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Effect of solutal Marangoni convection on motion, coarsening, and coalescence of droplets
in a monotectic system
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In this paper, we study the effect of solutal Marangoni convection (SMC) on the microstructure evolution in
a monotectic system, using the convective Cahn-Hilliard and Navier-Stokes equations with a capillary tensor
contributed by the chemical concentration gradient. At first, we simulate the spontaneous motion of two distant
droplets induced by SMC and compare our results with an analytical solution. We then compute the coalescence
of two droplets in contact and coarsening of two distant droplets considering different sizes. We further study the
influence of SMC on the evolution of phase separation processes inside the spinodal region for Fe-50 at %Sn and
Fe-40 at %Sn alloys. In the former case, we rationalize our results using Fourier spectra and in the latter case,
we compare the size distribution of droplets with the LSW theory.
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I. INTRODUCTION

Marangoni convection, either induced by thermal gradients
or arising from concentration gradients, plays an important
role in monotectic systems [1–4] and other materials [5,6] and
has been investigated, both through experiments [6–8] and
simulations [1,3,4,9,12,28]. We focus here on the Marangoni
convection induced by the chemical concentration gradients
under isothermal condition in a monotectic system, also known
as solutal Marangoni convection (SMC) or Gibbs-Marangoni
effect. Due to a region of miscibility gap in the phase diagram
of monotectics, the primary liquid is unstable and decomposes
into two liquids, indicated by l1 and l2, respectively, inside
the spinodal region [13]. The Marangoni convection in the
consequent mass transfer between these two liquids are of
significant importance [9,15–18].

In this work, by utilizing a higher-order polynomial to
describe the free energy of the liquid and applying the
convective Cahn-Hilliard and Navier-Stokes equations with
a capillary tensor contributed by the concentration gradient,
we simulate the spontaneous motion of two distant droplets
induced by SMC and compare it with analytical solutions.
When the distance between two droplets is less than twice
of the interface width, we compute the coalescence process
assisted by SMC. Additionally, the coarsening process of
two distant droplets with different sizes affected by SMC
is investigated. Furthermore, we study the phase separation
processes in Fe-50 at %Sn and Fe-40 at %Sn alloys with and
without SMC. For a different second-phase volume fraction,
bicontinuous phase separation morphologies are obtained in
Fe-50 at %Sn alloy, in contrast to droplet morphologies being
achieved in Fe-40 at %Sn alloy. The influence of SMC on the
evolution modes during the phase separation process in Fe-50
at %Sn alloy is analyzed and the size distributions of droplets
in the Fe-40 at %Sn alloy with and without SMC are studied,
in comparison with the LSW theory.
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The scheme of this paper is as follows. Sections II A
and II B depict the equations for concentration evolution and
for Marangoni convection, respectively. Sections II C and
II D describe the nondimensionalization procedure for the
simulation parameters and stability condition for the governing
equations, respectively. At the final part of Sec. II, we derive the
surface energy and interface width. Section III A deals with the
spontaneous motion of two distant droplets induced by SMC
analytically, and Sec. III B presents the simulation results.
Consequently, we compute the coarsening and coalescence
of two droplets under the influence of SMC in Sec. IV B.
Sections V A and V B comprise the phase separation including
SMC in Fe-50 at %Sn and Fe-40 at %Sn alloys, respectively.
Finally, we conclude the paper in Sec. VI.

II. MODEL DESCRIPTION

A. Concentration equation

For a binary alloy with components A and B, we follow
Ref. [19] and formulate a free energy functional, depending
on concentration c and temperature T , as

F(c,T ) =
∫

V

[f (c,T ) + εcac(c,∇c)]dV,

where V is the region occupied by the system, and f (c,T ) is the
bulk free energy density of the phases, εc is a small-length scale
parameter related to the interface thickness. The concentration
c differentiates between the liquid phases.

The gradient term for the concentration field can be written
as

ac(c,∇c) = γc|∇c|2,
with γc being a parameter related to the surface energy density.

Based on a regular solution model, the free energy density
f (c,T ) is written as

f (c,T ) = RT

vm

[c ln c + (1 − c) ln(1 − c)] +
2∑

j=1

�jc
j (1 − c)j .

(1)
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TABLE I. Parameters for simulation.

Parameters Value

ε̃c Parameter related to interface width 2
γ̃c Surface energy density 1
�x = �y Discretization space step 1
�t Discretization time step Eq. (8)
M Marangoni number 10 ∼ 1000
Re Reynolds number 0.01
�1/(RTm/vm) Interaction coefficient 0.345
�2/(RTm/vm) Interaction coefficient 4.379
L Simulation domain size 300 × 300
d0(nm) Capillary length 0.01
η(Pas) Dynamic viscosity 1 × 10−3

ρ(kg/m3) Density 1 × 104

Dl(m2/s) Diffusion coefficient 1 × 10−9

β Safety parameter 0.2
RTm/vm(J/m3) Scaling factor of free energy 1 × 109

Here, R is the ideal gas constant, vm denotes the molar volume
assumed to be constant. T and c are the temperature and the
concentration, respectively. �j are constants listed in Table I.
The free energy density is plotted with respect to concentration
and temperature in Fig. 1(a), based on which, the miscibility
gap and the spinodal line are shown in Fig. 1(b).

