions as multikinks
via the separation or the “packing” of several kinks (antikinks).
A possible experimental setup with interesting implications in
the field of high-energy particles and cosmology is proposed.
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[13] J. A. González and J. A. Holyst, Phys. Rev. B 45, 10338 (1992).
[14] Y. S. Kivshar and B. A. Malomed, Rev. Mod. Phys. 61, 763

(1989).
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