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Bouncing of polymeric droplets on liquid interfaces
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The effect of polymers on the bouncing behavior of droplets in a highly viscous, vertically shaken silicone oil
bath was investigated in this study. Droplets of a sample liquid were carefully placed on a vibrating bath that
was maintained well below the threshold of Faraday waves. The bouncing threshold of the plate acceleration
depended on the acceleration frequency. For pure water droplets and droplets of aqueous polymer solutions, a
minimum acceleration amplitude was observed in the acceleration threshold curves as a function of frequency.
The bouncing acceleration amplitude for a droplet of a dilute aqueous polymer solution was higher than the
acceleration amplitude for a pure water droplet. Measurements of the center of mass trajectory and the droplet
deformations showed that the controlling parameter in the bouncing process was the oscillating elongational rate
of the droplet. This parameter can be directly related to the elongational viscosity of the polymeric samples. The
large elongational viscosity of the polymer solution droplets suppressed large droplet deformations, resulting in
less chaotic bouncing.
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I. INTRODUCTION

In this paper, we studied the effect of droplets of an
aqueous polymer solution on a vibrating, highly viscous
silicone oil bath. We show that the deformation mode of the
droplets plays a crucial role in the dynamics of the bouncing.
The non-Newtonian properties of the fluid were found to
affect droplet bouncing in terms of the vibration-induced
delayed coalescence.

In nature, liquid droplets commonly bounce on solid or
liquid interfaces. Raindrops can fall and bounce on soil, plant
leaves, or water surfaces. Bouncing is also an important
phenomenon in many industrial processes, such as spray
painting, pesticide deposition, or inkjet printing. The impact
of a simple liquid droplet can produce notably rich and
complex dynamics, including the occurrence (or the absence)
of splashing [1] or rebounding [2] or the formation of a
corona [3]. The physical properties of the liquid droplet,
such as the viscosity, surface tension, and density, together
with the properties of the impacted surface, can significantly
affect bouncing dynamics. To control bouncing, the effects of
hydrophobicity [2], temperature (Leidenfrost effect) [4], and
the microtexture [5] of the substrate have been previously
studied. Bouncing also depends on whether the surface is
stationary or in motion [6].

Recent scientific interest has focused on the non-Newtonian
effects of an impacting droplet and the droplet splash. Due
to their versatility, polymeric liquids play an important role
in technical and industrial applications. The addition of a
small amount of polymer can alter the splash behavior of an
impacting water droplet to the extent that almost no bouncing
occurs [7]. When a high-velocity Newtonian droplet impacts
a solid substrate, the drop is strongly deformed and breaks
into several smaller droplets. At low impact velocities, the
drop adheres to the substrate [2]. A liquid drop with an
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intermediate velocity can also bounce after impacting the
solid substrate. The initially spherical drop spreads similarly
to a pancake upon impact with the substrate and later quickly
retracts and bounces. The addition of a small amount of flexible
polymer to the Newtonian liquid can reduce the rebound of
the drop [7]. Polymers do not noticeably change the shear
viscosity of a polymeric solution but can strongly affect the
elongational viscosity of the solution through normal stresses.
Non-Newtonian effects become dominant because the flow
inside the drop is elongational. More precisely, the contact line
dynamics of the drop is governed by the competition between
the surface tension, which favors retraction, and the elastic
normal stresses, which slow retraction [8].

When a liquid droplet strikes a liquid surface at rest, the
droplet either coalesces immediately or remains on the surface
before coalescing. The delay in coalescence is caused by a thin
air film between the droplet and the bulk liquid or bath. This
film has to drain out for the drop to coalesce with the bath.
Newtonian liquid drops can partially coalesce when they are
carefully deposited on a liquid surface. Approximately 12% of
a drop merges with the bath whereas the remainder of the drop
rebounds: this process can occur several times before the drop
coalesces completely [9,10]. The effect of a non-Newtonian
fluid on coalescence was first discovered by Chen et al.
[11]. The authors investigated the coalescence of droplets of
polymer solutions on a bath at rest and found that a small
amount of polymer in the droplet could completely suppress
partial coalescence. Due to the high elongational viscosity
of the droplet solution, a connecting filament was always
present between the coalesced drop and the residual droplet;
this filament prevented further bouncing and immediately led
to complete coalescence. These authors also found that the
rest time of the droplets was slightly changed at the highest
polymer concentration.

