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Excitation of parasitic waves in forward-wave amplifiers with weak guiding fields
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To produce high-power coherent electromagnetic radiation at frequencies from microwaves up to terahertz,
the radiation sources should have interaction circuits of large cross sections, i.e., the sources should operate in
high-order modes. In such devices, the excitation of higher-order parasitic modes near cutoff where the group
velocity is small and, hence, start currents are low can be a serious problem. The problem is especially severe in
the sources of coherent, phase-controlled radiation, i.e., the amplifiers or phase-locked oscillators. This problem
was studied earlier [Nusinovich, Sinitsyn, and Antonsen, Phys. Rev. E 82, 046404 (2010)] for the case of electron
focusing by strong guiding magnetic fields. For many applications it is desirable to minimize these focusing fields.
Therefore in this paper we analyze the problem of excitation of parasitic modes near cutoff in forward-wave
amplifiers with weak focusing fields. First, we study the large-signal operation of such a device with a signal
wave only. Then, we analyze the self-excitation conditions of parasitic waves near cutoff in the presence of the
signal wave. It is shown that the main effect is the suppression of the parasitic wave in large-signal regimes. At
the same time, there is a region of device parameters where the presence of signal waves can enhance excitation
of parasitic modes. The role of focusing fields in such effects is studied.
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I. INTRODUCTION

Among various sources of high-power coherent electro-
magnetic (EM) radiation, the devices based on synchronous
interaction between electrons propagating in vacuum and slow
EM waves whose phase velocity is close to the electron
velocity form an important class (see, e.g., Ref. [1]). The
EM radiation in such devices is known as the Cherenkov
coherent radiation and (in the case of periodic EM circuits)
as the Smith-Purcell radiation. Quite often, the Smith-Purcell
radiation is treated as a partial case of the Cherenkov radiation
because for the beam-wave interaction in this case the same
condition of the synchronism between the electron velocity
and the phase velocity of one of the space harmonics should
be fulfilled. The most known devices based on this type of
radiation are traveling-wave tubes, backward-wave oscillators,
and orotrons.

There is a strong interest in developing high-power sources
of coherent EM radiation at very high frequencies. Primarily,
this interest is motivated by such applications as communica-
tion and radar systems where the amplifiers with controlled
phase and frequency are required [2,3]. At present, this active
development is going on in the W band (95 GHz) (see, e.g.,
[4,5]) and at much higher frequencies, such as 220 GHz [6]
and even 650–850 GHz where the power of available sources
is, at best, at a multimilliwatt level (see review papers [6,7]).
This progress is accompanied not only by the development of
powerful two-dimensional (2D) and three–dimensional codes,
but also by attempts to develop a simplified general theory
which would elucidate some basic features in the operation of
such devices.

One of the issues critical for the development of high-power
amplifiers driven by electron beams is possible excitation of
some parasitic oscillations in these amplifiers. As a rule, the
most dangerous parasitic modes are those which can be excited
at the ends of the passbands. This statement is illustrated by
Fig. 1. As known, such waves excited near cutoff frequencies
have low group velocities and, hence, can be strongly coupled

to the electron beam. Excitation of parasitic waves near cutoff
in forward-wave amplifiers was studied in Ref. [8] where the
effect of the signal wave on the excitation conditions of such
parasitic waves was analyzed. (A similar study of parasitic
excitation far from cutoff was carried out in Ref. [9].) In
Ref. [8], an analysis was carried out under the assumption
that electrons are guided by strong focusing magnetic fields
and, therefore, exhibit a one-dimensional (1D) motion along
the device axis.

In practice, however, it is desirable to minimize the weight
of the focusing systems, i.e., to operate in low focusing
fields. A limiting case of operation in the absence of guiding
magnetic fields was realized in the device called the pasotron
(an acronym for plasma-assisted slow-wave oscillator) which
was developed in both oscillator and amplifier configurations
[10–12]. Electron motion in such configurations where, in the
absence of guiding fields, electrons can move both axially
and transversely was studied in Ref. [13]. Later, the amplifier
operation in weak magnetic fields was analyzed in Ref. [14].
Note that transverse motion of electrons in weak focusing
fields can also affect the self-excitation of forward-wave
amplifiers even in the absence of other modes. This issue was
addressed in Ref. [15].

