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Electron acoustic shock waves in a collisional plasma
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A nonlinear analysis for the finite amplitude electron acoustic wave (EAW) is considered in a collisional
plasma. The fluid model is used to describe the two-temperature electron species in a fixed ion background.
In general, in electron-ion plasma, the presence of wave nonlinearity, dispersion, and dissipation (arising from
fluid viscosity) give rise to the Korteweg–de Vries Burgers (KdVB) equation which exhibits shock wave. In this
work, it is shown that the dissipation due to the collision between electron and ion in the presence of collective
phenomena (plasma current) can also introduce an anomalous dissipation that causes the Burgers term and
thus leads to the generation of electron acoustic shock wave. Both analytical and numerical analysis show the
formation of transient shock wave. Relevance of the results are discussed in the context of space plasma.
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I. INTRODUCTION

Study of the electron acoustic wave (EAW) retained its
interest due to its presence in laboratory experiments and
numerical simulations [1–5] as well as in space plasma
environment [6]. These waves exist in a two-temperature
electrons and stationary ion plasma [7,8]. The cold electron
fluid provides the inertia and the hot electron fluid provides
necessary restoring force whereas the massive ions serve as
an unperturbed charge neutral background for the generation
of EAW [8]. The phase velocity (vph) of the EAW lies
between thermal speed of cold (vtc = √

Tc/m) and hot electron
(vth = √

Th/m) species (vtc < vph < vth), where Th(c) is the
temperature of the hot (cold) electron and m is the electron
mass. Therefore, in these time scales ions can be considered
as a stationary charge neutral agent. The existence of EAWs
requires the density of cold population to be small compared
to the density of hot electron species. Thereby, the EAW speed
is cse = √

(Th/m)(nc0/nh0), where nh(c)0 is the equilibrium
densities of hot (cold) electron species. The linear mode
analysis reveals that the linear dispersion relation of EAWs
is given by [7,9,10] ω2 = k2c2

se(1 + 3k2λ2
Dc)/(1 + k2λ2

Dh),
where k is the wave number, λDh(c) = √

Th(c)/(4πnh(c)0e2) is
the hot (cold) electron Debye length. In the absence of the
pressure of cold electrons (compared to hot electrons) and in
the long wavelength limit (k2λ2

Dh � 1), one get ω � kcse.
In contrast to the ion acoustic wave, this EAW usually
suffers stronger damping because of the easier mobility of
the cold electrons than ions. However, this wave is less
affected by Landau damping if nh0 � nc0 and Tc � Th [8].
The physical reason is that for sufficiently low cold electron
density (compared to hot electron density), the damping of
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EAWs is strongly reduced while the cold electron component
allows the wave to propagate.

The Fast Auroral SnapshoT (FAST) observations in the
intermediate (altitude < 4000 km) auroral region, geotail, and
the polar observations at higher altitude (between ∼2RE and
8RE , RE being earth’s radius) auroral region confirm the
existence of EAWs in several parts of magnetosphere [7,11].
Most of the electrostatic high frequency noises excited in the
auroral plasma are due to the EAW [12]. In the case of strong
excitation, the EAW readily evolves into nonlinear stage and
forms several nonlinear structures like solitons, double layers,
turbulence, wave modulations (envelope solitons), shocks,
electron holes, etc. in many regions of earth’s magnetosphere:
preferentially in polar magnetosphere and in different auroral
regions [13–23]. Electron acoustic wave is also observed in a
laboratory [24]. Most of these nonlinear structures of EAWs,
observed by the several satellites, are related to the parallel
electric field fluctuations [25–27].

All the earlier investigations are in the collisionless regime.
However, collisions always take place in the plasma transport
processes both in laboratory as well as space plasma envi-
ronment (e.g., at the auroral ionosphere altitudes, collisions
generally may not be neglected [28]). Thus it is pertinent
to investigate the propagation characteristics of the nonlinear
EAW in the presence of dissipation due to collision.