The mass conservation of the system requires

∂c

∂t
+ u · ∇c = −∇ · (J + ζ ),

where u is the velocity of convection, ζ is the fluctuation, and J
is the mass flux because of diffusion, which may be expressed
as

J = −Λ(c)∇μ, (2)

where μ is the chemical potential expressed as

μ = δF

δc
= ∂f (c,T )

∂c
− 2εcγc∇2c.

The mobility in Eq. (2) reads

Λ(c) = vm

RT
Dlc(1 − c),

where Dl is the diffusion coefficient in liquid.

B. Solutal Marangoni convection

We use a Lagrangian formalism to introduce the contribu-
tion of the concentration field in the Navier-Stokes equation.
From the Lagrangian energy density being written as

L = f (c,T ) + εcγc(∇c)2,

a relation can be derived as (derivation is elaborated
in Appendix A; more detail work can be found in
Ref. [20])

∂

∂xi

[
∂L

∂(∂ic)

∂c

∂xj

− Lδij

]
= 0.

From the above equation and as discussed in Refs. [3,21,22],
the stress tensor appears to be

� = 2εcγc∇c ⊗ ∇c − LI, (3)

which appears in components as

�ij = 2εcγc

∂c

∂xi

∂c

∂xj

− Lδij .

The stress tensor satisfies the conservation law

∇ · � = 0.

The contribution of capillary forces in this equation is given
by the conservative term −∇ · �, which, included in the
generalized Navier-Stokes equation, reads as

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · [(εcγc∇c · ∇c + f )I

−2εcγc∇c ⊗ ∇c] + η∇ · (∇u). (4)

Here, ρ is the density, p is the pressure, I is the unit tensor,
and η is the dynamic viscosity.

The similar formulation of the convective Cahn-Hilliard
equation can be found in Refs. [10,11].

C. Nondimensionalization and parameters

By choosing r = d0r̃ , f = RT
vm

f̃ , γc = RT
vm

d0γ̃c, t = d2
0

Dl
τ ,

εc = d0ε̃c, u = Dl

d0
ũ = u∗ũ, and p = ρu∗2p̃, the dimensionless

concentration equation is rearranged to

∂c

∂τ
+ ũ · ∇̃c = ∇̃ ·

[
c(1 − c)∇̃

(
∂f̃

∂c
− 2ε̃cγ̃c∇̃2c

)
+ ζ

]
,

(5)
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FIG. 1. (Color online) (a) The free energy of the liquid as a function of concentration and temperature, (b) the miscibility gap and spinodal
region plotted according to the free energy given by Eq. (1).
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and the Navier-Stokes equation derives as

∂ũ
∂τ

+ ũ · ∇̃ũ = −∇̃p̃ + M∇̃ · [(ε̃cγ̃c∇̃c · ∇̃c + f̃ )I

−2ε̃cγ̃c∇̃c ⊗ ∇̃c] + 1

Re
∇̃ · (∇̃ũ), (6)

where M and Re are Marangoni and Reynolds numbers,
expressed as RT d2

0/(ρD2
l vm) and ρu∗d0/η, respectively.

In addition, because our system is assumed to be an
incompressible system and the density of two liquids is
presumed to be identical, we get the equation

∇ · ũ = 0. (7)

The simulation parameters refer to Fe-Sn system and are
tabulated in Table I.

D. Stability

The stability condition for the Navier-Stokes equation can
be chosen as [24]

�t < β min

{
1

2
Re

(
1

�x2
+ 1

�y2

)−1

,
�x

|umax| ,
�y

|vmax|
}
.

(8)

Here, β is a safety parameter, Re is the Reynolds number, and
|umax| and |vmax| are the maximal velocity in the x and the y

directions, respectively.

E. Relation to sharp-interface limit

In this section, we derive the surface energy and interface
width for a planar interface. The surface energy can be written
as the total grand chemical potential excess at the interface.
This is elaborated as

σ =
∫

X

{
[f (c,T ) − μeqc] − (feq−μeqceq)+εcγc

(
∂c

∂x

)2}
dx.

(9)

The equilibrium equation is obtained by setting ∂c
∂t

= 0, which
results in

μeq = ∂feq

∂c
− 2εcγc

∂2c

∂x2
. (10)

Multiplying both sides with ∂c
∂x

and integrating from −∞ to x

yields

[f (c,T ) − μeqc] − (feq − μeqceq) = εcγc

(
∂c

∂x

)2

.

Because the free energy of the liquid is almost symmetric with
respect to 0.5 of the molar concentration of Fe, it is reasonable
to assume μeq ≈ 0 in Eq. (10); thus, combining with Eq. (9),
we get the surface energy as

σ = 2εcγc

∫
X

(
∂c

∂x

)2

dx.

Moreover, the interface width λ can be calculated by the
following equation,

λ =
∫

dx = √
γcεc

∫ c2

c1

1√
f (c,T ) − feq

dc. (11)

III. THE MOTION OF DROPLETS INDUCED BY SMC

If two equal-sized droplets of l2 phase are placed in close
proximity inside l1 matrix, they will be in equilibrium, because
they have the same curvature. However, if there is a weak solute
transport between the droplets of l2 and the continuous phase
l1, the stationary state will be broken due to the convection,
which results from the nonuniform concentration gradient
along the surface of the droplets [16].

