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Recent studies have used scaling analysis to obtain simple power-law relations that accurately predict the
Prandtl (Pr) number dependency of natural-convection boundary layers subjected to both isothermal and ramped
heating conditions, when Pr > 1. The analysis used in those studies cannot be extended to Pr < 1 fluids, and it
is not clear at present whether such simple scaling relations can be developed for Pr < 1 fluids. In the present
study, the Pr > 1 scalings are shown to perform well for the start-up stage of the Pr < 1 flow, but not for the fully
developed flow. The Pr > 1 scalings are modified to provide unified Prandtl number scalings for fully developed
natural-convection boundary layers for both Pr � 1 and Pr � 1, with the unknown powers obtained empirically
via direct numerical simulation. The modified scalings are shown to perform well for the fully developed flow,
with the exception being the prediction of the inner viscous boundary-layer thickness.
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I. INTRODUCTION

Due to its fundamental and practical significance, natural-
convection boundary-layer flow is a classic problem in fluid
mechanics and heat transfer and has been the subject of
extensive experimental, analytical, and numerical studies.
Earlier studies had focused on the experimental and analytical
explorations of the steady-state behavior of the flow, partic-
ularly that in a rectangular cavity with differentially heated
sidewalls. These studies have been reviewed by Catton [1],
Ostrach [2], Gebhart et al. [3], Hyun [4], and more recently by
regular literature reviews in heat transfer (see, e.g., Goldstein
et al. [5] and Shih et al. [6,7]).

More recent studies on natural-convection boundary layers
have focused on their transient flow behavior, which is also
of fundamental interest and practical importance. Patterson
and Imberger [8] carried out a pioneering scaling analysis on
transient natural-convection boundary-layer flow in the context
of a two-dimensional rectangular cavity when its opposing
two vertical sidewalls are impulsively heated and cooled by an
equal amount. They devised a classification of the flow devel-
opment through several transient flow regimes to one of three
steady-state types of flow in terms of the Rayleigh number Ra,
the Prandtl number Pr, and the aspect ratio of the cavity, A. This
study has led to extensive subsequent investigations on many
aspects of transient natural-convection boundary layers under
various flow configurations and conditions through scaling
analysis, numerical simulations, and experiments.

Lin and Armfield [9,10] obtained scalings by following a
similar scaling analysis to that of Patterson and Imberger [8] for
the development of unsteady natural convection in rectangular
and vertical circular containers for fluids with Pr > 1. They
identified three main development stages for the flow, i.e.,
the growth of the vertical thermal boundary layers on the
sidewalls, the passage of the horizontal viscous intrusions,
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and the stratification of the flow core. They developed the
scalings for the major parameters characterizing the flow,
including the thermal boundary-layer thickness, the intrusion
thickness, the rate of stratification, the time to attain full
stratification, and the Nusselt number, in terms of Ra, Pr, and
A, which were successfully verified and quantified by their
direct numerical simulation results. Some of these scalings
were verified by the study of Lira [11], who obtained scalings
for the local Nusselt number for the laminar steady-state
natural convection surrounding an isothermal vertical cylinder.
Lin and Armfield [12] extended this scaling analysis to the
long-term behavior of cooling fluids with Pr < 1 via natural
convection in a vertical cylinder with an imposed constant
lower temperature on the vertical sidewalls. In this case, they
found that the flow is dominated by three distinct stages
of development, i.e., the boundary-layer development stage
adjacent to the sidewalls, the stratification stage, and the
cooling-down stage. The first stage can be further divided
into three substages, i.e., the start-up stage, the transitional
stage, and the boundary-layer steady-state stage. For each
development stage and substage, they obtained the scalings
for the maximum velocity in the boundary layer, thermal and
viscous boundary-layer thickness, local and overall Nusselt
number, and times for full stratification and cooling-down, in
terms of Ra, Pr, and A, which were again successfully verified
and quantified by a series of direct numerical simulations. In
the case of a rectangular container with an imposed constant
lower temperature on the vertical sidewalls, Lin, Armfield,
and Patterson [13] conducted a similar scaling analysis for the
long-term behavior of cooling fluids with Pr < 1 via natural
convection, and they obtained similar scalings for various
parameters characterizing the flow behavior, which were also
successfully verified and quantified by a series of direct numer-
ical simulations. Armfield, Patterson, and Lin [14] considered
the unsteady natural-convection boundary layer on an evenly
heated semi-infinite plate with isoflux heating in ambient fluids
with Pr > 1, and they developed scalings for the startup,
transition, and full development of the natural-convection
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boundary layer. The scalings they obtained describe the rate
of growth of the boundary-layer velocity, temperature and
thermal boundary-layer width, and the transition time and
fully developed values for both neutral and stable linearly
stratified ambient fluids. In particular, the scaling results
indicate that at full development the stratified case will have
a region of two-dimensional flow near the plate origin, while
the remainder of the flow, far from the plate region, will be
one-dimensional. This scaling analysis was later extended by
Lin, Armfield, and Patterson [15] to the same case as that of
Armfield et al. [14], but for fluids with Pr < 1. They obtained
significantly different scalings for the same parameters. They
also found that oscillations are present at the transitional stage
of the flow development. Kottke, Ferguson, and Fedorov [16]
used the scaling analysis to provide scalings predicting heat
transfer of combined convection and radiation problems in
boundary-layer flows. They considered two limiting cases:
the first one includes both forced- and natural-convection
heat transfer components in conjunction with radiative heat
transfer from a gray wall with a specified heat flux to a
surrounding nonparticipating medium, and the second case
includes forced-, natural-, and mixed-convection heat transfer
components in conjunction with radiative heat transfer from a
black wall with a specified temperature to an optically thick,
gray, nonscattering medium. For the first case, they identified
a dimensionless parameter to determine whether radiation or
convection effects dominate, and they developed the scalings to
estimate the wall temperature. For the second case, they found
that a thermal mixing parameter can be introduced to determine
the dominant mode of heat transfer, i.e., the importance of
buoyancy effects in a forced-convection flow with thermal
radiation, or, conversely, the importance of assisting flow in a
free-convection–thermal radiation problem. Alloui, Vasseur,
and Reggio [17] recently extended the scaling analysis to
the natural-convection flow in a very tall vertical enclosure
filled with nanofluids, and they obtained scalings for the
boundary-layer thickness and the Nusselt number in terms
of Ra, Pr, and the effective dynamic viscosity.