Coalescence can be prevented simply by vertically vi-
brating the bath [12–20] in a sinusoidal motion A sin(ωt),
where A is the amplitude of the motion and ω is the angular
frequency. In this study, we consider a bath of a highly
viscous silicone oil. Consequently, the bath deformation can
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be neglected relative to the droplet deformation. The air
film between the droplet and the bath can be renewed under
certain conditions (which are discussed below). The squeezed
air film generates a vertical lubrication force that prevents
coalescence. However, coalescence is prevented only if the
acceleration amplitude Aω2 = A(2πf )2 is above a threshold
value. The threshold �b depends on the driving frequency of
the shaker f , the droplet size, and the physical properties
of the liquid. The normalized critical acceleration amplitude
�̃b = Aω2/g (where g is gravity) for bouncing depends on the
characteristics of both the droplet and the bath. In Ref. [12],
both the droplet and the bath consisted of viscous silicone
oil such that the threshold varied monotonically with the
frequency. In general, as reported in Ref. [15], a low-viscosity
drop bounces on a high-viscosity bath, and the deformation (or
at least the bath dynamics) is negligible due to the viscosity
contrast. This configuration produces a resonance process and
a minimum acceleration threshold below the acceleration of
gravity. On the contrary, for a highly viscous droplet, the
droplet deformations becomes negligible, and the minimum
in �b disappears.

The bouncing of polymer solution droplets is related to
the problem of a low-viscosity droplet bouncing on a high-
viscosity bath. The effect of the non-Newtonian liquid on
the bouncing of the droplet is as follows [15,20]: the droplet
deformation is the predominant mechanism for the bouncing
process for droplet diameters that are larger than 1 mm. The
aim of the present paper is to study the bouncing of droplets
of an aqueous polymer solution on a high-viscosity silicone
oil bath. The stresses induced by the deformation from each
bounce influence the bouncing behavior. Our study focuses on
bouncing (millimeter-sized) droplets on a vibrating surface.
We will show that polymers affect the critical threshold
for bouncing and qualitatively alter bouncing behavior, even
below the overlap concentration c∗. These effects are related
to the high elongational viscosity of a polymeric droplet
undergoing an oscillatory elongational deformation [21,22].

II. EXPERIMENTAL SETUP

A schematic of the experimental setup is shown in Fig. 1.
A flat, round beaker was mounted on top of a shaker, which
vibrated the system at a fixed frequency. The beaker was filled
to a height of 3 cm with a silicone oil [Dow Corning Fluid 200,

shaker

camera

lamp

FIG. 1. Experimental setup to investigate the coalescence and
bouncing of liquid droplets.

kinetic viscosity at room temperature ν = 1000 centistokes
(cS)]. The cannula of a syringe that was filled with the sample
liquid was placed several millimeters above the liquid surface.
The size of the droplet was controlled by varying the diameter
of the cannula.

A high-speed camera (MotionPro, IDT, Tallahassee, FL;
frame rate, 1000 frames per second; resolution, 640 × 480
pixels; shutter speed, 1/1000 s) was used to record the
motion of the droplet. The entire setup was illuminated by
a light-emitting diode lamp that was synchronized with the
camera. The deformation of the droplet on the bath surface
was measured as a function of time. Three main measurements
were performed: (i) the bouncing threshold as a function of the
frequency, (ii) trajectory analysis of a bouncing droplet, and
(iii) droplet deformation during bouncing. The acceleration
amplitude thresholds were compared for droplets containing
three sample fluids: (i) water, (ii) a surfactant solution (water
and Triton X100, at a concentration ten times the critical
micelle concentration), and (iii) an aqueous polymer solution
[water and 300 ppm polyethyleneoxide (PEO), molecular
weight 4 × 106 amu]. The effect of surface tension on the
bouncing threshold was studied using the water and surfactant
solution, while the effect of viscoelasticity on bouncing was
studied using the polymer solution.

