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Numerical simulation of the Richtmyer-Meshkov instability in initially nonuniform flows
and mixing with reshock
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Based on previous instability experiments of the double mode perturbed interface in initially nonuniform flows,
we numerically investigate the effect of the nonuniformity of flows on the evolution of instability in a nonlinear
regime after reshock by adopting two different nonuniform coefficients (δ1 = 0.6162 and δ2 = 0.4961) in the
Gaussian distribution of the initial nonuniform density. We obtain the evolution of the mixing zone width and
vortex structure of the air-SF6 interface and compare the circulation discrepancies of the nonuniform and uniform
flows before and after reshock. These results indicate that the nonuniformity of the initial flow has great effect
on the evolution of instability in the linear regime and the weak nonlinear regime prior to reshock. However, the
mixing layer has little dependence on the nonuniformity of the initial flow in the nonlinear regime after reshock;
namely, the effect of the nonuniformity is reduced significantly as the instability enters the strongly nonlinear
regime after reshock. Although the growth rate of the perturbations has a significant increase, the characteristics
of the flow like the mixing width, vorticity, and circulation are close to those of a uniform flow.
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The Richtmyer-Meshkov instability occurring at the corru-
gated interface between two fluids of different densities is of
contemporary interest in many fields of research, among which
are the inertial confinement fusion (ICF) [1], the fuel mixing
in a Scramjet [2], and the explosion of supernovas [3]. When
an incident shock proceeds into a perturbed interface, vorticity
is deposited by the baroclinic torque vorticity production term
(∇ρ × ∇p)/ρ2.

Following the first interaction between the mixing layer
and the shock, a transmitted shock proceeds into the second
heavy fluid, this shock reflects from the end wall of the shock
tube, and then it encounters the evolving layer again. After
the process called reshock, a transmitted shock passes into the
first fluid and a reflected rarefaction wave returns to the second
fluid. The rarefaction wave repeats the process of the incident
shock and again interacts with the evolving interface, produc-
ing a compression wave. The compression wave encounters the
evolving mixing layer zone after reflecting from the end wall
of the shock tube and then generates a shock returning to the
second fluid. The compressibility and nonlinearity effects in
wave-interface interactions significantly affect the growth rate,
making analytical studies of the growth rate harder to conduct.

Numerous investigations focusing on the growth rate
after reshocks have been presented. In 1960, Richtmyer [4]
originally confirmed that the growth rate of the initially small
perturbation amplitude in single-mode Richtmyer-Meshkov
instability is linearized with time. Mikaelian [5] explored the
growth rate of the interface by applying the potential flow
model to growing perturbation to combine the initial and
asymptotic stages, extending Richtmyer’s linear impulsive
theory. Zhang and Sohn [6] presented a derivation of the
nonlinear theory of Richtmyer-Meshkov (RM) instability
using a Padé approximation from early to later times. Recently,
a number of studies have investigated the effects of the initial
conditions on the growth rate. Thornber et al. [7] showed that
the effects of the initial conditions will diminish after a few
reshocks because of the change of the form of the perturbation

power spectrum. Schilling et al. [8] used the ninth-order-
weighted, essentially nonoscillatory shock-capturing method
to investigate the late-time mechanism of reshock and mixing,
presenting the density, vorticity, baroclinic vorticity produc-
tion, and simulated density Schlieren fields first to describe the
reshock process, and confirmed that the reflected rarefaction
has an important role in breaking symmetry and approaching
late-time statistical isotropy of the velocity field. Hill et al.
[9] indicated that the reflected rarefaction drives the growth
rate of the mixing layer more significantly than the reshock
by examining the turbulent kinetic energy. Ukai et al. [10]
investigated the effect of the initial conditions on the late-time
growth by studying four different initial configurations of the
interface numerically and found that growth rates after reshock
have a little dependence on the initial interface geometry.
Leinov et al. [11] showed that the growth rate after reshocks
is independent of the initial amplitude by placing the rigid end
wall at different distances from the initial contact interface in
RM instability experiments.