All the above-mentioned examples are for natural-
convection boundary layers on vertical walls. There have been
many studies on natural-convection boundary layers on in-
clined walls as well. For example, Saha and Khan [18] carried
out a scaling analysis for the natural-convection boundary
layer adjacent to an inclined semi-infinite plate subject to
a noninstantaneous heating in the form of an imposed wall
temperature which increases linearly up to a prescribed steady
value over a prescribed time. They found that if the period
of temperature growth on the wall is sufficiently long, the
boundary layer reaches a quasisteady mode before the growth
of the temperature is completed. In this mode, the thermal
boundary layer at first grows in thickness and then contracts
with increasing time. However, if the imposed wall tempera-
ture growth period is too short, the boundary layer develops
differently, but after the wall temperature growth is completed
the boundary layer develops as though the startup had been
instantaneous. The steady-state values of the boundary layer
for both cases are ultimately the same. They also obtained the
scalings for the maximum velocity in the boundary layer, the
time for the boundary layer to reach the quasisteady mode, and
the thermal and viscous boundary-layer thickness.

Although the analytically derived scaling relations have
been shown to correctly predict the Ra dependence under
various flow conditions and configurations, as demonstrated
by the studies mentioned above, it has also been shown that
some of the scalings do not perform satisfactorily with the Pr
variation. For example, the study by Lin et al. [13] reveals
that there is a further dependence on Pr which is not fully
captured by the standard scaling analysis as used in the above-
mentioned studies. A recent study by Capobianchi and Aziz
[19], who conducted a scaling analysis for natural-convection
flow on a vertical plate under three different heating boundary
conditions, i.e., at a constant surface temperature, a constant
surface heat flux, and heating from the plate’s back surface,
for the entire range of Pr from zero to infinity, found that
the scalings obtained for the Nusselt number are functions of
RaPr/(1 + Pr) raised to a power that depends on the boundary
condition. For example, for the constant temperature and the
constant heat flux boundary conditions, the scalings reduce
to the asymptotic orders of magnitude for very large and
very low Prandtl numbers reported in the literature, whereas
for the case of plate heating from the opposing side the
scalings are functions of RaPr/(1 + Pr) raised to a power
times a coefficient that is a function of RaPr, showing a further
dependence on Pr. By taking into account the Pr variation in
the scaling analysis, Lin et al. [20] and Patterson et al. [21]
successfully addressed this problem and developed improved
scalings for start-up and fully developed natural convection
boundary layers for Pr > 1 fluids under isothermal heating
conditions and under ramp heating conditions, respectively.
The major improvement in their studies comes from the use
of a three-region boundary-layer structure, and they found
that the majority of the scalings developed previously need
to be modified by the inclusion of a (1 + Pr−1/2) term to
account for the additional Pr dependence. This improved
approach has also been employed in a number of subsequent
studies. For example, Bednarz et al. [22] used this approach to
produce improved scalings for the transient thermomagnetic
convection boundary layers of Pr > 1 paramagnetic fluids in
microgravity conditions; Aberra, Armfield, and Behnia [23]
obtained improved scalings for steady-state natural-convection
boundary layers for Pr > 1 fluids under isoflux heating
conditions; Xu, Patterson, and Lei [24] developed improved
scalings for transient natural-convection boundary layers for
Pr > 1 fluids around a thin fin on the sidewall of a differentially
heated cavity. More recently, Saha, Brown, and Gu [25]
also employed the three-region boundary-layer structure to
obtain improved scalings for the unsteady natural-convection
boundary layer adjacent to a downward-facing inclined plate
with uniform heat flux.