III. RHEOLOGICAL PROPERTIES OF THE
SAMPLE LIQUIDS

The liquids used in this study were rheologically charac-
terized in both shear and elongational flows [23]. The shear
viscosity was measured using a cone-plate geometry in a
commercial rheometer (Haake MARS; cone angle, 2◦; cone
and the plate diameter, 60 mm). The shear viscosities of water
and 0.4 mM Triton in water were equal within the experimental
resolution (η = 1 ± 0.05 mPa s), and the shear viscosity of
the 300 ppm PEO solution was η = 1.3 ± 0.05 mPa s. The
polymer solution did not show any significant shear thinning.
Oscillatory shear experiments were conducted, but the elastic
modulus could not be determined because the polymer solution
was not sufficiently elastic. The overlap concentration c∗ =
600 ppm of the PEO (molecular weight 4 × 106 amu) was
determined from the intrinsic viscosity by a dilution series.

High-molecular-weight polymer solutions at low concen-
trations and correspondingly low viscosity are known to be
weakly elastic in shear flow, but the elasticity is strongly
altered by elongational flow. Polymeric tumbling in shear flow
averages out the stresses. However, the alignment of polymers
along the streamlines of an extensional flow effectively
stretches the polymers. Large elastic stresses build up until the
polymer chains are fully extended, and the relevant material
constant is the elongational viscosity ηe. For Newtonian fluids,
the elongational viscosity ηe is three times the shear viscosity:
ηe = 3η. This relationship is called Trouton’s ratio [24].
The transition from the coiled state of the polymer to the
elongated state, or the coil-stretch transition [25], occurs
only for sufficiently strong flows, i.e., if the elongational rate
ε̇c � 1

2λ−1, where λ is the relaxation time of the polymer. The
Weisenberg number is the ratio of the flow rate to the polymer
relaxation time, and the critical Weisenberg number is defined
by Wic = ε̇cλ. It is nontrivial to determine the elongational
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TABLE I. Summary of intrinsic fluid parameters: density ρ,
surface tension σ , dynamic viscosity η, and the ratio between the
viscosity and the surface tension η/σ . The experimental error is
mostly due to temperature variations.

ρ σ η η/σ

Substances (kg/m3) (mN/m) (mPa s) (s/m)

Water 1000 ± 10 73 ± 3 1 ± 0.05 0.014
300 ppm PEO in water 1000 ± 10 61 ± 2 1.3 ± 0.05 0.021
0.4 mM Triton in water 1000 ± 10 27 ± 2 1 ± 0.05 0.037

viscosity of a polymer solution; however, an instrument known
as the capillary breakup extensional rheometer (CABER) has
recently become available that can be used to determine
an apparent elongational viscosity [23,26]. In a CABER
experiment, a droplet is placed between two plates that are sub-
sequently separated. The capillary bridge between the plates
starts to thin, forming a parallel filament for polymer solutions
that thins exponentially in time. For the polymer solutions
considered in this study, the flow in this filament is almost
purely extensional [27–29]: within the Oldroyd-B model, the
characteristic time for the thinning process is simply related
to the polymeric relaxation time λ by a factor of 3. For the
300 ppm PEO solution, λc was found to be 20 ms, so that λ ≈
6.7 ms. An apparent elongational viscosity ηe can be deduced
from the polymer relaxation time. Elastic stresses continue to
grow while the filament is thinning, resulting in an exponential
growth of the elongational viscosity. Thus, the elongational
viscosity that is determined by the CABER is a time-dependent
quantity. The extensional viscosity for the polymer solution at
a maximum filament stretch of ηe ∼ 105 mPa s was found to be
almost five decades larger than the elongational viscosity of the
solvent. Of course, such large values are only to be expected
for a flow rate of at least ε̇c � 1

2λ−1 and for sufficiently large
values of the so-called Henky strain

∫
ε̇dt .

Other relevant physical parameters of the liquids, such as
the density ρ, the surface tension σ , the dynamic viscosity η,
and the ratio between viscosity and surface tension (η/σ ), are
summarized in Table I.