Below, we analyze the excitation of parasitic waves near
cutoff in amplifiers where electrons are guided by weak
magnetic fields. Our study consists of two stages. First, we
characterize the operation of a forward-wave amplifier in
weak magnetic field. This part of the study is essentially a
continuation of the work described in Ref. [14]. Next, we
analyze the self-excitation of parasitic waves in the presence
of forward waves and the effect of the signal wave on
these excitation conditions. This part can be treated as a
generalization of the 1D treatment presented in Ref. [8] on a
2D case. Our paper is organized as follows. Section II contains
the formulation of the problem. In Sec. III the results are
presented. In Sec. IV we discuss the results obtained, and
Sec. V summarizes the study.
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FIG. 1. Dispersion diagrams for the cases when the parasitic mode has the normal (a) and anomalous (b) dispersion.

II. FORMULATION

As described in the Introduction, our study will consist of
two stages. The first stage is devoted to the analysis of the
operation of a forward-wave amplifier with a weak focusing
field. In the course of the second stage we study the self-
excitation of parasitic modes near cutoff in the presence of the
forward signal wave.

A. Forward-wave amplifier with a weak focusing field

Equations describing the operation of a forward-wave
amplifier with a weak focusing magnetic field had been derived
in Ref. [14]. Here we will omit details of the derivation, but will
just mention that conservation of electron angular momentum
allows us to greatly simplify description of electron transverse
motion. In notations similar to those used in the theory
of traveling-wave tubes [16,17], the self-consistent set of
equations can be given as

∂2θ1

∂ς2
= Î0(ρ)Re{α1e

iθ1}, (1)

∂2ρ

∂ς2
= Î1(ρ)Im{α1e

iθ1} + M
ρ4

0 − ρ4

ρ3
, (2)

∂2α1

∂ς
− iδ1α1 = 1

π

∫ 2π

0
Î0(ρ)e−iθ1dθ10. (3)

Here θ1 = kz,sz − ω1t is the phase of electron axial motion
with respect to the phase of the synchronous space harmonic
of the signal wave. The evolution of this phase in the process of
electron motion is described by the nonlinear pendulum equa-
tion (1) known not only in the nonlinear theory of the traveling-
wave tubes (TWTs) [17], but also in the theory of ubitrons [18]
and free electron lasers [19]. In our case, the right-hand side
of this equation varies along the axis not only because of the
growth of the signal wave amplitude, but also due to changes in
the radial location of an electron. The latter changes depend on
the electron phase at the entrance θ10. The boundary conditions
to Eq. (1) are θ1(ς = 0) = θ10 ∈ [0,2π ),∂θ/∂ς |ς=0 = 0.

Equation (2) describes electron radial motion in the case of
the focusing force (characterized by the parameter M defined
below) of the same order as the force caused by the radial
component of the wave electric field. In the case of strong
focusing, the first term in the right-hand side of Eq. (2) can be

ignored. Then, this equation is reduced to the beam envelope
equation (5.82) of Ref. [20] with a negligible space charge
force. Correspondingly, in the case of the beam injection
parallel to the device axis, the solution of Eq. (2) will be simply
ρ = ρ0. In Eq. (2), we use the variable ρ = |k⊥s |rb, which is
the radial coordinate of electrons rb multiplied by the absolute
value of the transverse wave number of the synchronous space
harmonic of the wave. The boundary conditions to Eq. (2)
are ρ(ς = 0) = ρ0, ∂ρ/∂ς |ς=0 = 0; i.e., we assume at the
entrance a thin annular beam of electrons moving along the
axis. Equation (3) describes the wave excitation by an electron
beam in which the axial electron momentum is much larger
than the transverse one, pz � p⊥, and therefore, the role of
the transverse interaction between the wave and electrons is
not important for the wave amplification. When the wave
amplitude is not too large and the interaction length is long
enough, the radial displacement of electrons upon the action of
the radial electric wave field may lead to the beam interception
by the wall even when the radial momentum of electrons is
small.