In the literature published, the initial flows were confined to
a uniform flow field. In 2010, we investigated the effects of the
initially nonuniform flows on the evolution of the instability
with the experiment and the numerical simulation of the double
perturbed interface in nonuniform flows [12]. In addition,
the initial density distribution of the nonuniform flows was
determined quantitatively by the combination of numerical
simulation and experimental phenomena and data, and then the
effects of nonuniform flows on the evolution of the perturbation
in RM instability was understood by recurring the whole
experiment. This work is important for the setting of initial
conditions and experimental data analysis in the experimental
study of RM instability. This paper investigates the effects
of the nonuniformity of the initial flows on the evolution of
the mixing zone in RM instability under reshocks. Numerical
simulation of RM instability for two initially nonuniform flows
under shock and reshock is performed. The quantitative analy-
sis of the mixing width, vorticity, and circulation demonstrates
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the effects of the initial conditions on the interface instability.
The evolution principle of interface instability in the strongly
nonlinear regime after reshock in the nonuniform flows is
obtained. These results are expected to shed new light on the
turbulent mixing induced by RM instability.

This paper applies our large eddy simulation code MVFT
(multiviscous flow and turbulent) to numerically simulate
the multiviscosity fluid and turbulence. The code MVFT
was used for the compressible large eddy simulation that
was developed by Institute of Fluid Physics at the China
Academy of Engineering Physics. MVFT can be used to
simulate multicomponent flows, and compute shocks, contact
discontinuities and material interfaces at high accuracy. It
splits the flow into an inviscid flow and a viscous flow by
using an operator splitting technique, where the former is
computed by employing the piecewise parabolic method with
a third-order Godunov scheme and the latter is calculated by
utilizing a central difference scheme in conjunction with a
second-order Runge-Kutta method.

MVFT applies based on the piecewise parabolic method
[13] to interpolate physical quantities, the Vreman [14] subgrid
eddy viscosity model to conduct large eddy simulation, and to
solve the Navier-Stokes equations:
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σ̄ij = μl[∂ũi/∂xj + ∂ũj /∂xi − 2/3δij (∂ũk/∂xk)] is the vis-
cous stress tensor, τij = ρ(uiuj − ūi ūj ) is the subgrid scale
(SGS) stress tensor, q̄j + Qj is the energy flux of unit time and
space, q̄j = −λl∂T̄ /∂xj , Qj = −λt∂T̄ /∂xj , λl = μlcp/pr,l ,
λt = μtcp/pr,t , D̃ = D̄l + Dt , Sc,t = μt/Dt ρ̄, μl is the fluid
viscosity, μt is the turbulent viscosity, T̄ is the temperature,
λl is the efficient heat-transfer coefficient, cp is the specific
heat of fluid, pr,l is the Prandtl number, D̄l is the diffusion
coefficient, and Dt is the turbulent diffusion coefficient. An

FIG. 1. Initial structure diagram in the shock tube.

operator splitting technique is used to decompose the physical
problems into three subprocesses in MVFT, i.e., the compu-
tations of inviscid flux, viscous flux, and heat flux. For the
inviscid flux, the three-dimensional problem can be simplified
into three one-dimensional (1D) problems by the dimen-
sion splitting technique. For each 1D problem, we apply a
two-step Lagrange-Remap algorithm to solve the equations
and a time step calculation can be divided into four steps: (i)
piecewise parabolic interpolation of physical quantities, (ii)
solving Riemann problems approximately, (iii) evolution of
Lagrange equations, and (iv) remapping the physical quan-
tities to stationary Euler meshes. The governing equations,
algorithms, numerical schemes, SGS turbulent model, etc.,
are presented in Ref. [15].

We also chose the air and SF6 gases, the same as Ref [12],
and hope the SF6 gas constitutes the initial nonuniform
flow field. The air-SF6 interface for single-mode sinusoidal
perturbation is such that the wavelength is λ= 0.05 m, the wave
number is ω = 2π/λ, the amplitude is A = 5.0 × 10−3 m, and
the perturbation function is x = A sin(ωy). The incident shock
wave Mach number is 1.25 in air. The initial structure diagram

FIG. 2. (Color online) Density contour images of the numerical
simulation result by MVFT at certain times: (a) 0.5 ms, (b) 1.0 ms,
(c) 1.5 ms, (d) 2.0 ms, (e) 2.5 ms, and (f) 3.0 ms. Left column, uniform
initial conditions; middle column, δ1 nonuniform Gaussian function;
and right column, δ2 nonuniform Gaussian function. The small arrow
denotes the direction of propagation of the shock wave fronts before
reshock of the interface.
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TABLE I. Properties of air and SF6 gases.