Hereafter, we first analytically derive the velocity of motion
of the barycenter of each droplet induced by SMC, and then
we compare it with the simulation results, which is performed
by solving Eqs. (5) and (6).

A. Analytical solution

In order to get the analytical solution, we choose a bipolar
coordinate system, which is associated with the cylindrical
system by the following relations,

z = χ sin hι

cosh ι − cos ϕ
, x = χ sin ϕ

cosh ι − cos ϕ
,

where z and x are the coordinates in the cylindrical system,
ι and ϕ are the coordinates in the bipolar system. χ = sinh a,
with a being the radius of the droplet in the bipolar coordinate
system, as schematically illustrated in Fig. 2. It can be related
to the separation distance between two droplets as

a = ∣∣ cosh−1
(

1
2d + 1

)∣∣.
It is worthy to point out that we use (a) and (−a) to denote the
two droplets, and (0) represents the continuous phase, in the
following derivation.

When the Péclet number fulfills RV
D

	 1, the concentration
equation becomes a Laplace equation

∇2c = 0.

FIG. 2. (Color online) Schematic figure referred to in Ref. [25].
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FIG. 3. (Color online) Isoconcentration (left) and stream line
(right) from analytical solution under the condition: ς = 2, d/R =
0.67.

Following Ref. [16,25], its general solution can be expressed
as

c =
√

(cosh ι − cos ϕ)
n=∞∑
n=1

Gn cosh

[(
n + 1

2

)
ι

]
Pn(cos ϕ).

(12)

Here, Pn(cos ϕ) are Legendre polynomials, Gn are coefficients
determined below.

We employ the following boundary condition for mass
transfer between the dispersed and continuous phase [26],

cosh ι − cos ϕ

χ

∂c

∂ι
= ς (1 − c), ι = a,

cosh ι − cos ϕ

χ

∂c

∂ι
= ς (c − 1), ι = −a,

where ς is the Sherwood number, which denotes the ratio of
convective to diffusive mass transport. The above equations
result in the following equations for the coefficients Gn:

gn
−1Gn−1 − gn

0Gn + gn
1Gn+1 = −2

√
2χςe−(n+ 1

2 )a, (13)

where the coefficients gn
−1, gn

0 , and gn
1 are given in Appendix

B. With the methods suggested in Refs. [16,25], we can
obtain the coefficients Gn. Substituting these into Eq. (12),
the concentration can be achieved and the isoconcentration
lines are plotted in Fig. 3(a) with d/R = 0.67 (R is the radius
of droplets) and ς = 2.

The velocity can be related to the Stokes stream function as

uι = (cosh ι − cos ϕ)2

sin h2a sin hϕ

∂ψ

∂ϕ
,

(14)

uϕ = − (cosh ι − cos ϕ)2

sin h2a sin hϕ

∂ψ

∂ι
,

in which the Stokes stream function satisfies the following
equation:

�2(�2ψ) = 0, (15)

with �2 being expressed as

�2 = (cosh ι − cos ϕ)

{
∂

∂ι

[
(cosh ι − cos ϕ)

∂

∂ι

]

+ (1 − cos2 ϕ)
∂

∂ cos ϕ

[
(cosh ι − cos ϕ)

∂

∂ cos ϕ

] }
.

The solution of Eq. (15) is first proposed by Ref. [27] as

ψ(ι,ϕ) = (cosh ι − cos ϕ)−
3
2

∞∑
n=1

X(i)
n C

− 1
2

n+1(cos ϕ),

i = a, − a,0,

with

X(0)
n = I (0)

n cosh
[(

n − 1
2

)
ι
] + J (0)

n sin h
[(

n − 1
2

)
ι
]

+K (0)
n cosh

[(
n + 3

2

)
ι
] + L(0)

n sin h
[(

n + 3
2

)
ι
]
,

X(a)
n = I (a)

n e
−(n− 1

2 )ι + K (a)
n e

−(n+ 3
2 )ι

,

X(−a)
n = I (a)

n e
(n− 1

2 )ι + K (a)
n e

(n+ 3
2 )ι

.

The coefficients I (0)
n ,J (0)

n , K (0)
n ,L(0)

n ,I (a)
n ,K (a)

n , I (−a)
n , and

K (−a)
n are determined by the boundary conditions following

u(0) · n = U(a) · n, ι = ±a,
(16)

τ (0)
ιϕ − τ (a)

ιϕ = ±cosh ι − cos ϕ

sin ha

∂c

∂ϕ
, ι = ±a,

where τιϕ is the tangential component of the viscous stress
tensor, n is the unit normal to the surface of droplets in bipolar
coordinates, U(a) is the motion velocity of droplets, scaled by
(cl1 − cl2 ) ∂σ

∂c
/η and expressed as U(a) = U iz, where iz is the

unit vector along z axis.
Equation (16) generates a relation between U and the stream

function as (see Appendix C)

ψ |l=±a = −1

2
U

χ2 sin2 ϕ

(cosh ι − cos ϕ)2
. (17)

Substituting the expression of ψ and c into boundary
conditions results in the following equation:

�nbn = χ2 (ςχ tn − Uvn) , (18)

where bn = [I (0)
n ,J (0)

n ,K (0)
n ,L(0)

n ,I (a)
n ,K (a)

n ,I (−a)
n ,K (−a)

n ]T . �n,
tn, and vn are matrices with components related to n and Gn,
given in Appendix B.