All other parameters in Eqs. (1)–(3) are normalized to the
Pierce-like gain parameter C. In our case this parameter for a
slow-wave structure of the period d and length Lis defined by

C3 = eIb

mc3

dL2

Uβgr
κ2I 2

0 (ρ0). (4)

In Eq. (4), Ib is the beam current, U is the energy of a wave
of the unit amplitude stored in one period of the structure
(corresponding derivation is given elsewhere [21]), βgr is the
wave group velocity normalized to the speed of light, κ =
|k⊥s |/(ω1/c) is the absolute value of the imaginary transverse
wave number of the synchronous space harmonic of the signal
wave normalized to ω1/c, and I0(ρ0) is the zero-order modified
Bessel function defining the coupling of the signal wave to
an annular electron beam at the entrance to the interaction
space. Note that the condition of the Cherenkov synchronism
between electrons and a slow wave, vph = ω/kz ≈ vel, allows
one to redefine the normalized transverse wave number
given above as κ2 = (kzc/ω)2 − 1 ≈ (1/β0)2 − 1 = 1/γ 2

0 β2
0

(here γ0 = 1/

√
1 − β2

0 is the Lorentz factor). Hence, the
parameters in Eqs. (1)–(3) can be expressed as ς = C(z/L),
α = [(eAL/mc2)κI0(ρ0)]/C2, and M = [(ωLL/cγ0β0)2]/C2

(here ωL = eB0/2mc is the electron Larmor frequency
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proportional to the guiding magnetic field B0). Also, in Eq. (3)
δ1 = [(ω1 − kz1vz0)L/vz0]/C is the normalized detuning of
the Cherenkov synchronism (this detuning is identical to the
velocity parameter used by Pierce [16]). In Eqs. (1)–(3) the
Bessel functions with a “hat” are the modified Bessel functions
(of the zero and first order for the axial and radial components
of the wave electric field, respectively) normalized toI0(ρ0).
The device operation without guiding fields, i.e., Eqs. (1)–(3)
with M = 0, was analyzed in Ref. [13], while an opposite case
of infinitely strong focusing fields when electrons exhibit 1D
motion was studied in Ref. [8].

Correspondingly, the interaction efficiency

η = (γ0 − 〈γ (L)〉)/(γ0 − 1) (5)

[angular brackets in Eq. (5) denote averaging over the entrance
phases] can be rewritten in these notations as

η = (γ0 + 1)
√

γ 2
0 − 1Cη̂, (6)

where the normalized efficiency η̂ is determined by the solution
of Eqs. (1)–(3):

η̂ = 1

2π

∫ 2π

0

∂θ1

∂ς

∣∣∣∣
ςout

dθ10. (7)

B. Excitation of parasitic waves near cutoff in the presence of
forward waves

Below, we consider only the conditions for self-excitation of
the parasitic mode, i.e., assume that the amplitude of this mode
is small and, hence, the problem can be treated in the small-
signal approximation, while the electron motion is already
strongly affected by the field of the forward wave operating
in the large-signal regime. Then, using the same assumptions
as in Ref. [8] and repeating the same steps in the derivation
as those described for the case of linear (1D) electron motion
there, one can arrive at the condition for the excitation of the
parasitic wave near cutoff in the form of Eq. (25) of Ref. [8]:

G2 � |f2(ςout)|2 |E1z(�rb0)|2
|E2z(�rb0)|2

U2ω1

U1ω2

1

βgr1

∣∣∣∣h2
dβgr2

dh2

∣∣∣∣
h20

∣∣∣∣. (8)

Here, in the right-hand side the function f2(ς ) describes the
axial structure of the parasitic mode whose field is represented
as A2(t)f2(ς ). Also, we have the ratio of the beam coupling
parameters (squared modified Bessel functions of the zero
order) defined at the entrance to the interaction space, while
in Ref. [8] these parameters remained constant along the
axis. The last ratio in the right-hand side of Eq. (8), viz.,
(1/βgr1)h2(dβgr2/dh2

∣∣
h20

), depends on the type of slow-wave
structure and the points where the beam line intersects
dispersion curves of the operating and the parasitic waves.

