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The existence of a “−1” power-law scaling at low wavenumbers in the longitudinal velocity spectrum of
wall-bounded turbulence was explained by multiple mechanisms; however, experimental support has not been
uniform across laboratory studies. This letter shows that Heisenberg’s eddy viscosity approach can provide a
theoretical framework that bridges these multiple mechanisms and explains the elusiveness of the “−1” power law
in some experiments. Novel theoretical outcomes are conjectured about the role of intermittency and very-large
scale motions in modifying the k−1 scaling.
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I. INTRODUCTION

The spectral properties of turbulence at high wavenum-
bers have been extensively studied in turbulent flows, and
existing theories appear satisfactory in describing their basic
statistical properties at very high Reynolds numbers [1–4].
Equivalent theories for the low wavenumber range have been
comparatively lacking because boundary conditions prohibit
the attainment of universal behavior. Among the few theories
proposed at low wavenumbers is a k−1 scaling in the longitu-
dinal (u) velocity spectrum Eu(k) at wavenumbers (kz � 1) of
wall-bounded flows, where z is the height from the boundary
and k is the wavenumber. This scaling behavior was observed
in numerous boundary-layer studies (reviewed in Ref. [5])
and in Large Eddy Simulations of the neutral atmospheric
boundary layer [6–8]. Tchen [9,10] was the first to theoretically
predict the k−1 scaling via a spectral budget equation. Other
approaches resulting in a k−1 power law include dimensional
analysis or asymptotic matching between the so-called inner
and outer regions of the velocity spectra [11–14]. Nikora [15]
later showed that one possible mechanism for generating a
k−1 scaling at a given z can be explained by superposition
of Kolmogorov cascades generated at all possible distances
from the ground above z. This superposition argument leads
to a turbulent kinetic energy flux equal to the dissipation
rate at wave numbers larger than 1/z that scales as ε̄ ∼ u3

∗k
1

for kz � 1. When this scaling is combined with the well-
celebrated Kolmogorov energy cascade (Eu ∼ ε̄2/3k−5/3), it
leads to an Eu ∼ u2

∗k
−1 for kz � 1, where overbar is time-

averaging, ε̄ is the mean turbulent kinetic energy dissipation
rate, u∗ = (τt/ρ)1/2 is the friction velocity, τt is the turbulent
stress, and ρ is the mean fluid density. The assumption that
τt is independent of z is reasonable for a zero-mean pressure
gradient flow that is stationary, planar-homogeneous, at very
high Reynolds number, and in the absence of any subsidence.

Interest in the onset of the k−1 power-law scaling in
Eu(k) has resurfaced following new experiments and anal-
yses, including the super-pipe high Reynolds number flow
experiments that showed no clear k−1 power-law scaling
[16]. Another laboratory boundary layer experiment [17]
suggested that a prerequisite to the emergence of a k−1

power-law scaling in Eu(k) marked by at least one decade

of scales is not only limited to a very large Reynolds number
(H+ = H u∗/ν > 50 000), as was the case for the super-pipe
experiment. Additional constraints were proposed, including
a dimensionless height from the boundary z+ = zu∗/ν > 100
so as to avoid any viscous effects and z/H � 0.02 to ensure
a minimum overlap zone between the inner and outer regions
in which the k−1 scaling is presumed to emerge [17], where
H is the boundary-layer height, and ν is the kinematic
viscosity. Other recent studies [14,18,19] questioned the use of
a spectral budget approach as lacking any accounting for a rigid
boundary. The scaling analysis in Ref. [15] was also criticized
for ignoring coherent structures, although implicitly they were
considered through the use of Townsend’s attached eddies
concept. However, the potentially important effects of very
large scale motions (VLSM) or superstructures, have not been
explored. Another critique of the spectral budget approach
and the scaling analysis in Ref. [15] is their prediction of a
k−1 power law for the vertical velocity spectra Ew(k), which
was not reported in previous studies. However, a near k−1

scaling in Eu(k) was reported in many experiments despite the
fact that the restrictions listed in Ref. [17] were not always
satisfied [5].