In this paper, we investigate the propagation characteristics
of finite amplitude nonlinear EAWs in the presence of electron-
ion direct collisions. In electron-ion collisional plasma, the
dynamics of the finite amplitude nonlinear wave is governed
by a Korteweg–de Vries equation with a linear damping term
that arises due to the direct collision between the different
species of plasma constituents [29]. In this case, due to the
weak dissipation, the nonlinear wave retains its solitonic
structures with diminishing amplitude and increasing width
of the solitons [29]. On the other hand, due to the collision
between same species particles (viscosity), the dynamics of the
nonlinear wave is usually governed by the Korteweg–de Vries
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Burgers (KdVB) equation that exhibits shock wave [30]. In this
case, the Burgers term is responsible for the shock wave arising
due to the viscosity. However, one of our main findings in this
work is that here, we have shown that the electron-ion direct
collision (collision between different species) in the presence
of plasma current (collective phenomena) can also introduce an
anomalous dissipation that causes the Burgers term and thus is
responsible for the generation of electron acoustic shock wave.
The dynamics of the nonlinear wave is shown to be governed
by the usual KdVB equation. The shock is generated due to the
balance between the nonlinearity and the combined action of
dispersion and dissipation due to collision. The results of the
present investigation could explain shock wave generation and
the particle acceleration mechanism in space plasma [13,31].

The paper is organized in the following manner. The model
and the basic equations are discussed in Sec. II. The KdVB
equation describing the propagation of the nonlinear EAW is
derived in Sec. III. In Sec. IV, we present the analytical and
numerical solution of the derived KdVB equation. Finally, the
results are discussed in the context of space plasmas in Sec. V.

II. MODEL EQUATIONS

The plasma considered here is unbounded, homogeneous,
and unmagnetized consisting of electrons (cold and hot) and
ions. The collisions are taken between cold electron and
stationary ions. The plasma is quasineutral: nh0 + nc0 = n0.

As mentioned before, the dynamics of the EAW is mainly
related to the dynamics of the cold electrons and it is a relatively
low-frequency wave with phase velocity lying in the range,
vtc � ω/k � vth. The oscillation time scale of this EAW is
typically ∼ω−1

pc (ωpc =
√

4πnc0e2/m is the plasma frequency
of cold electron species), much larger than the oscillation
time scale of hot electron ∼ ω−1

ph (ωph =
√

4πnh0e2/m is the
plasma frequency of hot electron species) due to the fact that
for the existence of the EAW, nh0 � nc0 [8]. In this slow
time scale, hot electrons move so fast relative to these waves
that they have sufficient time to maintain the thermodynamic
equilibrium (in analogy to the ion acoustic wave in electron-ion
two component plasma [32]) and therefore with respect to this
low-frequency wave, one can assume that hot electron density
follows Boltzmann distribution [23],

nh = nh0 exp

(
eϕ

Th

)
, (1)

where ϕ is the electrostatic potential. Note that there could
arise situations where the ensemble of two groups of electrons
are not always in thermodynamic equilibrium [33].

In equation of motion for the cold electrons, we neglect
the pressure term as the cold electron temperature Tc � Th,

hot electron temperature (typically in the auroral region
Th ∼ (200–500) eV and Tc ∼ (1–10) eV [10]). We take all
dependent variables as functions of coordinate variable x and
time variable t . Generalization to other space variables is
simple and straightforward. The momentum equation for cold
electrons is given by

mnc

(
∂

∂t
+ vc

∂

∂x

)
vc = −nceE − mncνcvc, (2)

where e is the magnitude of the electronic charge, vc is the cold
electron fluid velocity, νc is the collision frequency between
cold electrons and stationary background ions (large mass),
and E is the electric field in the x direction. The continuity
equation for cold electrons is given by

∂nc

∂t
+ ∂

∂x
(ncvc) = 0. (3)

To close these equations, we need to consider equations for
the electric field E from Maxwell’s equations,

∂E

∂x
= 4πe(n0 − nc − nh),

∂E

∂t
= 4πencvc. (4)