As demonstrated by Lin et al. [15] and Lin and Armfield
[26], scalings which accurately predict the Pr variation have not
been derived as yet for start-up and fully developed natural-
convection boundary layers for Pr < 1 fluids, and it is not
clear at present whether such scalings exist. Nevertheless, our
numerical simulation results, as presented in this study, show
that the majority of the scalings obtained for Pr > 1 fluids can
be modified to predict the Pr variation for Pr < 1 fluids, and
unified Prandtl number scalings can be established for start-
up and fully developed natural-convection boundary layers
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for both Pr � 1 and Pr � 1 fluids under isothermal heating
conditions.

The remainder of this paper is organized as follows. The
governing equations and the unified Prandtl number scalings
that accommodate the Pr variation for both Pr � 1 and Pr � 1
fluids under isothermal heating conditions are introduced in
Sec. II. These scalings are validated and analyzed with a series
of direct numerical simulation results with Pr varying in the
range of 0.01 � Pr � 100 in Sec. III. Finally, conclusions are
made in Sec. IV.

II. GOVERNING EQUATIONS AND UNIFIED
PRANDTL NUMBER SCALINGS

A. Governing equations

Under consideration is the transient natural-convection
boundary layer resulting from impulsively heating a quiescent
isothermal Newtonian fluid by imposing a fixed higher
temperature, Tw, on a vertical plate of height H . The fluid
is initially at rest and at a uniform temperature T0 (T0 < Tw).
It is assumed that the flow is laminar. Both Pr � 1 and Pr � 1
fluids are considered.

The governing equations of motion are the Navier-Stokes
equations with the Boussinesq approximation for buoyancy,
which together with the temperature equation can be written
in the following two-dimensional form:

∂U

∂X
+ ∂V

∂Y
= 0, (1)

∂U

∂t
+ ∂(UU )

∂X
+ ∂(V U )

∂Y
= − 1

ρ

∂P

∂X
+ ν

(
∂2U

∂X2
+ ∂2U

∂Y 2

)
,

(2)

∂V

∂t
+ ∂(UV )

∂X
+ ∂(V V )

∂Y
= − 1

ρ

∂P

∂Y
+ ν

(
∂2V

∂X2
+ ∂2V

∂Y 2

)

+ gβ(T − T0), (3)

∂T

∂t
+ ∂(UT )

∂X
+ ∂(V T )

∂Y
= κ

(
∂2T

∂X2
+ ∂2T

∂Y 2

)
, (4)

where U and V are the horizontal (X direction) and vertical (Y
direction) velocity components, t is time, P is pressure, T is
temperature, g is the acceleration due to gravity, and β, ν, and κ

are the thermal expansion coefficient, kinematic viscosity, and
thermal diffusivity of fluid at the temperature T0, respectively.
Gravity acts in the negative Y direction.

For the transient natural-convection boundary-layer flow
considered here, the major governing parameters are the
Rayleigh number Ra and the Prandtl number Pr, defined as

Ra = gβ�T H 3

νκ
, Pr = ν

κ
, (5)

where �T = Tw − T0.
The governing equations can be made dimensionless as

follows:

∂u

∂x
+ ∂v

∂y
= 0, (6)

∂u

∂τ
+ ∂(uu)

∂x
+ ∂(vu)

∂y
= −∂p

∂x
+ Pr

Ra1/2

(
∂2u

∂x2
+ ∂2u

∂y2

)
,

(7)

∂v

∂τ
+ ∂(uv)

∂x
+ ∂(vv)

∂y
= −∂p

∂y
+ Pr

Ra1/2

(
∂2v

∂x2
+ ∂2v

∂y2

)

+Prθ, (8)

∂θ

∂τ
+ ∂(uθ )

∂x
+ ∂(vθ )

∂y
= 1

Ra1/2

(
∂2θ

∂x2
+ ∂2θ

∂y2

)
, (9)

where x, y, u, v, τ , p, and θ are, respectively, the dimensionless
forms of X, Y , U , V , t , P , and T , which are made
dimensionless by their respective characteristic scales, i.e.,

x = X

H
, y = Y

H
, u = U

V0
, v = V

V0
, τ = t

(H/V0)
,

p = P

ρV 2
0

, θ = T − T0

Tw − T0
, (10)

where V0 = κRa1/2/H is the characteristic velocity scale for
natural-convection boundary layers (see, e.g., [8,13]). The
origin of the coordinate system is located at the leading edge
of the heated plate, at x = 0, y = 0.