IV. EXPERIMENTAL RESULTS

A. Bouncing threshold

A container filled with a highly viscous liquid (Dow
Corning Fluid 200, ν = 1000 cS) was vertically vibrated
at a fixed frequency. The acceleration amplitude � = Aω2

was increased stepwise but was always maintained below the
threshold of Faraday waves [30]. A droplet of the sample liquid
was placed on the surface of the bath. If the droplet bounced
for more than 1 min, it was considered to be a bouncer. A
1 min threshold was chosen because droplets either merged
within a maximum of a few seconds or were never observed to
merge. This process was repeated at least ten times to obtain an
adequate statistical distribution. As the acceleration amplitude
was increased, new droplets were placed on the surface. The
acceleration amplitude beyond which a droplet bounced on the
bath surface was defined as the acceleration threshold �b.

The acceleration thresholds for the three different sample
liquids are shown in Fig. 2. The threshold was strongly

FIG. 2. The acceleration threshold �b for bouncing droplets
consisting of water, 300 ppm PEO in water, and 0.4 mM Triton
in water, as a function of the vibration frequency. The arrows indicate
the positions of the acceleration minima. For frequencies f > 35 Hz,
the statistical error bars are the size of the symbols shown.

frequency dependent for all three samples, and a minimum was
observed in the �b(f ) curves. Clearly, the critical acceleration
was �b < 1 for frequencies up to approximately f ∼ 100 Hz.
The largest threshold values corresponded to the polymer
solution. Two parameters can be determined from this plot
(Fig. 2): the frequency fmin corresponding to the minimum
in the �b(f ) curve and the local curvature around the
minimum. As shown in Table II, the lowest value of fmin

occurs at approximately 55 Hz for the surfactant solution.
The next largest value of the frequency minimum occurs at
approximately 65 Hz for the polymer solution and the largest
value occurs at 72 Hz for water. Non-Newtonian effects were
also manifested by a larger local curvature at fmin for the
polymer solution than for the other two fluids.

These different observations can be interpreted in the light
of the physics of droplet bouncing. The model developed in
Ref. [15] is based on (i) applying Newton’s second law to the
droplet center of mass, accounting for the forcing oscillation
and the lubrication force generated by the squeezed film
between the droplet and the bath, and (ii) the energy dissipation
due to the droplet viscosity and the power developed by the
lubrication force. In the frequency range of 0–100 Hz, a normal
oscillation mode (described by the spherical harmonic Y 0

2 )
is initiated close to the acceleration threshold (cf. Fig. 5).
In Ref. [15] three signature characteristics for low-viscosity
liquid droplets bouncing on a viscous bath are discussed:

TABLE II. �(f ) curve minimum and acceleration threshold �

at four different frequencies (25, 50, 75, and 100 Hz).

fmin �b (units of g) Curvature

Substances (Hz) 25 Hz 50 Hz 75 Hz 100 Hz 10−4

Water 72 0.60 0.52 0.29 0.72 9.3
300 ppm PEO 65 0.68 0.51 0.44 1.05 14.5
0.4 mM Triton 55 0.64 0.28 0.52 1.35 7.6
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an acceleration threshold below unity, a minimum frequency
fmin, and a steep increase of the critical acceleration curve
at high frequencies. This behavior is in contrast to that of
highly viscous droplets for which the �b(f ) curve increases
monotonically above unity [12]. In Ref. [15] it was shown that a
system consisting of a droplet and an air film squeezed between
the droplet and the bath resonated at a frequency fR that
scaled with the capillary frequency

√
(σ/M), where M was the

droplet mass. The resonance allowed the droplet to bounce at
an acceleration lower than unity and produced the minimum in
the threshold acceleration curve. Consequently, the minimum
frequency fmin could be directly related to the surface tension,
if we assume that the mass M did not differ notably from one
case to another (the droplet radii were similar in all cases).
Thus, only the surface tension determined the position of the
minima. The fmin values were in good agreement with surface
tension measurements.