What is evident is that beyond dimensional analysis
and asymptotic arguments, a complete phenomenological
theory that bridges these multiple arguments and explains the
occurrence or absence of a k−1 scaling is lacking. A novel
phenomenological spectral theory based on Heisenberg’s
eddy-viscosity approach [20] is proposed here. It recovers
(i) Nikora’s [15] scaling arguments for infinite Reynolds
number and a deep boundary layer, (ii) aspects of the attached
eddy pertinent to the generation of a k−1 power law, and (iii)
some empirical conditions proposed for the onset of a k−1

power law. Using this phenomenological theory, conjectures
about the expected role of coherent structures and VLMS as
well as intermittency in modifying the k−1 power law are also
presented.

II. THEORY

The development commences with the turbulent kinetic
energy viscous dissipation rate (ε) being related to the
amplitude of the squared turbulent vorticity (ωiωi) for high
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Reynolds number using

ε = νωiωi = 2ν

∫ ∞

0
ETKE(k′)k′2dk′, (1)

where ETKE(k) is the total energy spectrum obtained as a
sum of the three-dimensional spectra of individual velocity
components (u, v, and w) integrated over the surface of a
sphere of radius k, where k is the scalar wavenumber, u, v, w

are the longitudinal, lateral, and vertical velocity components
along directions x, y, and z, respectively,

∫ ∞
0 ETKE(k)dk =

e2 = (σ 2
u + σ 2

v + σ 2
w)/2 is the mean turbulent kinetic energy

(TKE) related to the sum of the three component velocity
variances (σu, σv , and σw), and k′ is a dummy integration
variable. Heisenberg’s argument rests on the assumption that
Eq. (1) can be rewritten via a turbulent viscosity to yield (see
Appendix)

ε(k) = [ν + νt (k)]
∫ k

0
2 ETKE(k′)k′2dk′, (2)

where ε(k) is the turbulent kinetic energy dissipation rate at
wavenumber k, νt (k) is a wavenumber-dependent turbulent
viscosity given as

νt (k) = CH

∫ ∞

k

√
ETKE(k′)

k′3 dk′, (3)

and CH is the Heisenberg constant of order unity. The
assumption behind Eqs. (2) and (3) is that for all eddies whose
wavenumbers are between 0 and k (i.e., large scales), the action
of smaller eddies can be represented by an additional turbulent
viscosity νt that must depend on the energy and wavenumbers
of all smaller scale eddies. This νt expression does not preclude
nonlocal spectral interactions between large and small eddies.
When ν � νt (k1) at a given k1, Eq. (2) reduces to∫ k1

0
2 ETKE(k′)k′2dk′ ≈ ε(k1)

CH

∫ ∞
k1

√
ETKE(k′)

k′3 dk′
. (4)

At the wavenumber k1 = 1/z, it can be shown that (see
Appendix)

ε(z) = ε(k1) = u3
∗

kvz
= 1

kv

u3
∗k1, (5)

where kv = 0.4 is the Von Karman constant. The presence
of a mean velocity gradient impacting the low-wavenumber
range primarily modifies the above result to within a constant
as shown in the Appendix. In the Appendix, a simplified
spectral budget equation that retains the production term is first
considered. A gradient-diffusion approximation in the spectral
domain is then used to close the production, which alters the
resulting spectrum to within a constant. With this estimate for
ε(z), the spectral budget at this k1 = 1/z can be expressed as∫ k1

0
2 ETKE(k′)k′2dk′ = u3

∗k1

kvCH

∫ ∞
k1

√
Coε(k1)2/3k′−5/3

k′3 dk′
. (6)

In determining νt at very large Reynolds number, the en-
ergy spectrum for k ∈ [k1,∞] can be approximated by the
Kolmogorov spectrum Coε̄(z)2/3k′−5/3 (hereafter referred to as
K41), where Co ≈ 1.55 is the Kolmogorov constant. It follows

that the ETKE for k ∈ [0,k1] is given as∫ k1

0
2 ETKE(k′)k′2dk′ = CTKEu2

∗k
2
1, (7)

where CTKE = (4/3)(k2/3
v CHC

1/2
o )−1. Assuming further that

ETKE for k ∈ [0,k1] is self-similar abiding by an extensive
power law given as ETKE = Ak−a , then A and a can be
determined by integrating the left-hand side of Eq. (7) and
equating the outcome to its right-hand side to yield

2A
k3−a

1

3 − a
= CTKEu2

∗k
2
1, (8)

resulting in a = 1 and A = CTKEu2
∗, and hence ETKE =

CTKEu2
∗k

−1 for kz < 1. The ETKE, not the spectrum of
individual velocity components, scales as k−1 for kz � 1.
This finding does not require that each individual velocity
component spectra possess a k−1 scaling; only the ones
contributing most to the overall TKE [i.e., Eu(k) and Ev(k)].
To illustrate why Eu and Ev contribute most to the overall
TKE, recall that in the logarithmic region of boundary layers,
e2 = 1