B. Unified Prandtl number scalings

As demonstrated in [20,21], a three-region structure as
shown in Fig. 1 can be depicted for the natural-convection
boundary layers of Pr > 1 fluids. The dominant parame-
ters characterizing the flow behavior of a transient natural-
convection boundary layer are the thickness of the thermal
boundary layer, �T , the thickness of the the outer viscous
boundary layer, �v , the thickness of the inner viscous
boundary layer, �vi , and the maximum vertical velocity within

Temperature profile
Vertical velocity profile

I II III

I II III
Δvi

TΔ vΔ

(a)

(b)

Vm

FIG. 1. Sketch of the horizontal profiles of temperature and
vertical velocity at a specific height within a natural-convection
boundary layer which depict a three-region structure: (a) at the
start-up stage and (b) at the fully developed stage.

066312-3



WENXIAN LIN AND S. W. ARMFIELD PHYSICAL REVIEW E 86, 066312 (2012)

the viscous boundary layer, Vm. In this study, the dimensionless
forms of these parameters are used, that is,

δT = �T

H
, δv = �v

H
, δvi = �vi

H
, vm = Vm

V0
. (11)

For unsteady natural-convection boundary layers with
Pr > 1 fluids under isothermal heating conditions, the follow-
ing was shown [20]:

During the transient, start-up stage,

δT ∼ τ 1/2

Ra1/4 , (12)

δv ∼ Pr1/2τ 1/2

Ra1/4 , (13)

δvi ∼ 1

(1 + Pr−1/2)

τ 1/2

Ra1/4 , (14)

vm ∼ τ

(1 + Pr−1/2)2
, (15)

where δT , δv , δvi , and vm are the dimensionless ther-
mal boundary-layer thickness, the outer and inner viscous
boundary-layer thickness, and the maximum vertical velocity
within the viscous boundary layer at the start-up stage,
respectively.

At the fully developed stage,

τs ∼ (1 + Pr−1/2)y1/2, (16)

δT,s ∼ τ
1/2
s

Ra1/4 ∼ y1/4

Ra1/4 (1 + Pr−1/2)1/2, (17)

δv,s ∼ Pr1/2τ
1/2
s

Ra1/4 ∼ y1/4

Ra1/4 Pr1/2(1 + Pr−1/2)1/2, (18)

δvi,s ∼ 1

(1 + Pr−1/2)

τ
1/2
s

Ra1/4 ∼ y1/4

Ra1/4

1

(1 + Pr−1/2)1/2
, (19)

vm,s ∼ τs

(1 + Pr−1/2)2
∼ 1

(1 + Pr−1/2)
y1/2, (20)

where δT,s , δv,s , δvi,s , and vm,s are the dimensionless ther-
mal boundary-layer thickness, the outer and inner viscous
boundary-layer thickness, and the maximum vertical velocity
within the boundary layer at the fully developed stage, and τs

is the dimensionless time scale for the boundary layer to attain
the fully developed stage, respectively.

From the above scalings at the fully developed stage, it
is seen that all parameters depend on Pr in the form of (1 +
Pr−1/2)a , where the index a is a constant and is different for
different parameters (for τs , a = 1; for δT,s and δv,s , a = 1

2 ;
for δvi,s , a = − 1

2 ; and for vm,s , a = −1).
We assume that for both Pr � 1 and Pr � 1 fluids, the

unified Prandtl number scalings for these parameters at the
fully developed stage are also in the form of (1 + Pr−1/2)a , that
is, for the thermal boundary-layer thickness and the time scale
for the development of the thermal boundary-layer thickness
to attain the fully developed stage,

τT,s ∼ (1 + Pr−1/2)a1y1/2, (21)

δT,s ∼ τ
1/2
T ,s

Ra1/4 ∼ y1/4

Ra1/4 (1 + Pr1/2)a1/2; (22)

for the inner viscous boundary-layer thickness and the time
scale for the development of the inner viscous boundary-layer
thickness to attain the fully developed stage,

τvi,s ∼ (1 + Pr−1/2)a2y1/2, (23)

δvi,s ∼ 1

(1 + Pr−1/2)

τ
1/2
vi,s

Ra1/4 ∼ y1/4

Ra1/4 (1 + Pr−1/2)a2/2−1; (24)

for the maximum vertical velocity and the time scale for the
development of the maximum vertical velocity to attain the
fully developed stage,

τm,s ∼ (1 + Pr−1/2)a3y1/2, (25)

vm,s ∼ τm,s

(1 + Pr−1/2)2
∼ y1/2(1 + Pr−1/2)a3−2. (26)

In the above equations, a1, a2, and a3 are constants whose
values will be determined by the subsequent numerical
simulation results.