The droplet viscoelasticity affects the threshold value and
the local curvature of the bouncing threshold. The theory
in Ref. [15] does not account for non-Newtonian behavior.
However, several pertinent conclusions can be drawn based on
the theoretical predictions for bouncing Newtonian droplets.
First, the increase in the threshold has been shown to be
related to an increase in the viscosity [15]. Indeed, the polymer
solution was the most viscous solution. The deformation of the
droplet induces a fluid flow inside the droplet [20]. The shear
stress may enhance the effect of the viscosity, especially at low
frequencies, because a larger reduced acceleration �̃ = Aω2/g

was needed to reach the bouncing threshold. Second, the cur-
vature close to the minimum increases with increasing droplet
viscosity [15]. This finding was not observed for the polymer
solution, where the local curvature near the minimum was
larger than for the other two samples. This behavior can only
be attributed to the non-Newtonian properties of the droplet.

Two physical considerations from Ref. [15] can explain
non-Newtonian effects on the droplet. First, the energy stored
in the droplet is used to produce periodic bouncing. More
precisely, the bouncing behavior depends on the time the
droplet spends in the oblate and in the prolate forms (only the
Y 0

2 mode is considered). Consequently, viscoelasticity must
be accounted for at this stage. Second, the internal droplet
motion significantly affects the film drainage and the resulting
lubrication force. This second consideration is debatable. The
coupling of the liquid and the air flows at the interface depends
on the surface shear viscosity [31]. The polymer (and even
the surfactant) most likely affect the surface viscosity and,
consequently, the drainage of the air film.

In the next section, only the water droplet and the polymer
solution droplet are considered. The Triton solution was used
to clearly separate surface tension effects from viscoelastic
effects. The threshold measurements allow the two effects
to be distinguished and highlight the role played by vis-
coelasticity. We now compare the behavior of Newtonian and
non-Newtonian droplets.

B. Jumping height

The bouncing droplet trajectories (see, e.g., Fig. 3) were
extracted from the images in Figs. 4 and 5. The motion of the
droplet center of mass could essentially be represented by a

FIG. 3. Periodic trajectory of a bouncing water droplet. The
example shown here corresponds to f = 50 Hz (� = 4). A triply
periodic mode is observed.

succession of parabolas. However, period doubling was also
observed at large amplitudes, such as �̃ = 4. From fitting the
experimental data, the heights smax of the successive maxima
were extracted, and the cumulative distribution of heights
was plotted (Fig. 6). The values of smax were determined by
analyzing 5 s movies recorded by the high-speed camera.
The regime of interest corresponded to significant droplet
deformation, i.e., high acceleration regimes far above the
bouncing threshold but still below the Faraday instability. The
bouncing behavior was compared for droplets of pure water
and the polymer solution. Frequencies (50, 70, and 90 Hz)
were chosen such that cases below, at, and above fmin of the
polymer solution droplets could be studied.

The cumulative distribution exhibited an S-shape, which
is typical for a Gaussian distribution. In this case, the mean
of the distribution corresponded to 50% of the cumulative
distribution, denoted by smax,50. When the bouncer maintained
a periodic motion, the standard deviation of the distribution
was expected to be notably small (see, for example, the
classical bouncing ball problem [32,33]). However, the motion
was chaotic for a large standard deviation of the distribution.

At f = 50 Hz, the maximum height of the distributions
for the water and polymer solution droplets were similar. The
indicator smax,50 was 2.5 mm for both the water and the aqueous
polymer solution droplets, which suggests that the jump height
was identical for both cases. Both types of droplets exhibited
wide smax distributions, i.e., the maxima of the trajectories

FIG. 4. Top: Example of irregular shape evolution at 90 Hz for a
water droplet. Bottom: Time sequence for a bouncing water droplet
at 90 Hz (time between two images is 1 ms).
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FIG. 5. Top: Typical sequence of shapes for a bouncing droplet
of 300 ppm PEO in water at 90 Hz. The droplet shape evolved as
follows: sphere, prolate ellipsoid, sphere, and oblate ellipsoid. (The
time between two images is 3 ms. The spatial dimensions of the
images are 4.5 × 3.6 mm2). Bottom: Sketch of the elongational flow
inside a droplet due to deformation during bouncing. A case study of
the droplet shape evolution from the oblate state (third picture in top
panel) to the spherical state (fourth picture in top panel) is shown.

were nearly uniform between 1 and 4 mm and exhibited
periodic doubling or chaotic motion. Conversely, above the
resonance frequency of f = 90 Hz, the distribution rather

sharply increased around smax,50 (0.8 mm) in both cases. This
result suggests that the droplets were locked into a periodic
mode.