Since most of the observations are related to the parallel
electric field fluctuations [25–27], the plasma is unmagnetized
∇ × B = 0 and therefore, in the above, the equation for ∂E/∂t

is the balance between displacement current and particle
current. Furthermore, since hot electrons are Boltzmann
distributed, they do not have directed resultant velocity to
contribute to the current and therefore, the current is carried
only by the cold electron species [34]. Using Eq. (4) in Eq. (2)
with E = −∂ϕ/∂x, we have(

∂

∂t
+ vc

∂

∂x

)
vc = e

m

∂ϕ

∂x
+ νc

4πenc

∂

∂t

(
∂ϕ

∂x

)
. (5)

To investigate the dynamics of the nonlinear EAW, it
is convenient to use dimensionless variables for the above
equations and therefore, we define x̂ = x/λDh, t̂ = ωpct , n̂c =
nc/nc0, n̂h = nh/nh0, φ̂ = eϕ/Th, and v̂ = vc/vth. The above
Eqs. (3)–(5) can be recast as in the following dimensionless
form:

∂n̂c

∂t̂
+ ∂

∂x̂
(n̂cv̂c) = 0, (6)

∂2φ̂

∂x̂2 = (eφ̂ + αn̂c − β), (7)

and (
∂

∂t̂
+ v̂c

∂

∂x̂

)
v̂c = ∂φ̂

∂x̂
+

(
νc

ωpc

)
1

n̂c

∂

∂t̂

(
∂φ̂

∂x̂

)
, (8)

where α = nc0/nh0 and β = n0/nh0. Equations (6)–(8) are the
basic equations that describe the model. Hereafter, we remove
the notation hat from the variables for simplicity and work
with normalized variables.

III. REPRESENTATION OF KORTEWEG–DE VRIES
BURGERS EQUATION

To study the nonlinear propagation characteristics of the
EAW in a collisional plasma, the reductive perturbation
technique has been employed and the following stretched
coordinate has been introduced:

ξ = √
ε (x − Mt) ; and τ = ε3/2t, (9)

where M is the phase velocity of the mode normalized by
the thermal speed vth and ε is a dimensionless parameter that
measures the order of smallness of the perturbations. The
dynamical variables nc,vc, and φ are expanded in power series
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of ε as

f = f (0) +
∞∑
i=1

εif (i), (10)

where f = nc,nh,vc,φ, f (0) = 1 for nc,nh and f (0) = 0 for
f = vc,φ. To introduce the effects of finite electron-ion
collision (under the assumption that νc/ωpc is small but finite)
and also to make the nonlinear perturbation consistent, we
introduce the following scaling which is compatible to the
physical assumption:

νc

ωpc

= ν
√

ε, (11)

where ν ∼ O(1), i.e., of the order of unity. Note that if νc/ωpc

is not so small, one can still use the same substitution but
now ν should be large. This does not present any hurdle to
the subsequent theoretical analysis [35]. The only difference,
as we shall see later, is that the numerical results will exhibit
a sharply rising shock front (monotonic shock) for large ν

[νc/ωpc ∼ O(1)] as compared to oscillatory shock for finite
ν ∼ O(1) (νc/ωpc is small).

Finally, substitution of (9) and (10) into the dynamical
equations (6)–(8) leads to the following relations in lowest
powers of ε:

φ(1) + αn(1)
c = 0, − Mv(1) = φ(1), Mn(1)

c = v(1). (12)

The equations in the above give rise to the dispersion relation

M2 = α ⇒ ω2 = k2c2
se (dimensional form). (13)

Next, the dynamical equations in the next higher powers of ε

are obtained as

∂2φ(1)

∂ξ 2 − φ(1)2

2
= φ(2) + αn(2)

c ,

∂v(1)

∂τ
+ 1

2

∂v(1)2

∂ξ
+ νM

∂2φ(1)

∂ξ 2 = ∂

∂ξ
(φ(2) + Mv(2)), (14)

∂n(1)
c

∂τ
+ ∂

∂ξ

(
v(1)n(1)

c

) = ∂

∂ξ

(
Mn(2)

c − v(2)).
Finally, elimination of the second order terms from Eq. (14)
together with relation (12) yields the following Korteweg–de
Vries Burgers (KdVB) equation for finite amplitude nonlinear
EAW for density N ≡ (3 + 2α)n(1)

c /
√

α and τ̄ ≡ ατ/2:

∂N

∂τ̄
+ N

∂N

∂ξ
+ 1√

α

∂3N

∂ξ 3 = ν
∂2N

∂ξ 2 . (15)

The dissipative term in the right-hand side of Eq. (15)
represents the Burgers’ term that is proportional to ν, arising
due to the collision between the cold electrons and ions. In the
absence of collision there is no Burgers term in Eq. (15) and
the equation reduces to the KdV equation for nonlinear EAWs.
Thus the Burgers term present here due to the electron-ion
collision brings the physics of shock solution similar to those
obtained from viscosity [30].

IV. ELECTRON ACOUSTIC SHOCK STRUCTURES

The Burgers term in Eq. (15) implies the possibility of
the existence of a shock structure. This one-dimensional
KdVB equation [Eq. (15)] is not a completely integrable
Hamiltonian system. In other words, the energy of the system
is not conserved and hence, exact analytical solution of the
one-dimensional KdVB is not possible [36]. One can obtain
an approximate solution by the perturbation analysis [36].
However, analytically, we can study the nature of the solution
of Eq. (15) by the traveling wave solution technique [37].
To apply this, we transform Eq. (15) into the traveling wave
(stationary wave) frame ζ = ξ − Uτ̄ with U , the constant
velocity in the stationary frame. We prefer to write the KdVB
equation in terms of scaled potential fluctuation ψ ≡ (3 +
2α)φ(1)/α3/2 since most of the observations are in electrostatic
potential fluctuations [25–27]. The equation of ψ(τ̄ ,ξ ) is given
by

∂ψ

∂τ̄
− ψ

∂ψ

∂ξ
+ 1√

α

∂3ψ

∂ξ 3 = ν
∂2ψ

∂ξ 2 . (16)

We integrate the transformed equation with respect to ζ subject
to the boundary conditions ψ , dψ/dζ , and d2ψ/dζ 2 → 0 as
|ζ | → ∞. This finally leads to the following equation:

d2ψ

dζ 2 = √
α

[
Uψ + 1

2
ψ2 + ν

dψ

dζ

]
. (17)

In the (ψ, dψ/dζ ) plane, Eq. (17) has two singular points
(ψ = 0, dψ/dζ = 0) and (ψ = −2U, dψ/dζ = 0). The
former equation corresponds to the equilibrium downstream
state and the latter corresponds to the upstream state. The
singular point (0,0) is always a saddle point while the nature
of the second one can be determined from the asymptotic
behavior of the solution of the form ∼exp(pζ ) [30] of the
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FIG. 1. (Color online) Evaluation of an oscillatory shock. The upstream value is U = 0.05. The plasma parameters are α = 0.2 and ν = 0.1.
At τ̄ = 0,1000,1200. An oscillatory shock is fully developed at τ̄ = 1200. Here we measure ξ in units of λDh and time in units of ω−1

pc .
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FIG. 2. (Color online) Evaluation of monotonic shock for ν = 1. The other parameters are the same as in Fig. 1.

linearized Eq. (17). This yields

p = ν
√

α

2

[
1 ±

√(
1 − 4U

ν2
√

α

)]
.

It follows from this equation that the singular point (−2U,0)
is a stable focus or stable node according as ν2 ≶ 4U/

√
α.