As will be shown below, the numerical results demonstrate
that the scalings for both Pr � 1 and Pr � 1 fluids at the start-
up stage are the same as those for Pr > 1 fluids. The numerical
results have also demonstrated that no unified Prandtl number
scaling can be established for the outer viscous boundary-layer
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0.008
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τ
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τ

T,s

vi,s

m,s

δvi,s

vm,s

δT

δvi

vm

(a)

(b)

(c)

FIG. 2. Typical time series of (a) δT , the dimensionless thermal
boundary-layer thickness; (b) δvi , the dimensionless inner viscous
boundary-layer thickness; and (c) vm, the dimensionless maximum
vertical velocity within the viscous boundary layer, all at the height
of y = 0.5 with Pr = 0.01. δT,s is the dimensionless fully developed
thermal boundary-layer thickness and τT,s is the dimensionless time
for full development of δT ; δvi,s is the dimensionless fully developed
inner viscous boundary-layer thickness and τvi,s is the dimensionless
time for full development of δvi ; vm,s is the dimensionless fully
developed maximum vertical velocity within the viscous boundary
layer and τm,s is the dimensionless time for full development of vm,
respectively.
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thickness (δv,s) for both Pr � 1 and Pr � 1 fluids, so no such
unified Prandtl number scalings are included above for δv,s

and τv,s .

III. NUMERICAL RESULTS

As the Ra dependence of the scalings for natural-convection
boundary layers has been thoroughly confirmed by numerous
numerical results (see, e.g., [8–15]), this study focuses on the
Pr and y dependence of the unified Prandtl number scalings
obtained above. To do so, nine direct numerical simulations
with Pr varying in the range of 0.01 � Pr � 100 (specifically
Pr = 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, and 100, respectively)
were chosen, all at the same Rayleigh number Ra = 108.

All the simulations were conducted in a two-dimensional
rectangular computational domain having a dimensionless
width 2 and a dimensionless height 1 with 493 × 397 nodes. To
ensure the simulation results are accurate, a mesh dependency
test has been conducted, and the details can be found in [20].

The typical time series of δT , δvi , and vm at the height of y =
0.5 obtained from direct numerical simulation are presented
in Fig. 2 for the specific case of Pr = 0.01. From this figure, it
can be seen that the determination of the values of δT , δvi , and
vm at the fully developed stage from numerical results, i.e.,
δT,s , δvi,s , and vm,s , is straightforward, as the values obtained,
as indicated in the figure, are exactly what they represent.
However, the determination of the times to signal the arrival
of the fully developed stage for each parameter, i.e., the values
of τT,s , τvi,s , and τm,s , is not so straightforward, as no unique
and consistent time can be found from the time series for the
relevant parameter. Nevertheless, the time representing the end
of the start-up stage on each time series, that is, the time at
which the observed peak occurs, gives a unique and consistent
value, which is believed to be the most appropriate numerically
obtained time to represent the time to reach the fully developed
stage for each parameter. Although this is not a perfect choice,
as there is a transition period of time between the end of the
start-up stage and the start of the fully developed stage, it
is considered to be the best choice to represent the time to
reach the fully developed stage. In this study, all numerically
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y=0.5 data
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FIG. 3. (Color online) ln(τT,s/y
1/2) plotted against ln(1 + Pr−1/2)

at heights y = 0.3, 0.5, and 0.7, respectively, where τT,s is the dimen-
sionless time scale for the development of the thermal boundary-layer
thickness to attain the fully developed stage and Pr is the Prandtl
number. The linear fit is obtained from the y = 0.5 data only.
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-4
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T
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δ
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ln(1+Pr    )
-1/2

FIG. 4. (Color online) ln(δT,s/y
1/4) plotted against ln(1 + Pr−1/2)

at heights y = 0.3, 0.5, and 0.7, respectively, where δT,s is the di-
mensionless thermal boundary-layer thickness at the fully developed
stage and Pr is the Prandtl number. The linear fit is obtained from the
y = 0.5 data only.

determined values of τT,s , τvi,s , and τm,s were obtained in this
way.