Very different behaviors were observed for the smax distri-
butions for frequencies near fmin, i.e., f = 70 Hz. The 50%
value of smax was found to be approximately 2.4 mm for the
water droplets and 1 mm for the polymer solution droplets. The
distribution function increases steeply for the polymer solution
droplets, whereas the distribution for the pure water droplets
was broader, ranging between 1 and 3 mm. The droplet motion
of the pure water was chaotic. At the resonance frequency, the
non-Newtonian droplet did not bounce as high as the water
droplet. This result shows that more energy was dissipated by
the internal fluid motion of the polymer solution droplet than
for the pure water droplet. In addition, the bouncing heights
for the water droplets scaled roughly as smax,50 ∼ f 2 (data not
shown), which was not the case for the polymer solution.

C. Droplet shape

To complement the trajectory measurements, droplet
deformation was measured at the same frequencies and

(a) (c)

(b) (d)

FIG. 6. Cumulative frequency of the maximum jumping height smax for (a) water droplets and (b) polymer solution droplets at f = 50, 70,
and 90 Hz. Cumulative frequency of the elongation rate for (c) water droplets and (d) polymer solution droplets. The accelerations are �̃ = 4
at f = 50 Hz (open squares) and �̃ = 5 at f = 70 (stars) and 90 Hz (filled circles) for all plots.
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accelerations as used in the trajectory experiments. A bouncing
water droplet was once more compared to a droplet consisting
of 300 ppm PEO in water to investigate the effect of the
polymer on the stability of the droplet shape.

An initial qualitative approach to study the droplet shape
was visual examination of the bouncing droplet images. The
polymer was found to stabilize the droplets. For the PEO
solution at f = 50, 70, and 90 Hz, a highly stable droplet
was observed with only minor stretching and compression of
the drop shape (Fig. 5).

This regular cycle of elongation and compression was
sporadically perturbed during bouncing, but the polymer
stabilized the droplet such that the regular shape was recovered
within a few milliseconds. The polymer solution droplets
showed only slight shape changes. The droplets deformed
from a sphere to a stretched ellipsoid, back to a sphere, to a
compressed ellipsoid, and finally back to a sphere (see Fig. 5).
In this figure, the stabilizing effect of the polymers was most
likely caused by the high elongational viscosity of the polymer
solutions.

Elongational flow occurs in a bouncing droplet because of
the shape change sketched in Fig. 5. Only the flow for the shape
change of the droplet from a sphere to a compressed ellipsoid
is shown (see the transition from the third to the fourth image
in Fig. 5).

Conversely, water droplets bouncing at frequencies of 50,
70, and 90 Hz were highly irregular. For these droplets,
transitions between the spherical and ellipsoidal (stretched or
compressed) limit states could be temporarily observed. When
the droplets’ regular shape was perturbed, the droplet either
did not return to the limit state or returned only briefly to the
regular state before the bouncing behavior became irregular
again. Figure 4 shows a portion of the deformed droplet shapes
at a frequency of 90 Hz.

The deformation caused the droplet to move slightly
sideways during bouncing. In most cases, the motion to the
left canceled that to the right. The motion was caused by
the deformed droplet’s failure to hit the surface uniformly,
resulting in the droplet rebounding in a direction that was not
perpendicular to the horizontal.

In addition to the deformation described above, water
droplets were also observed to rotate around their own axis.
The superposition of both motions occasionally resulted in
droplet tumbling, as shown in Fig. 4. The rotation can be most
clearly observed if one follows the motion of the dark edge
on the droplet surface (top left in the first image) with respect
to time. This deformation caused the droplet to tumble during
bouncing.