Assuming quasistationary state and requiring the force on
each droplet to be zero, as proposed in Refs. [16,25], we obtain

∞∑
n=1

[
I (0)
n + K (0)

n

] = 0. (19)

Combining Eqs. (8) and (9), we can get the motion velocity
as a function of separation distance. Utilizing the velocity,
we achieve the coefficients, I (0)

n ,J (0)
n , K (0)

n ,L(0)
n ,I (a)

n ,K (a)
n , I (−a)

n ,
and K (−a)

n to obtain the Stokes stream function, as illustrated
in Fig. 3(b).

B. Simulation results

As described at the beginning of this section, we place two
equal-sized droplets (radius of 30 grid points) of l2 phase with
a distance above 20 grid cells apart, which is greater than
double the interface width. It ensures that no coalescence and
coarsening happen between them. The size of the simulation
domain is 300 × 300 grid cells. Periodic boundary conditions
are implemented for concentration and velocity field.
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FIG. 4. (Color online) (a) The convection profile of SMC under the condition: d = 40, R = 30, ς = 2, at simulation time of 2 × 105;
(b) the stream line of SMC corresponding to image (a); (c) the motion velocity of the droplet’s barycenter, varying with distance between
droplets: the solid red line is the analytical results from Sec. III A, the dashed green line shows the result from Refs. [16,36], according to Eq.
(18), and the star, circle, square symbols denote the simulation results at different Marangoni numbers.

Due to the application of solving equations based on an
explicit finite difference discretization on a rectangular mesh,
there are curvature differences along the surface of droplets
after the filling of droplets into the simulation domain. We,
therefore, use the following equation to smoothen the interface
of each droplet before starting the simulation,

cn = co + Dc∇2co,

where cn and co are the new and old concentration, respectively,
Dc is a coefficient set to be 0.05. After 20 steps of smoothening,
the relative curvature differences (grid effect) along the
droplets become less than 1% of the curvature of an ideal
circle, such that the curvature differences due to filling can be
neglected.

After the above precondition, we start simulations with a
temperature being 5 K below the monotectic temperature, to
make sure that the droplets maintain their size. However, due
to this setting, the droplets grow a little in size and after a
transient state reach the equilibrium with the matrix. After
reaching equilibrium, these two droplets move toward each
other due to SMC induced by the nonuniform concentration
distribution along the surface of the droplets.

The convection pattern and stream line of convection for
two droplets 40 grid cells apart, are shown in Figs. 4(a) and
4(b), respectively. Interestingly, several swirls appear around
the interface of each droplet. This, in fact, is caused by intro-
ducing the term εcγc(∇c · ∇cI − 2∇ ⊗ ∇c) to calculate the
convection, which results from the nonuniform concentration
distribution along the surface of droplets. As we can see from
the convection direction and the stream line, the swirls between
the interdroplet region influences the motion of the droplets
toward each other, whereas the swirls on the opposite sides of
the droplets are likely to play a negative role.

The mass transfer along the surface of each droplet and
between the two droplets are influenced by the convection
through the convective term in the concentration equation,
causing the shift in barycenter of each droplet. The velocity
as a function of initial distance between the two droplets is
shown in Fig. 4(c). The star, circle, and square symbols denote
the simulated velocities when the Marangoni number is 10,
100, and 1000, respectively. The solid red line is the analytical
result from Sec. III A and the dashed green line shows the

result from Refs. [16,36], according to the equation

V = ς

2.5(ς + 1)(ς + 2)

(
d

R

)−2

. (20)

As denoted by symbols representing the simulation results,
the effect of convection is reduced with increasing the
distance between the two droplets and becomes stronger while
increasing the Marangoni number. The former tendency is
easy to understand: The droplets with a larger distance have
a comparable effect of convection at inner- and outer-droplet
region and smaller concentration difference along the surface.
While decreasing the distance between the droplets, the effect
of inner swirls becomes stronger than outer swirls, and this,
subsequently, causes a dramatic enhancement of the velocity.
For comprehending the latter phenomenon, we can rewrite
the Marangoni number as M = (RT/vm)d2

0/(ρD2
l ), where

RT/vm is a scaling factor derived from surface tension and
capillary length. The increase of the Marangoni number from
10 to 100 or 1000 can be achieved by decreasing the diffusion
coefficient to Dl/

√
10 or one order lower, which is possible in

real alloys [23]. The trending of velocity versus initial distance
between droplets, obtained from simulation, is quite similar to
the one from Eq. (19), which is used to predict the case when
d → ∞.

However, the velocity obtained from our simulation using
the stress tensor of Eq. (3) is less than that obtained from
the analytical result. This may be due to the competition
between the interdroplets swirls and the ones at the opposite
sides of the droplets, which have not been considered in the
analytical model. Decreasing the distance of the two droplets
can strengthen the effect of convection, but due to the fact that
we have a finite interface width, which has not been considered
in the analytical model, the droplets are expected to undergo a
coalescence process with the decrease in distance.