First, the numerical results obtained for τT,s and δT,s with
Pr in the range 0.01 � Pr � 100 are presented in scaled form
in Figs. 3 and 4, respectively. In Fig. 3, τT,s scaled by y1/2 is
plotted against (1 + Pr−1/2) in log-log form. As can be seen, the
results collapse approximately onto a single curve, confirming
the scaling prediction τT,s ∼ y1/2 as given in Eq. (21). Linear
regression has been used to obtain the best linear fit to the data,
giving

ln(τT,s/y
1/2) = 0.189 + 1.345 ln(1 + Pr−1/2) (27)

with a regression constant of 0.9981. This gives the best-fit
relation for τT,s as

τT,s = 1.208(1 + Pr−1/2)1.345y1/2. (28)

It is clear that the scaling relation τT,s ∼ (1 + Pr−1/2)1.345 gives
an excellent representation of the dependence of τT,s on Pr for
0.01 � Pr � 100.
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( 

   
   

   
 )

ln(1+Pr    )
-1/2

FIG. 5. (Color online) ln(τvi,s/y
1/2) plotted against ln(1 + Pr−1/2)

at heights y = 0.3, 0.5, and 0.7, respectively, where τvi,s is the
dimensionless time scale for development of the inner viscous
boundary-layer thickness to attain the fully developed stage and Pr is
the Prandtl number. The linear fit is obtained from the y = 0.5 data
only.
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FIG. 6. (Color online) ln(δvi,s/y
1/4) plotted against ln(1 + Pr−1/2)

at heights y = 0.3, 0.5, and 0.7, respectively, where δvi,s is the
dimensionless inner viscous boundary-layer thickness at the fully
developed stage and Pr is the Prandtl number. The linear fit is obtained
from the y = 0.5 data only.

Similarly in Fig. 4, δT,s scaled by y1/4 is plotted against
(1 + Pr−1/2) in log-log form, with the results supporting the
scaling predictions given in Eq. (22). Linear regression gives
the relation for δT,s as

δT,s = 0.0336(1 + Pr−1/2)0.654y1/4 (29)

with a regression constant of 0.9976, demonstrating that
the scaling relation δT,s ∼ (1 + Pr−1/2)0.654 provides an ex-
cellent representation of the dependence of δT,s on Pr for
0.01 � Pr � 100.

Equation (28) shows that a1 = 1.345 in the unified Prandtl
number scaling for τT,s given in Eq. (21). Hence it is expected
from the unified Prandtl number scaling for δT,s , given in
Eq. (22), that the index for this scaling should be a1/2 =
0.6725. The numerical result in Eq. (29) gives 0.654 for the
index, which is within 3.0% of the expected value of 0.6725.
These results provide strong support for the unified Prandtl
number scaling for δT,s for Pr in the range 0.01 � Pr � 100.

0 1 2 3
0

1

2

3

4

y=0.3 data

y=0.5 data

y=0.7 data

y=0.5 linear fit

m
,s

τ
/y

1/
2

ln
( 

   
   

   
 )

ln(1+Pr    )
-1/2

FIG. 7. (Color online) ln(τm,s/y
1/2) plotted against ln(1 + Pr−1/2)

at heights y = 0.3, 0.5, and 0.7, respectively, where τm,s is the
dimensionless time scale for the development of the maximum
vertical velocity within the boundary layer to attain the fully
developed stage and Pr is the Prandtl number. The linear fit is obtained
from the y = 0.5 data only.

0 1 2 3
-3

-2

-1

0

y=0.3 data

y=0.5 data

y=0.7 data

y=0.5 linear fit

m
,s

v
/y

1/
2

ln
( 

   
   

   
 )

ln(1+Pr    )
-1/2

FIG. 8. (Color online) ln(vm,s/y
1/2) plotted against ln(1 + Pr−1/2)

at heights y = 0.3, 0.5, and 0.7, respectively, where vm,s is the
dimensionless maximum vertical velocity within the boundary layer
at the fully developed stage and Pr is the Prandtl number. The linear
fit is obtained from the y = 0.5 data only.

Secondly, the numerical results for τvi,s and δvi,s are plotted
in scaled, log-log form in Figs. 5 and 6, respectively. Again
the y dependencies predicted by Eqs. (23) and (24) for each of
the quantities are supported by the collapse of all the results
onto single curves in each of the figures. Linear regression
was again used to obtain best-fit lines for each set of results,

0 10 20 30 40
0

0.05

0.1

Pr=0.01, y=0.5

Pr=0.05, y=0.7

Pr=0.1, y=0.3

Pr=0.5, y=0.7

Pr=1, y=0.5

Pr=5, y=0.3

Pr=10, y=0.7

Pr=50, y=0.3

Pr=100, y=0.5

0 1 2 3 4
0

0.01

0.02

0.03

0.04

δ
Tδ

T
(1

+
P

r 
   

)
-1

/2
-0

.6
54

y-1
/4

τ

τ (1+Pr    ) -1/4y-0.673-1/2

(a)

(b)

1/2

FIG. 9. (Color online) Time series of dimensionless thermal
boundary-layer thickness (δT ) for different Prandtl numbers (Pr)
at various heights (y): (a) raw data and (b) δT scaled by (1 +
Pr−1/2)0.654y1/4 plotted against τ 1/2 where dimensionless time τ is
scaled by (1 + Pr−1/2)1.345y1/2.
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providing the following relations:

τvi,s = 1.449(1 + Pr−1/2)1.022y1/2 (30)

with a regression coefficient of 0.9997, and

δvi,s = 0.0204(1 + Pr−1/2)−0.506y1/4 (31)

with a regression coefficient of 0.9774. While the fit for τvi,s

is again good, the fit for δvi,s is less satisfactory. This is also
seen in Fig. 6, where it is evident that the fitted line deviates
from the data in the small Pr region, suggesting that there is a
further, weak, Pr dependence not captured by our scaling.