The gain function of the parasitic mode G2 in the left-hand
side of Eq. (8) can be determined (cf. Ref. [8]) as

G2 = ∂

∂δ2

1

2π

∫ 2π

0

{∣∣∣∣
∫ ςout

0
f2Î0

[
κ2

κ1
ρ(ς,θ10)

]
ei(δ2ς+θ1)dς

∣∣∣∣
2}

× dθ10. (9)

Equation (9) takes into account the changes in the electron
coupling to the parasitic wave due to the radial motion.
The argument of this modified Bessel function contains
the ratio of normalized transverse wave numbers of two
waves with different frequencies and different axial wave
numbers. However, since both waves obey the condition of
the Cherenkov synchronism, their transverse wave numbers
are equal and, therefore, this ratio is equal to unity; so below we
will simply use Î0[ρ(ς,θ10)]. Formula (9) defines the derivative
of the spectral intensity of the EM force acting upon electrons
exhibiting a 2D motion. The important feature of our treatment
is the fact that this small-signal gain function of the parasitic
mode depends on the electron interaction with the signal
forward wave: the electron phase θ1 and the radial coordinate
ρ are defined by Eqs. (1) and (2), respectively.

III. RESULTS

A. Large-signal operation of a forward-wave amplifier with a
weak focusing field

Since the small-signal theory of a TWT operating in a weak
magnetic field was developed by J. Pierce a long time ago [16],
we present here only some results of large-signal calculations.
These results can be treated as complementing those given in
Ref. [14].

Figure 2(a) shows the wave amplification along the device
axis for the case of exact synchronism between the electron
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FIG. 2. (Color online) The wave amplitude (a) and the normalized
efficiency (b) as the functions of the normalized length.
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FIG. 3. (Color online) Electron beam propagation at different values of the focusing parameterM .

initial velocity and the signal wave phase velocity (δ1 = 0)
and for different values of the initial amplitude of the signal
wave. The dashed, solid, and dotted lines illustrate the cases
of the absence of guiding fields (M = 0), the presence of a

weak focusing field (M = 0.2), and the case of strong focusing
fields (M = 0.8), respectively. As one can see, increasing the
focusing field strength decreases the peak value of the wave
amplitude in the saturation regime.

FIG. 4. Beam interception distance as the function of the initial wave amplitude for δ1 = 0 (a) and δ1 = −1.5 (b) for several values of the
focusing parameterM .
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Figure 2(b) shows corresponding dependencies of the
normalized efficiency (7) for the cases of exact synchronism
(δ1 = 0) and the optimal detuning (δ1 = −1.5). In the latter
case, the wave grows slower in the linear regime, but then
the efficiency becomes higher in the large-signal regime. As
one can see, in the case of optimal detunings, the maximum
efficiency can be realized in weak focusing fields. The depen-
dence of this efficiency on the parameter M is studied in detail
in Ref. [14]. Two limiting cases of strong focusing fields and no
focusing fields are studied in Refs. [8] and [13], respectively.

Electron propagation along the device axis in the case of
zero focusing fields was studied in Ref. [13]. It was shown that
the location of the cross section, where the beam interception
by the structure walls starts, strongly depends on the wave
detuning δ1. In the case of exact synchronism (δ1 = 0), which
corresponds to the maximum small-signal gain in the theory of
a 1D TWT [16], the interception starts earlier than in the case
of high-efficiency operation (δ1 = −1.5). The electron beam
propagation in devices with different values of the focusing
parameter M is shown in Fig. 3 for the detuning δ1 = −1.5.
As one can see, at M = 0 [Fig. 3(a)] and M = 0.2 [Fig. 3(b)]
the interception starts practically at the same time. However, at
larger values of M [Fig. 3(c)] the interception starts much later.