IV. COARSENING AND COALESCENCE INFLUENCED
BY SMC

A. Transition from motion to coalescence

As described in Sec. III B, the two distant droplets move
toward each other due to the SMC induced by the nonuniform
concentration distribution along the surface. However, the
interfaces of the two droplets can overlap each other after some
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FIG. 5. (Color online) Transition from motion to coalescence:
(a) the trace of the line with value of 0.5, of each droplet, when
the initial distance between the two droplets is 30 grid cells and
M = 1000. The solid red, dashed blue, dotted pink, dot dashed black,
and dot dot dashed green lines correspond to the simulation time of
8 760, 27 760, 41 760, 52 760, and 55 160, respectively. (b) A zoom of
panel (a). (c) The barycenter of the left droplet at the simulation time
of 8 760, 27 760, 41 760, 52 760, and 55 160, represented by the red
circle, blue square, pink lozenge, black pentagon, and green triangle,
respectively.

time; thereafter, coalescence will be the dominant mechanism
between them.

As illustrated in Fig. 5(a), we show the trace of the line
with a value of 0.5, of each droplet, when the initial distance
between the two droplets is 30 grid cells. The region between
the two droplets is zoomed in Fig. 5(b). The solid red, dashed
blue, dotted pink, dot dashed black, and dot dot dashed green
lines correspond to the simulation time of 8 760, 27 760,
41 760, 52 760, and 55 160, respectively. From the figure we
can see the droplets almost maintain the morphology till the
time 52 760 during this process. However, the droplets develop
protrusions in the x direction [see Fig. 5(b)], decreasing the
distance between the droplets, which means that they go inside
the coalescing stage.

In addition, Fig. 5(c) shows the barycenter of the left droplet
at the simulation time of 8 760, 27 760, 41 760, 52 760, and
55 160, represented by the red circle, blue square, pink lozenge,
black pentagon, and green triangle, respectively.

B. Coalescence

In this section, we investigate the effect of SMC on
coalescence process. Initially, we put two droplets of l2 phase
in contact and inside the l1 matrix, with a distance being less
than double the interface width, as illustrated in Fig. 6(a). The
concentration of Fe in the droplets and in the matrix are 0.92
and 0.7132, respectively.

With time, the two droplets join to reduce the total surface
area, causing a concave region where two droplets contact
each other. This, subsequently, induces a convection along the

surface of each droplet due to the difference in concentration
gradient.

We show the coalescing morphology at the initial stage
in Fig. 6(a). The path of convection and stream line at the
time of 3 220 while M = 10 are given in Figs. 6(b) and
6(c), respectively. The isolines for pressure caused by SMC
corresponding to the state in Fig. 6(b) are plotted in Fig. 6(d).
We take the following route to obtain the pressure profile. We
first solve the Navier-Stokes equation with capillary tensor
and then substitute the results into the Eq. (7) because of the
assumption of incompressible flow, which results in a Poisson
equation for the pressure. By employing SOR iteration to solve
the Poisson equation, we thus obtain the pressure profile,
which results from convection. For a detailed mathematical
procedure, one may refer to Ref. [24].

To compare the coalescing process in the presence and
absence of SMC, we calculate the height of neck as a function
of time, as illustrated in Fig. 6(e). We include a schematic figure
inside for better understanding of where we exactly measure
the height of the neck. The dashed red, dot dashed green,
and dot dot dashed pink lines represent the cases with SMC
when M = 10, 100, and 1000, respectively. The solid blue line
depicts the process only governed by diffusion. As we can see,
the interfaces of the two droplets contact each other earlier and
the height of the neck evolves faster while considering SMC.
Moreover, the increase in Marangoni number from 10 to 1000
substantially raises the rate of coalescence.

C. Coarsening

Two droplets with different sizes and at a distance larger
than double the interface width undergo an Oswald ripening
process due to the Gibbs-Thomson effect. To capture the
influence of SMC on the coarsening process, we perform two
sets of simulation: (a) two droplets, one with diameter of 60
grid cells and the other of 30 grid cells, with a distance between
them of 30 grid cells, and (b) is the same as panel (a) except
that the diameter of the smaller droplet is 40 grid cells. During
the coarsening process, the bigger droplet grows, whereas the
smaller one shrinks and tends to vanish.

To address the effect of SMC, we plot the radius of the
bigger droplets increasing with time in two sets of simulation,
both with and without SMC, as shown in Fig. 7. We observe
that the evolution velocity of case (a) is faster than that of
case (b). This is due to the fact that in case (a) the driving
force, which is proportional to curvature difference of the two
droplets, is higher than that of case (b). Moreover, in each
case, the coarsening velocity of the two droplets is relatively
unaffected, upon incorporation of Marangoni convection,
although increasing the Marangoni number has a very weak
enhancement of the velocity. We, therefore, conclude that SMC
has no obvious effect on the mass transfer between the two
droplets and thus the coarsening process is not likely to be
influenced by SMC.