Equation (30) shows that a2 = 1.022 in the scaling relation
given in Eq. (23). Based on Eq. (24), the index for the δvi,s

scaling should be a2/2 − 1 = −0.489. The numerical result
in Eq. (31) is −0.506, within 4% of the expected value, giving
further support for the validity of the unified Prandtl number
scaling given in Eq. (24).

Thirdly, the numerical results for τm,s and vm,s are presented
in Figs. 7 and 8, respectively, in scaled and log-log form. All
results again collapse onto single curves, supporting the τm,s ∼
y1/2 and vm,s ∼ y1/2 scalings given in Eqs. (25) and (26).
Linear regression analysis gives the relations

τm,s = 1.404(1 + Pr−1/2)1.154y1/2 (32)
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FIG. 10. (Color online) Time series of dimensionless maximum
vertical velocity within the boundary layer (vm) for different Prandtl
numbers (Pr) at various heights (y): (a) raw data and (b) vm scaled by
(1 + Pr−1/2)−0.869y1/2 plotted against dimensionless time τ which is
scaled by (1 + Pr−1/2)1.154y1/2.

with a regression coefficient of 0.9985, and

vm,s = 0.923(1 + Pr−1/2)−0.869y1/2 (33)

with a regression coefficient of 0.9997.
In this case, Eq. (32) gives a3 = 1.154, while Eq. (25)

together with Eq. (26) imply that a3 − 2 = −0.846. The
numerical result in Eq. (33) is −0.869, which is within 3%
of the expected value, again providing support for the unified
Prandtl number scaling.

To further examine the validity of the scaling relations
presented in the previous section, together with the empirical
indices obtained above, the relations will be applied directly
to numerically obtained time series and profile data. Figure 9
contains the time series of the thermal boundary-layer thick-
ness δT for different Pr at various heights, in both raw and
scaled form, using the scalings given in Eqs. (28) and (29),
together with the δT ∼ τ 1/2 scaling given in Eq. (12). It is
observed that all the time series collapse onto a single straight
line in the start-up stage (scaled τ < 1). All scaled time series
reach their individual maxima at almost the same time and then
collapse onto approximately the same horizontal line, clearly
demonstrating that the derived scaling relations together with
the empirical indices provide good representations of the
dependence of δT,s and τT,s on Pr over the Prandtl number
range considered. Additionally, as the two indices 0.654
and 0.6725 are approximately equal, the scaling at start-up
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FIG. 11. (Color online) Time series of dimensionless inner
viscous boundary-layer thickness (δvi) for different Prandtl numbers
(Pr) at various heights (y): (a) raw data and (b) δvi scaled by
(1 + Pr−1/2)−0.506y1/4 plotted against τ 1/2 where dimensionless time
τ is scaled by (1 + Pr−1/2)1.022y1/2.
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reduces to δT ∼ τ 1/2, the start-up scaling given in Eq. (12) and
previously derived for Pr > 1. It is evident that this start-up
scaling may be applied to the full range of Pr considered here.

Figure 10 contains similar time-series results for vm, using
the scalings and indices given in Eqs. (32) and (33). Again
the scalings bring all the results onto approximately the same
curve, providing further validation of the scaling relations and
empirical indices. It is also observed that dividing the τ -axis
scaling by the vm-axis scaling gives vm ∼ τ (1 + Pr−1/2)−2.023,
which is very close to the start-up scaling derived for Pr > 1,
given in Eq. (15). It is apparent that this start-up scaling may
also be applied to the full range of Pr considered here.

In Fig. 11, the scalings for δvi are examined, using the
relations given in Eqs. (30) and (31), together with the
relation δvi ∼ τ 1/2 given in Eq. (14). It is observed that all
the scaled time series become straight lines before attaining
their individual maxima, validating the scaling δvi ∼ τ 1/2,
originally obtained for Pr > 1, for the full Pr range considered.
All scaled time series attain their individual maxima at almost
the same time, validating the numerically obtained scaling
given in Eq. (30). Although the scaling has considerably
reduced the variation observed in the raw data, the scaled
results have not been collapsed to a single curve, in either the
start-up or fully developed phases of the flow, indicating that
the scaling given in Eq. (31) does not provide a complete
representation of the dependence of δvi,s on Pr. This is
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temperature (θ ) for different Prandtl numbers (Pr) at various heights
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where x is the horizontal coordinate.

consistent with the poor linear fit of the numerical results
as observed in Fig. 6.