Corresponding dependencies of the distance where the
beam interception starts on the initial amplitude of the signal
wave α0 are shown in Fig. 4 for several values of the
focusing parameter M for δ1 = 0 [Fig. 4(a)] and δ1 = −1.5
[Fig. 4(b)]. More information about device operation with
beam interception can be found in Ref. [14] where the
regions of operation with maximum efficiency without beam
interception in the plane of parameters “normalized detuning
δ1 versus focusing parameterM” were determined.

Figures 5 and 6 below characterize the gain and bandwidth
of the device at different values of the focusing magnetic field.
Results presented in Fig. 5 show the gain as the function
of the initial wave amplitude in the cases δ1 = 0 [Fig. 5(a)]
and δ1 = −1.5 [Fig. 5(b)] for different values of the focusing
parameterM . Calculations are done for the normalized length
of the interaction space ςout = 5 because, as follows from
Fig. 4, with this length one can avoid beam interception even
at rather large values of the initial wave amplitude. Note that
when the focusing parameter is equal to 0.2 [green, lowest line
in Fig. 5(b)], there is a small region of initial amplitudes where
the gain increases with the input power. This effect, apparently,
has a common nature with the regime of hard self-excitation in
oscillators, in which the susceptibility of an electron beam to
the electromagnetic field, first, increases with the field intensity
and only then saturates. At longer lengths, of course, the gain
can be much larger. Results presented in Fig. 5(c) illustrate
the fact that the optimal detuning for maximizing the gain
depends on the initial wave amplitude. Therefore the detuning
δ1 = −0.5 is close to optimum when the initial amplitude is
less than 0.08, but for initial amplitudes larger than 0.09 the
optimal value of the detuning is closer to − 1.0.

In Fig. 6, the gain is shown as the function of the normalized
detuning δ1 for several values of the focusing parameter M .
These results indicate that the value of M has a weak effect on
the maximum gain as well as on the bandwidth. Corresponding
values of the normalized bandwidth expressed in terms of
the range of δ1 corresponding to the deviation in the gain
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FIG. 5. (Color online) The gain of the signal wave as the function
of the initial amplitude of the wave. (c) corresponds toM = 0.2.

less than −3 dB of its maximum value are given in Fig. 6.
A comparison of Figs. 6(a) and 6(b) reveals the fact that,
as the initial wave amplitude increases, the optimal detuning
providing the maximum gain shifts towards negative δ1.

B. Self-excitation of the parasitic mode

We have started our analysis from calculations of the gain
function of the parasitic wave in the presence of the signal
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FIG. 6. (Color online) The gain of the signal wave as the function
of the detuning δ1 for the initial wave amplitude of (a) α0 = 0.01
and (b) α0 = 0.1. The bandwidth is defined at −3 dB level of the
maximum gain. The normalized interaction length is ςout = 5.

wave. Calculations were done for the case of a circuit with
strong end reflections for the parasitic mode, while the same
circuit was assumed above to be well matched for the signal
wave (no reflections). It was assumed that the beam line
intersects the dispersion curve of the parasitic wave exactly
at the π point that allows one to describe the axial structure
of the parasitic mode [the function f (ς ) in Eqs. (8) and (9)]
byf (ς ) = 1. The effect of a small departure from the π point
on the gain function of the parasitic mode was analyzed in
Ref. [8]: it leads to reduction of this gain function.

The gain function of the parasitic mode is shown in Fig. 7
for the zero detuning of the signal wave and two values of
the initial amplitude of the signal wave: α10 = 0.01 when the
signal wave operates in the small-signal regime and α10 = 0.1
when the device operates in the regime of saturation. In the case
of nonzero detunings the effect of suppression of the parasitic
mode is very similar; the curve calculated for the detuning
equal to −1.0 and initial wave amplitude equal to 0.1 is prac-
tically indistinguishable from the solid line shown in Fig. 7.