Kinematic Diffusion
Density Specific viscosity Prandtl coefficient in

Gases (kg/m3) heat ratio (10−6 m2/s) number air (cm2/s)

Air 1.29 1.40 15.7 0.71 0.204
SF6 5.34 1.09 2.47 0.90 0.097

is shown in Fig. 1, the initial shock front is located at x =
5.56 × 10−3 m, and the equilibrium position of perturbation is
at x = 0.016 m.

In the simulation, we give two initial nonuniform flows for
the SF6 gas. The SF6 gas densities in the lower part of shock
tube are both ρSF6 , and the densities at the upper part of the
shock tube are 0.9ρSF6 and 0.85ρSF6 , respectively. The initial
SF6 gas density of the nonuniform flows is calculated by the
Gaussian function,

ρ(y) = ρSF6e
−[(y−yc)2/δ2], (2)

where yc = 0 and the nonuniform coefficients are δ1 =
0.6162 m and δ2 = 0.4961 m. The less the nonuniform
coefficient is, the stronger the nonuniformity of the flow is.
The computational domain is [–0.02 m, 0.25 m] × [0.0 m,

FIG. 3. Vortex contour images of the numerical simulation result
by MVFT at certain times: (a) 0.5 ms, (b) 1.0 ms, (c) 1.5 ms, (d) 2.0
ms, (e) 2.5 ms, and (f) 3.0 ms. Left column, uniform initial conditions;
middle column, δ1 nonuniform Gaussian function; and right column,
δ2 nonuniform Gaussian function.

0.2 m], and it is discretized into 540 × 400 grids with a rigid
wall condition to the right boundary. Table I summarizes the
properties of air and SF6 gases in the present experiment at 1
atmospheric pressure and 20◦C.

In order to analyze the results of the initial nonuniform flows
with different Gaussian distributions, the simulation for the
uniform flow is also performed. Figures 2–4 show the density,
vortex, and volume of fraction of SF6 gas contour images of
the numerical simulation results by MVFT at a time of from
0.5 to 3.0 ms with 0.5-ms intervals. The left, middle, and right
column images in Figs. 2–4 correspond with the uniform initial
condition simulation results, the δ1 nonuniform Gaussian
function cases, and the δ2 nonuniform Gaussian function cases,
respectively. Figures 2–4 indicate qualitatively that the trans-
mitted shock and the reflected shock can conserve the planarity,
and after the interaction with shocks, the disturbed interface
can also preserve good periodicity before and after reshock.
The nonuniformity of the RM instability of the sinusoidal
interface results from the density variances of the SF6 gas in
the nonuniform flows which make the transmitted and reflected
shocks inclined. However, the simulation results show that
there is a significant difference between the uniform and
nonuniform flows before reshock, such as the results of t = 0.5,

FIG. 4. Volume of fraction of SF6 contour images of the numeri-
cal simulation result by MVFT at certain times: (a) 0.5 ms, (b) 1.0 ms,
(c) 1.5 ms, (d) 2.0 ms, (e) 2.5 ms, and (f) 3.0 ms. Left column, uniform
initial conditions; tmiddle column, δ1 nonuniform Gaussian function;
and right column, δ2 nonuniform Gaussian function.
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FIG. 5. (Color online) Mixing width history calculations of the
initial uniform and nonuniform flows in RM instability.

1.0, and 1.5 ms, but the difference decreases in evidence after
reshock, for instance, the results of t = 2.0, 2.5, and 3.0 ms.

To estimate the mixing width from the numerical simula-
tions, we calculate in each abscissa x the transversal averaged
volume fraction Ȳ (x) and define the abscissa x between Ȳ (x)
0.01 and 0.99 as the mixing zone width. Figure 5 shows the
mixing width history calculations of the initial uniform and
nonuniform flows in RM instability. Figure 5 points out that
the growth rate of the mixing width for the initial nonuniform
flows is greater than that of the uniform flow, and the less
the nonuniform coefficient is, the higher the growth rate
of the mixing width is, but the difference among the three
different flow configurations diminishes after reshock. These
results indicate that the evolution of the instability has great
dependence on the nonuniformity of the initial flow in the
linear and weakly nonlinear regime prior to reshock; however,
the effect of the nonuniformity is reduced significantly with
the instability entering the strongly nonlinear regime after
reshock. Although the growth of the perturbation is enhanced,
the amplitude of the perturbation is close to a uniform flow
compared with the previous regime.