V. PHASE SEPARATION

A. Phase separation influenced by SMC in Fe-50 at %Sn alloy

In this section, phase separation influenced by Marangoni
convection in Fe-50 at %Sn alloy is investigated. The
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FIG. 6. (Color online) Coalescence of droplets assisted by SMC in monotectic systems: (a) is the initial morphology for simulation where
two droplets are 8 grid cells distance from each other; (b) shows the coalescing morphology with the path of SMC at time of 3220; (c) illustrates
the stream line that results from SMC; (d) displays the isoline of pressure caused by SMC corresponding to the state of (b); and (e) draws the
height of the neck varying with time in the cases of including SMC at different Marangoni number and not considering SMC, containing the
schematic figure for comprehending where we measure the height of the neck.

composition of the alloy is inside the region of the miscibility
gap, where the primary liquid is unstable and in the presence
of fluctuations decomposes into two liquids differing only by
concentrations. Perturbation in the form of conserved noise
is introduced to initiate spinodal decomposition. Based on
these conditions, simulations are performed under isothermal
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10
4
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3
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FIG. 7. (Color online) The radius of droplets as a function of time
during the coarsening process: the solid red (upper) and solid brown
(down) lines show cases (a) and (b) without SMC, respectively; the
dashed pink (upper) and dashed green (down) lines depict cases (a)
and (b) with SMC at M = 100, respectively; the dotted blue (upper)
and dotted orange (down) lines illustrate cases (a) and (b) with SMC
at M = 1000, respectively.

condition at a dimensionless temperature of 0.8, relating to
a dimensional value of 1 122.4 K. The temperature of the
spinodal decomposition at this composition of Fe-50 at %Sn
is 1 781 K and the monotectic temperature of the system is 1
403 K.

At the early stage of phase separation, an incipient interface
forms between the two phases and the nonuniform concen-
tration distribution along this interface results in convection.
In our simulations, the convection profile is obtained by
solving the Navier-Stokes equation [Eq. (4)] with the stress
tensor given by Eq. (3), including the contribution from the
concentration gradient.

The concentration field together with the fluid flow profile
at simulation time of 3175 is displayed in Fig. 8(b). When
the concave and convex interfaces are near each other,
i.e., a larger curvature difference, the convection becomes
stronger. The phase separation morphology without SMC
at the same time is illustrated in Fig. 8(a). A comparison
between these two morphologies reveals that SMC acceler-
ates the evolution process of phase separation in Fe-50 at
%Sn alloy. Quantitative analysis is given below by making
a comparison between the evolution modes in these two
cases.

If an isotropic system is assumed, we can make a circular
approximation to the square simulation domain and use the
circular averaged concentration, which is a function of radial
distance, to evaluate the spatial periodicity in the phase
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FIG. 8. (Color online) Phase separation morphologies in Fe-50 at %Sn alloy without SMC (a), and with SMC (b) (M = 10), both at time
t = 3175.

separation process by writing the radial distribution of the
concentration as

C(r) = 1

Nr

∑
R,|R|=r

[c(r) − c0] ,

where c(r) is the concentration at each radius r , Nr is the
number of the points with radius r .

In order to identify the individual modes, distinguished by
the wave numbers in reciprocal space, we perform a Fourier
transformation of the circular averaged concentration as

F (k) =
∫

drC(r)e−ik·r. (21)

The intensities of F (k) with respect to the wave number at
the simulation time of 425, 925, and 4 925 with and without
SMC, are shown in Figs. 9(a) and 9(b), respectively. With
time, the peak of |F (k)| shifts toward the long-wave-length
direction, which is in accordance with the analytical results
obtained by Langer [14]. However, if we compare the peak of
|F (k)| at the same time with and without SMC, we find that the
value is higher in the former case. In addition, in Fig. 9(c) we
plot the amplitude of the spectra as a function of time with and
without SMC, respectively. It shows that SMC dramatically
accelerates the evolution process.

B. Phase separation influenced by SMC in Fe-40 at %Sn alloy

In this section, we investigate the phase separation in
hypermonotectic Fe-40 at %Sn alloy influenced by SMC.
Simulation conditions are the same as that in Sec. V A,
initializing phase separation by using a conserved noise, which
is switched off after a short evolution. The temperature of the
spinodal decomposition at this composition is 1 529.9 K and
the simulations are performed at a dimensionless temperature
of 0.8 relating to a dimensional value of 1 122.4 K.

The morphologies resulting from spinodal decomposition
at simulation time of 2 475 are shown in Figs. 10(a) and 10(b),
where panel (a) refers to the case without SMC and panel

(b) shows the snapshot of phase separation coupled with
SMC. Compared with the bicontinuous microstructure resulted
from the phase-separation of Fe-50 at %Sn alloy shown in
Fig. 8, a structure composed of droplets forms at Fe-40 at
%Sn alloy. Moreover, the path of fluid flow caused by the
nonuniform concentration gradient is illustrated in Fig. 10(b).
Notably, when two droplets begin to coalesce, the fluid flow
around the contact point becomes much stronger than the other
places. This is due to the fact that the negative curvature
occurs at the neck of two droplets during the process of
coalescence, which causes a larger difference in concentration
gradient.