Resulting plots showing the region of self-excitation of the
parasitic mode in the plane of detunings of the Cherenkov
synchronism for two waves (δ1 and δ2) are given in the panels
in Fig. 8; these panels correspond to different values of the
focusing parameter M (M = 0, M = 0.1, and M = 20). Upper
panels correspond to the condition G2 � 1; lower panels
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FIG. 7. Gain function of the parasitic mode in the presence of the
signal wave.

correspond to the case when some methods for selective
suppression of the parasitic mode are used and therefore
this mode for being excited should have a much larger gain
function G2 � 20. Different curves in these panels correspond
to different values of the input wave amplitude. When the initial
amplitude of the signal wave is small (α0 = 0.01), the region
of parasitic self-excitation lies between two vertical black
lines. The fact that these lines are practically vertical indicates
that the presence of a small amplitude signal wave whose
amplification depends on the detuning δ1 has no effect on
the self-excitation conditions of parasitic wave—they depend
on the detuning δ2 only. However, when α0 = 0.1 (red, dash-
dotted lines) or α0 = 0.2 (green, dashed lines), the region of
self-excitation is deformed under the action of the signal wave.
When, in order to excite the parasitic wave, its gain function
should exceed 1 (upper row), the excitation region becomes
smaller in the region of detunings δ2 close to zero (right side
of all figures in the upper row), but expands in the range of
δ2 between −1.5 and −1.2 (left side of those figures). This
deformation agrees with the dependence of the gain function
of the parasitic mode shown in Fig. 7: the main peak of this
function located between δ2 equal 0 and −1.0 becomes smaller
due to suppression by the signal wave. At the same time, the
effect of the signal wave makes this gain function a little larger
in the range of negative detunings δ2 between −1.0 and −1.5.
(The latter effect is known as the nonlinear excitation [22] or
cross-excitation instability [23,24].) Note that, as follows from
the comparison of Fig. 8(e), which is the case of G2 = 1 and
M = 20, with Fig. 5(a) of Ref. [8], where the case of G2 = 1 is
shown for infinitely strong focusing, the regions of excitation
of the parasitic wave are almost identical. Hence, the focusing
fields which correspond to this value of M are sufficient
for realizing the same suppression of parasitic modes as in
infinitely strong focusing fields. Recall that, as shown in Fig. 4,
at this value of the focusing parameter, the beam interception
by the walls starts much later than at small values of M .

In an amplifier where some mode selective methods are
used, the region of self-excitation of the parasitic mode (a lower
row in Fig. 8) is even more sensitive to the effect of the signal
wave. As shown in Fig. 8, in the regime of deep saturation
(α10 = 0.2—green, dashed lines) the self-excitation of the
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FIG. 8. (Color online) Contours of self-excitation of the parasitic mode in the presence of the signal wave for M = 0 [panels (a) and (b)],
M = 0.1 [panels (c) and (d)], and M = 20 [panels (e) and (f)]. The normalized interaction length is ςout = 5. The top panels correspond to
G2 = 1, and the bottom panels to G2 = 20. Black (solid), dash-dotted (red), and dashed (green) lines correspond to initial values of the signal
wave amplitude α0 equal to 0.01, 0.1, and 0.2, respectively.

parasitic mode is impossible in a wide range of the detunings
δ1: from −1.4 to 1.2 in the absence of the focusing field
[Fig. 8(b)]; from −1.3 to 1.1 in the case of moderate focusing
field [Fig. 8(d)]; and from −1.2 to about 1.0 in very strong
focusing fields [Fig. 8(f)]. At lower signal wave amplitudes
(α10 = 0.1—red, dash-dotted lines) the region of parasitic