FIG. 6. (Color online) The positive circulation, the negative
circulation, and the total circulation evolution over time of the flow
field of the two elliptic gas cylinders.

FIG. 7. (Color online) Relative error between the flow field in the
positive and negative circulations, including the comparison between
the nonuniform coefficients δ1 and δ2 with the uniform flow [panels (a)
and (b)] and the nonuniform coefficient between the δ1 and δ2 [panel
(c)]. The reshock times are 1.73, 1.70, and 1.70 ms, respectively, for
the three graphs.

This evolution process of the mixing width is a macro
description of numerical simulation to RM instability and
mixing. To interpret the phenomena, the analysis of the
underlying mechanism resulting in RM instability is required,
namely, the analysis of the effects of the vorticity deposited by
the baroclinic torque production term and the circulation in the
mixing zone induced by RM instability. In the MVFT code,
vorticity is determined by calculating the curl of the velocity
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field. This relationship for the 2D flow is

ω(x,y,t) = (∇ × V) · n = ∂v/∂x−∂u/∂y, (3)

where V is the 2D velocity vector, and u and v are the x and
y components of the velocity. Circulation is a measure of the
average vorticity over an area A,


(t) =
∫

A

ω(x,y,t)dA. (4)

Figure 6 shows the positive circulation 
+, the negative
circulation 
− and the total circulation 
 = 
+ + 
−
evolution over time of the flow field. In Fig. 6, the results
indicate that 
+ and 
− conserve the very good symmetry
for the initial uniform flow, and the total circulation 
 is 0
all the time. For the initial nonuniform flows, 
+ and 
− no
longer conserve symmetry due to the dissymmetry growth of
the perturbation. And the total circulations of the flows 
 are
nonzero. In order to further analyze the differences among
three sets of curves in Fig. 6, more detailed comparisons should
be made. The relative errors of the circulations (both positive

+ and negative 
−) between the two initial nonuniform and
the uniform flows are presented in the Figs. 7(a) and 7(b),
respectively. Figure 7(a) shows the maximum differences of

+ and 
− are 9.8% and 13.8%, respectively, before reshock;
the maximum differences reach 19.7% and 24.8% in the
transition regime; and the maximum departures are only 5.6%
and 4.8% after reshock for the flow with the nonuniform
coefficient δ1. Corresponding to Fig. 7(a), Fig. 7(b) shows the
maximum differences of 
+ and 
− are 13.6% and 24.5%,
32.7% and 55.7%, and 7.3% and 4.0% before reshock, in the
transition regime, and after reshock, respectively, for the flow
with the nonuniform coefficient δ2. These results indicate that
the differences between the nonuniform coefficients compared
to the uniform flow exist prior to reshock and in the transition
regime, and they diminish significantly after reshock with a
mean value of 5% approximately. Because the circulation in
the flow exists in the interface zone, it affects the evolution of
the mixing zone directly. In addition, the difference between

two initial nonuniform flows with nonuniform coefficients
δ1 and δ2 is also exhibited in Fig. 7(c) which shows that
the maximum differences of 
+ and 
− are 5.3% and 7.6%
before reshock, 13.9% and 18.2% in the transition regime,
and 3.6% and 3.7% after reshock, respectively.

In summary, we numerically simulate RM instability and
mixing of the air-SF6 interface with sinusoidal perturba-
tion under shocks and reshocks by constructing two initial
nonuniform density flows of the Gaussian distribution function
with different coefficients of δ1 = 0.6162 and δ2 = 0.4961.
The distinctions of the evolution and development of the
mixing zone between nonuniform cases and uniform ones
are analyzed. The results demonstrate that the evolution of
the instability has a great dependence on the nonuniformity
of the initial flow field in the linear regime and the weak
nonlinear regime prior to reshock. Nevertheless, the effect of
the nonuniformity is reduced significantly as the instability
enters the strongly nonlinear regime after reshock. Although
the growth of the perturbation is enhanced in this regime, the
amplitude of the perturbation is close to that of a uniform
flow compared with the previous regime. The reason for the
abovementioned phenomena is presented with the quantitative
analysis of the circulation. In addition, the comparisons of the
computational results between two initial nonuniform flows
are shown. This paper further demonstrates that the effects of
the initial conditions of flows on the macro scale characteristics
are weakened gradually in the later time of RM instability.
Naturally, we speculate that the flow field will completely
forget the effects of the initial conditions in the fully developed
regime, which can become turbulent.
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