The horizontal profiles of temperature at various heights
during the start-up stage are presented in Fig. 12 for different
Pr, in both raw and scaled form, with x scaled by τ 1/2, as
given in Eq. (12). It is seen in the raw data that the temperature
profile during the start-up stage is independent of both Pr
and y. The x ∼ τ 1/2 scaling collapses all the results onto a
single curve, confirming that this scaling is appropriate for the
full range of Prandtl numbers considered here during start-
up. The equivalent temperature profiles at the fully developed
stage, in raw and scaled form, are presented in Fig. 13, with
x scaled by (1 + Pr−1/2)0.654y1/4, as given in Eq. (29). It is
seen that this scaling provides a good representation of the
width of the temperature profiles, bringing them all together
in the outer region. However, the scaling does not provide
such a good representation over the remainder of the profile,
with considerable variation remaining in the region scaled
x < 0.025, in contrast to the scaling for the start-up stage
observed above.

Figure 14 shows the horizontal profiles of vertical velocity
at various heights during the start-up stage for different Pr,
in both raw and scaled form. In this case, x is scaled by
(1 + Pr−1/2)−1τ 1/2, the scaling for δvi given in Eq. (14), and
v is scaled by (1 + Pr−1/2)−2τ , the scaling for vm given in
Eq. (15). These scalings collapse all the results onto a single
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curve in the inner viscous boundary layer, the near-wall region,
and bring all the maxima close to a single value, confirming
their validity for the full range of Prandtl numbers considered
here. The equivalent results for the vertical velocity at the fully
developed stage are presented in Fig. 15 with x now scaled
by (1 + Pr−1/2)−0.506y1/4 and v by (1 + Pr−1/2)−0.869y1/2, the
dependencies of δvi,s and vm on Pr as given in Eqs. (31)
and (33). Once again it is seen that these scalings collapse
all the profiles onto a single curve within the inner viscous
boundary layer, scaled x < 0.02, and bring the maxima close
to a single value, further validating these scalings for the fully
developed stage of the flow.

A comparison of the times for transition to full development
for the thermal boundary-layer thickness, τT,s , inner viscous
boundary-layer thickness, τvi,s , and maximum velocity, τm,s ,
is given in Table I. It can be seen that for the Pr > 1 results
the times are similar, with τT,s < τvi,s . For the Pr = 0.1 result,
the times are also similar, but with τT,s > τvi,s . Again for the
Pr = 0.01 result, τT,s > τvi,s , but in this case by a much larger
factor of 35%. For Pr = 100, 1, and 0.01, τm,s lies between
τT,s and τvi,s , while for Pr = 10, τm,s = τvi,s . It is noted that
the times obtained here are for transition from start-up to fully
developed flow, defined as the first peak in the time series, as
described above and sketched in Fig. 2, rather than the times
for an asymptotic approach to steady state which, due to the
coupling of temperature and velocity, would be expected to be
equal. The variation in the relation of τT,s , τvi,s , and τm,s with
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Pr is a further indication that different scaling relations must
exist for each of these quantities, as observed above where
different values of the index a were obtained, i.e., a1 for τT,s ,
a2 for τvi,s , and a3 for τm,s .

IV. CONCLUSIONS

From the above results and analysis, it is clear that
the scalings developed for the transient natural-convection
boundary layers for Pr > 1 fluids under isothermal heating
conditions can be extended to Pr � 1 fluids to provide unified
Prandtl number scalings for the transient natural-convection
boundary layers for both Pr � 1 and Pr � 1 fluids. The direct
numerical simulation results with Pr varying in the range

TABLE I. Numerical results for τT,s , τvi,s , and τm,s at height
y = 0.5 and Ra = 108 for different values of Pr.

Pr τT,s τvi,s τm,s

100 0.93 1.12 1.03
10 1.25 1.35 1.35
1 2.20 2.10 2.30
0.1 5.61 4.50 5.31
0.01 19.67 11.61 14.72
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0.01 � Pr � 100 show that at the start-up stage, the Prandtl
number scalings for the major parameters characterizing
natural-convection boundary-layer behavior, i.e., the ther-
mal boundary-layer thickness, inner viscous boundary-layer
thickness, and maximum vertical velocity within the viscous
boundary layer, are the same as those for Pr > 1 fluids. At the
fully developed stage, however, all these parameters depend
on Pr in the form ∼(1 + Pr−1/2)a , where the index a is a
constant that is different for each parameter. Unified Prandtl
number scalings for both Pr � 1 and Pr � 1 fluids can then be
obtained by just modifying the value of a for each parameter.

The developed unified Prandtl number scalings are shown in
general to provide an accurate prediction of the Pr variation
for both Pr � 1 and Pr � 1 fluids.
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