The deformation was quantified by analyzing the distribu-
tion of the droplet elongation rate. When a droplet deforms in
a harmonic manner only from a spherical to an oblate shape,
the droplet elongation rate can be well approximated from
the change in shape during bouncing by using the following
equation:

ε̇ = dε

dt
= −2

∂tH (t)

H (t)
,

where H (t) is the vertical height of the polymer solution
droplet. H (t) was determined by an edge detection algorithm
from LABVIEW (National Instruments, Austin, TX). For the

more irregular water droplets, the largest diameter was always
chosen, even if the flow differed from an ideal elongational
flow in these cases. For the chaotic bouncing water droplets, the
direction of maximum elongation and compression changed
continuously, and the complete deformation could not de-
scribed by a single axis of deformation but only by a set of
harmonics. However, we are mostly interested in the effect of
the polymers on the flow and our analysis provides a good
estimate for the elongational rate of the polymeric droplets.

Considering only the length between two subsequent
images, the expression above reduces to

ε̇ = −2
H (t1) − H (t2)

(t1 − t2)H (t2)
,

where t1 and t2 are the times at which the consecutive images
are captured. The cumulative frequency of the occurrence of
the elongational rates is given in Fig. 6.

The cumulative frequency for the water droplets did
not change significantly. The distribution function increased
sharply at at f = 70 Hz (the resonance frequency), while the
distributions at f = 50 and 90 Hz were quantitatively iden-
tical. The cumulative distributions for the water and polymer
solution droplets were nearly superposed at f = 50 Hz but
different at f = 70 and 90 Hz. Conversely, the cumulative
distribution increased monotonically with the frequency for the
polymer solution droplets. The distribution of the elongation
rates reached the interval [−100,100] s−1 at f = 90 Hz.
This result may appear to contradict results showing that
polymers increased energy dissipation: however, mostly the
higher harmonics in the droplet deformations were suppressed,
meaning that the deformation became more regular in the
presence of polymers. The droplets were elongated only along
one well-defined axis, resulting in a larger droplet elongation
and less chaotic motion in this direction. Finally, we should
mention that the highest elongational rates in the oscillatory
bouncing process were ε̇ ∼ 150 s−1, which corresponds to a
Weissenberg number of Wi = ε̇λ ∼ 1.

V. CONCLUSION

This work is a comparison between the behaviors of
Newtonian and non-Newtonian bouncing droplets. We found
that droplet bouncing was affected by a small amount of
flexible polymer in the droplet, resulting in an increase in
the critical acceleration amplitude. The resonance range for
the polymer solution was also shown to be narrower than
that for water. Both features may be explained by a theory
developed for Newtonian bouncing droplets. The effect of
the non-Newtonian fluid on the bouncing mechanism was
investigated by analysis and comparison of the trajectory and
deformation of droplets during the bouncing process. The non-
Newtonian fluid was more effective than water in rendering the
bouncing process less chaotic and decreasing the jump height
of the droplets, suggesting that more energy was dissipated in
the deformation of the polymer solutions droplets than that of
the water droplets. This reduction in the chaotic behavior was
enhanced at high frequencies. Similar results were obtained
from analysis of oscillating elongational droplet deformation.
The only material property that can produce such an effect is
the high elongational viscosity of the polymer solutions. The
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elongational viscosity of our samples was determined using
a CABER setup that measures only the apparent transient
elongational viscosity at the deformation rate ε̇ defined by the
polymer relaxation time. The characteristic relaxation time of
the polymer was found to be λ = 6.7 ms. Periodic motion
was observed for bouncing droplets. The polymer relaxation
time λ can be used to define a characteristic frequency. The
critical acceleration and the regularity of the bouncing process
were already affected at the lowest frequency f = 50 Hz.
However, the cumulative jumping heights and elongational
rates were only marginally affected at a driving frequency
of f = 50 Hz, which corresponded to a Deborah number of
De = λc2πf = 2. While the Weissenberg number compares
the polymer relaxation time with the steady shear rate, the
Deborah number compares the polymer relaxation time with
the characteristic frequency of an oscillatory flow. In principle,
the strong effects of elongational flow on polymers should
depend on both the Deborah and the Weissenberg numbers, but

this dependence is difficult to separate. Numerical simulations
may help to elucidate the different dependences. However, we
find dependences on both control parameters. The differences
in the elongational rates and jumping heights were observable
only at stronger driving forces and frequencies above f =
50 Hz. Experimental methods for characterizing the response
of low-viscosity polymer solutions to an oscillatory elongation
are rare, and the oscillating droplets might present a unique
comparison with numerical methods.
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