Figure 10(c) shows the cube of the average radius of
droplets as a function of time. The solid red and dot dashed blue
lines represent the cases with and without SMC, respectively,
whereas the dashed green and dot dot dashed pink lines
correspond to the linear fits. From the figure we conclude,
without SMC the cube of average radius changes linearly with
time during the evolution process, as predicted by Lifshitz
and Slyozov [29] and simulation (Ref. [31]). When SMC is
considered, the average radius of droplets is bigger than that not
considering SMC, and the average radius as a function of time
can be divided into three regimes: I (from simulation time 0 to
5 000), the average radius increases rapidly due to the fact that
there is a large number of droplets with short distance between
each other where SMC has a substantial accelerating effect,
and this process is in accordance with the simulation obtained
by Ref. [31], in which they got a R2 ∼ t relation; II (from
time 5 000 to 15 000), the Marangoni effect is weakened when
the number of droplets decreases and the cube of the average
radius of droplets changes linearly with time; III (after time
15 000), the number of droplets is fairly less, resulting in a
nonsmooth increase in average radius with time. In addition,
Fig. 10(d) shows the the number of droplets as a function of
time for the cases with and without SMC. From the curves in
Fig. 10(d), we can see that the number of droplets considering
SMC is less than that without SMC. The gap between the two
curves is mainly due to the initial accelerating effect of SMC
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FIG. 9. (Color online) The effect of SMC on the x-ray spectra in
Fe-50 at %Sn alloy: panels (a) and (b) show the intensity, calculated
from Eq. (21), as a function of the wave number in the cases with
and without SMC, respectively. The dashed red, dot dashed green,
and dotted blue lines are for simulation time of 425, 925, and 4 925,
respectively. The solid lines correspond to the fitting curves; panel
(c) depicts the value of the peak of the spectra as a function of time
with and without SMC, represented by the dashed purple and solid
pink lines, respectively.

on the coalescence of droplets, which corresponds to regime I
in Fig. 10(c).

Figures 10(e) and 10(f) present the size distribution of
droplets at the simulation time of 2 475 and 9 595, respectively.
In each figure, the thick solid red and thick dashed green bars
represent the case without and with SMC, respectively. The
short dashed pink and dot dashed cyan lines represent the
Gaussian fits without and with SMC, respectively. The solid
blue line is plotted to show the LSW size distribution according

to Refs. [29,30] as

g(r) = 4

9

(
r

R

)2 (
3

3 + r
R

)7/3 (
1.5

1.5 − r
R

)11/3

exp

( r
R

r
R

− 1.5

)
,

where r is the radius of droplet, and R denotes the mean radius
over all droplets.

Figure 10(e) shows that SMC causes a broader and flatter
size distribution than that obtained without SMC, which is
similar to the results obtained by Tegze et al. [9]. With time,
the size distribution of droplets in the two cases tends to
overlap each other, as shown in Fig. 10(f). A comparison
with the LSW theory shows that the size distributions are
broader with smaller amplitude for both cases. This is due to
the fact that LSW is valid for predicting the size distribution for
dilute alloys [29,30]. For high volume fraction regime, the size
distribution broadens and the amplitude decreases [32–34].

Figure 11 shows the effect of SMC on the size distribution
of droplets at equivalent statistical states (equal number of
droplets). In the figure, we compare the size distributions at
time 9 595 (without SMC) and at time 3 975 (with SMC),
which are located in the linear regime in Fig. 10(c). In both
cases the number of droplets is 70. It shows that the case
considering SMC has a broader size distribution and the
peak shifts toward the larger droplet direction. Moreover, the
analytical result considering Marangoni convection, obtained
by Ratke and Thieringer [37], is shown in the figure by the
dashed pink line. It is observed that the size distribution of the
droplets at larger and smaller size region tends to the analytical
results achieved by Ratke et al., whereas the LSW curve fits
better around the area of r/R = 1.

VI. CONCLUSION

In this work we consider the Fe-Sn monotectic system
and utilize the convective Cahn-Hilliard and Navier-Stokes
equations for solving the equations of mass transport and
phase transformation. Notably we include the capillary tensor
contributed by the concentration field in the momentum
balance equations and investigate the following four aspects:
(a) the spontaneous motion of two droplets induced by SMC,
(b) the coarsening and (c) coalescence of two droplets under
the influence of SMC, and (d) the evolution modes, size
distribution, mean radius, and number of droplets influenced
by SMC during the phase separation process.

We find that the effect of SMC on the motion of droplets
decreases dramatically with the increase in the distance
between the two droplets, when the distance is beyond double
the interface width. Once the interfaces of the two droplets
see each other, SMC has an obvious accelerating effect on
the coalescing process. Furthermore, a very weak accelerating
effect of SMC is observed during the coarsening process of
droplets, with increasing Marangoni number.

Moreover, we observe that SMC speeds up the phase
separation process in Fe-50 %Sn and Fe-40 %Sn alloys, mainly
due to the accelerating effect of SMC on coalescing process at
an early stage of evolution. In addition, SMC causes a broader
and flatter size distribution than that obtained without SMC and
also shifts the frequency toward the larger droplet direction.

Finally, we give some remarks on the results we obtained:
The Marangoni number plays a significant role during the
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FIG. 10. (Color online) Phase separation morphologies in Fe-40 at %Sn alloy without SMC (a), and with SMC (b) (M = 10); the average
radius and number of droplets varying with time are shown in (c) and (d), respectively. Bar chart diagrams (e) and (f) show the size distribution
of droplets at simulation time of 2 475 and 9 595, respectively, in comparison with the LSW theory.

motion and coalescence process of droplets in monotectic
systems. In reality, the Marangoni number is a reflection of
the competition between capillary effect and bulk diffusion.
Further, there exist two time scales in the problem: the
one of diffusion, which is large, given that we are close
to coarsening; the other is the time scale given by the
ratio of the capillary forces and the viscosity of the liquid
(a velocity scale and indirectly a time scale). The higher
the Marangoni number, the higher the body forces are in
the system, and the system is driven independently more by
the convective fluid flow caused by the capillarity rather than
diffusion. For smaller Marangoni numbers, diffusion plays

a more dominant role, and capillary forces have a reduced
effect.
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APPENDIX A

We perform a transformation to the coordinates x and field
variables c(x) as

ξμ = xμ + wμ
ν xν + aμ ≡ xμ + κμ(x), (A1)

φ(ξ ) = c(x) + δc(x), (A2)

where aμ represents a space time translation, and wμ
ν

is a Lorenz transformation and antisymmetry. ξ is the
new coordinate and φ(ξ ) is the new field variable after
transformation.