The stable focus always corresponds to the oscillatory nature,
whereas the stable node corresponds to the monotonic nature of
the solution. Actually, if one assumes that for ζ = ∞(ξ = ∞),
the particle was located at ψ = 0, then at ζ = −∞ (ξ = −∞)
it appears at the point ψ = −2U . Thus the solution describes
a shocklike structure. The shock is oscillatory or monotonic in
nature according to

M ≷ 1 + 1

4

(
νc

ωpc

)2

,

where M = 1 + ε(U/M) is the Mach number.
Moreover, we solve the KdVB equation (16) numerically

using the MATHEMATICA based finite difference scheme with
the following initial steplike wave form [38]:

ψ(ξ,0) =
A for ξ � 0,

A
2 (1 + cos kξ ) for 0 < ξ < π/k,

0 for ξ � π/k,

where A and k are the initial amplitude and wave number.
The value of k determines the temporal evolution for fixed
A. The wave evolves quickly (slowly) for large (small)
value of k. Equation (16) is solved within the spatial
interval ξ ∈ [−L,L] with the above initial condition and
the boundary conditions: ψ(−L,τ ) = A, ψ(L,τ ) = 0, and
ψξ (−L,τ ) = 0 = ψξ (L,τ ). To obtain adequate results for
the computation, we take L = 300, A = 2U = 0.1, and k =
π/100. The plasma parameter is α = nc0/nh0 = 0.2 (� 1,

a necessary condition for the existence of EAW) relevant to
space plasmas. To estimate the Burgers term we consider
two different cases: one is weak dissipation and the other is
strong dissipation represented by the numerical values ν = 0.1
and ν = 1, respectively. These numerical estimations confirm
the existence of both oscillatory shock for weak dissipation
and monotonic shock for strong dissipation, as shown in
Figs. 1 and 2. The comparison between the three curves in
Fig. 1 shows that the oscillatory shock is fully developed at
τ̄ = 1200. A similar conclusion holds for monotonic shock
in Fig. 2. The transition from the upstream to the far down-
stream state changes from being of oscillatory to monotonic

nature as dissipation ν increases from 0.1 to 1. The shock
strength (related to the extreme upstream and downstream
values) is given by ψ(−∞) − ψ(+∞) = −2U . Thus, the
time-dependent numerical solutions, as shown in Figs. 1 and
2, agree well with the prediction made by the preceding time-
independent analysis. The numerical solutions are obtained
for the normalized electrostatic potential fluctuation ψ . Both
figures show that ψ < 0. The relation between the potential
and cold electron density [Eq. (12)] reveals that n(1)

c > 0
implying the compressive nature of the shock.

V. DISCUSSIONS

We investigate the propagation characteristics of nonlinear
EAWs in the presence of electron-ion collision. The dynamics
of the nonlinear wave is shown to be governed by the
Korteweg–de Vries Burgers’ equation due to the collision
induced dissipation. In the present work, we have shown that
the dissipation arises due to that electron-ion collision through
the collective phenomena is responsible for the Burgers’ term.
This bring the physics of shock wave and plays the similar
role of viscosity. The numerical solution (depending on the
strength of the dissipation) confirms the existence of both
oscillatory and monotonic shock structures. The observed
shock is compressive in nature with sufficient cold electron
density enhancement in the upstream side of the shock.

The EAWs exist in polar magnetosphere [11] and the
electrostatic shock waves are observed in this region [13].
Thus the results of the present investigation could be useful
for understanding the physics of shock waves in the polar
magnetosphere. Moreover, the variation of potential resulting
from propagation of compressional shock waves is of signifi-
cant importance in the auroral plasma region. It is well known
that the charged particle acceleration and electromagnetic
waves emission occur in the auroral acceleration region [31].
The electrons accelerate both in the upward and downward
direction along the geomagnetic field in the auroral region. The
particle energization due to the conversion of wave energy into
particle kinetic energy is thought to drive particle acceleration
in the auroral region and the particle density in the acceleration
region is low [31]. The results of the present investigation
reveal that the negatively charged cold electrons with energies
less than

E = −eφ = Th

(
2(M − 1)α2

3 + 2α

)
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are reflected by the shock wave due to the negative potential.
As a consequence of this particle reflection, the electrons are
energized due to the passing of the shock wave. This initiates
the particle acceleration mechanism in the auroral region.
According to the previous investigations [14,17,18], it is

believed that double layers are the physical mechanism for the
particle acceleration in auroral plasma. Present investigations
reveal that the shock wave generated due to the collisions
between cold electron and stationary ion could also be a viable
physical mechanism for the auroral particle acceleration.
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