self-excitation shrinks as the signal amplitude increases, but it
does not disappear completely. A comparison of results shown
in Figs. 8(b), 8(d), and 8(f) reveals that the effect of suppression
is the strongest in the absence of focusing fields when
electrons exhibit the motion in both the axial and transverse
directions.
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FIG. 9. (Color online) Contours of self-excitation of the parasitic mode shifted of the π point in the presence of the signal wave for
M = 0.1. (a) and (b) correspond to G2 = 1 and G2 = 5, respectively. Black (solid), dash-dotted (red), and dashed (green) lines correspond to
initial values of the signal wave amplitude α0 equal to 0.01, 0.1, and 0.2, respectively. The normalized interaction length is ςout = 5.
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The departure from excitation at the π point decreases the
gain function of the parasitic mode. As discussed in Ref. [8],
the parasitic mode in this case is formed by two waves of the
same frequency, but with slightly different axial wave numbers
kz = π ± �kz. When such waves have large reflections from
the ends of a slow-wave structure, they form a standing-wave
pattern. Hence, the axial structure of this parasitic mode can
be described [8] by the functionf (ς ) = (1/2)(1 + cos�ς ).
Here the detuning � is proportional to the departure of the
axial wave number from the π point: �ς = 2(�kz)z. The
effect of suppression of this mode by the operating wave is
illustrated by Fig. 9 given for the case of � = π/ςout. [Note
that results shown in Fig. 4 of Ref. [8] correspond to � =
π/2ςout and � = π/ςout.] In Fig. 9, contours of self-excitation
of the parasitic mode are shown for the cases of G2 = 1 (a)
and G2 = 5 (b) in the same plane of detunings as in Fig. 8.
Again, if, for example, for being excited the parasitic mode
should have the gain function larger than 5 [Fig. 9(b)], such
mode can be excited when the signal wave amplitude is small,
but the excitation will be suppressed by a signal wave of large
amplitude (α10 = 0.2) in a certain range of the signal wave
detunings δ1 (between −0.1 and 1.2).

IV. DISCUSSION

Let us consider an example showing what follows from
the results of our treatment done in normalized parameters
for a sample device. First of all, let us estimate the magnetic
field which corresponds to M = 0.1, which is the range of
focusing parameter values yielding the maximum efficiency
[14]. Assume that an X-band device (10 GHz frequency) is
driven by a 30 kV, 5 A electron beam, a thin annular beam
at the entrance has the radius ρ0 = 2, a periodic slow-wave
structure (SWS) consists of 30 periods, the group velocity of
the signal wave is βgr = 0.5, and the ratio d3/U in Eq. (4),
which relates the energy of a wave of unit amplitude stored in
one period of the SWS to this period cubic, is on the order of
unity. Then, Eq. (4) yields C = 2.83 which corresponds to the
gain parameter adopted in Ref. [14] equal to C(14) = 0.175.
Here these two parameters are related as C = 2π (L/λ)C(14),

and the circuit length expressed in wavelengths relates to
the same length expressed in periods of a SWS as L/λ =
(β0/4)(L/d) (electron velocity normalized to the speed of
light for a given voltage is equal to 0.3426). Then, using the
definition of the focusing parameter M given after Eq. (4)
one can readily find that the value M = 0.1 corresponds
to the magnetic field close to 144 G. (A similar estimate
done in Ref. [14] for a 1.3 GHz plasma-assisted slow-wave
oscillator yielded 45 G for M = 0.2; this difference can be
attributed, in part, to the difference in operating frequencies.)
Clearly, such focusing fields can be provided by permanent
magnets.

Another comment should be made regarding the departure
of the parasitic mode from the dangerous π point. Results
presented in Ref. [8] show that the gain function of the parasitic
mode is very sensitive to the departure from the π point. To
realize this departure either a SWS should be redesigned or
the operating voltage should be slightly varied.

V. SUMMARY

The theory describing self-excitation of parasitic modes
near cutoff in forward-wave amplifiers operating in weak
focusing fields is presented. This theory allows one to analyze
the effect of the signal wave on self-excitation conditions of the
most dangerous parasitic modes near cutoff. Special emphasis
is made on the transverse motion of electrons in weak focusing
fields and corresponding limitations on the interaction length
in small- and large-signal regimes. It is shown that operation of
such amplifiers in large-signal regimes can be more stable than
in small-signal regimes due to suppression of parasitic modes
by signal waves. It is also shown that even a weak focusing
can lead to significant enhancement of the efficiency, while for
avoiding the beam interception by the circuit walls a stronger
focusing is needed.
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