According to Noether’s theorem [35], a specific transfor-
mation of the coordinates and field variables does not change
the action

δS =
∫

�′
L[φ(ξ ),∂ ′

μφ(ξ )]d�′ −
∫

�

L[c(x),∂μc(x)]d� = 0.

(A3)

For a scalar field φ(ξ ) = c(x) and using d�′ = d�, we write∫
�′
L[φ(ξ ),φ′

,μ(ξ )]d�′ =
∫

�

L[c(x),∂ ′
μc(x)]d�. (A4)

Combining with Eq. (A1), we obtain

∂ ′
μ = ∂xν

∂ξμ
∂ν = ∂μ − (∂μκν)∂ν.

Substituting the above expression in Eq. (A4) and expanding
it, we get∫

�

L{c,[∂μ − (∂μκν)∂ν]c}d�

=
∫

�

L(c,∂μc)d� −
∫

�

∂L
∂(∂μc)

(∂μκν)∂νcd�. (A5)

The second term in Eq. (A5) can be written as

∂L
∂(∂μc)

(∂μκν)∂νc = ∂μ

[
∂L

∂(∂μc)
κν∂νc

]
− κν∂μ

[
∂L

∂(∂μc)
∂νc

]
.

(A6)

Using the Euler-Lagrange equation ∂L
∂c

= ∂μ
∂L

∂(∂μc) , the last term
can be rewritten as

∂νL = ∂μ

[
∂L

∂(∂μc)
∂νc

]
.

Thus, when we use ∂νκ
ν = 0 due to the antisymmetry of wμν ,

Eq. (A3) reads as

δS = −
∫

�

∂μ

[
∂L

∂(∂μc)
κν∂νc − κμL

]
d�.

Since the action is assumed to be invariant under the trans-
formation in Eqs. (A1) and (A2) for arbitrary volumes �, we
have a conserved current, ∂μ�μ = 0, with

�μ = ∂L
∂(∂μc)

κν∂νc − κμL.

By writing

�μ
ν = ∂L

∂(∂μc)
∂νc − δμ

ν L,

our conservation law ∂μ�μ = 0 now implies

∂μ�μ
ν = 0.

APPENDIX B

The coefficients in Eq. (13), which are used to achieve the
concentration profile in Sec. III A, are written as,

gn
−1 = n sin h

[(
n − 1

2

)
a
]
,

gn
0 = (1 + 2ς )χ cosh

[(
n + 1

2

)
a
]

+ (2n + 1) cosh asinh
[(

n + 1
2

)
a
]
,

gn
1 = (n + 1)sinh

[(
n + 3

2

)
a
]
.

The matrices, tn, vn, and �n in Eq. (16), which are used
to calculate the stream function and the moving velocity of
droplets, are listed below:

tn = [
0,0,0,0,0,0,E(a)

n ,−E(−a)
n

]T

vn = [
F (a)

n ,F (−a)
n ,F (a)

n ,F (−a)
n ,0,0,0,0

]T
,
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with

E(±a)
n = n(n + 1)

{ ±1

2χ (1 + 2ς )

[
−4

√
2e−(n+ 1

2 )a ± Gn−1sinh

(
n − 1

2

)
a ∓ Gn+1sinh

(
n + 3

2

)
a

]
+ Gn cosh

(
n + 1

2

)
a

}

F (±a)
n = 1

2
√

2
n(n + 1)

[
e−(n− 1

2 )a

n − 1
2

− e−(n+ 3
2 )a

n + 3
2

]

�n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 e(−a) e(a) 0 0

0 0 0 0 0 0 e(−a) e(a)

c(−a) s(−a) c(a) s(a) 0 0 0 0

c(−a) −s(−a) c(a) −s(a) 0 0 0 0

n−s(−a) n−c(a) n+s(a) n+c(a) n−e(−a) n+e(a) 0 0

−n−s(−a) n−c(−a) −n+s(a) n+c(a) 0 0 −n−e(−a) −n+e(a)

n2
−c(−a) n2

−s(−a) n2
+c(a) n2

+s(a) −n2
−e(−a) −n2

+e(a) 0 0

n2
−c(−a) −n2

−s(−a) n2
+c(a) −n2

+s(a) 0 0 −n2
−e(−a) −n2

+e(a)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with n− = n − 1
2 , n+ = n + 3

2 , c(±a) = cosh n±a, s(±a) = sinh n±a, e(±a) = e−n±a .

APPENDIX C

Equation (15) can be written as

uι = U iz · iι, (C1)

with

iz · iι = −(cosh ι − cosh ϕ)
∂x

∂ϕ
.

With the aid of Eq. (14), Eq. (C1) can be expressed as

∂

∂ϕ

(
ψ + 1

2
Ux2

)
= 0. (C2)

Integrating over the surface of droplets, we thus obtain Eq. (15).
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