2 (A2
u + A2

v + A2
w)u2

∗, where Au ≈ 2.3, Av ≈ 2.1, and
Aw ≈ 1.25. Hence, σ 2

w contributes under 15% of the total TKE.
The Ew(k) generally does not exhibit any k−1 scaling due to
wall-effects [21]. The considerations presented above are valid
for the logarithmic layer where the global TKE production
is approximately balanced by its dissipation, and where the
inhomogeneity does not contribute significantly to the spectral
energy balance (i.e., the energy flux due to the inhomogeneity
is constant within the log layer and can be viewed in
terms of energy fluxes as a locally homogeneous shear
layer [22]).

III. EXPERIMENT

Figure 1 shows measured ETKE (in regular and premulti-
plied form) computed using orthonormal wavelet transforms
(OWT) for flows over a number of surfaces, including
a smooth-walled laboratory flume at two heights (z+ =
55.0, 92.0), an Antarctic ice sheet (z+ = 3.6 × 105), a grass-
covered forest clearing (z+ = 1.6 × 105), a pine stand (z+ =
1.6 × 105), and a hardwood forest (z+ = 6.6 − 7.4 × 105).
These data sets, briefly described next, are also used to explore
the scaling laws of Eu and Ew using conventional Fourier
transforms to supplement the OWT analysis. For the canopy
experiments, the canopy height is denoted by hc and z is
defined from a zero-plane displacement (2/3 hc). The amount
of canopy foliage is characterized by the leaf area index (i.e.,
foliage area per ground area), denoted by LAI.

A. Flume experiments

The open channel (OC) experiments were conducted at
Cornell University in a 20-m-long, 1.0-m-wide, and 0.8-m-
deep open channel tilting flume with a smooth stainless steel
bed. The channel slope was set at 0.0001 mm−1 resulting in
an H = 10.3 cm of water depth. The longitudinal and vertical
velocity components were measured using a two-dimensional
split film boundary layer probe (TSI 1287W model). The
sampling frequency and period were 100 Hz and 81.92 seconds
per flow variable per depth. The velocity measurements were
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FIG. 1. (Color online) Measured normalized ETKE(k) (right) using OWT for open channels (open circles, z+ = 55; closed symbol, z+ = 92),
ice sheet (plus), grass site (squares), a pine stand (diamond), and a hardwood canopy (triangles for different days). The normalizing velocity
and length scales are the measured u∗ and z. The −1 (solid) and −5/3 (dashed) power laws are shown. The premultiplied spectra for TKE are
presented to emphasize the region over which the −1 power law exist (left). Because time is converted to wavenumber space using Taylor’s
frozen turbulence hypothesis, the wavenumbers shown must be interpreted along the x direction and not three-dimensional. Due to their
differencing properties, OWT are less sensitive to nonstationarities when compared to their Fourier counterparts and are preferred for such data
sets.

performed at z = 0.1, 0.2, 0.3, 0.4, 0.6, and 1 cm from the
channel bottom. The turbulent stresses were found to be
independent of height from z = 0.6 cm to z = 1 cm. The
friction velocity was determined to be around u∗ = 0.9 cm s−1

using three separate methods that agree to within 10% as
discussed elsewhere [5]. The data reported here are for z = 0.6
and z = 1.0 cm, corresponding to z+ = 55 and z+ = 92. The
mean velocity is about 0.2 m s−1 and σu/u∗ = 2.5 at both
heights.

B. Ice sheet

The experiment was conducted from November 12 in 1994
until January 6 in 1995 above the Nansen Ice Sheet (50 by
30 km2) in a coastal area close to the Terra Nova Bay Italian
station in Antarctica. The site experiences frequent katabatic
winds flowing from the Antarctic Plateau toward the Ross
Sea along the Reeves Glacier. Velocity measurements were
performed at 20.8 Hz using symmetric three-axis ultrasonic
anemometry (Gill Inst. Ltd.) positioned at z = 22 m above the
surface (highest measurement level) and described elsewhere
[23]. The data reported here are about a 7-h composite run
made up of 14 consecutive 30-minute stationary runs with
a u∗ = 0.24 m s−1 resulting in z+ = 3.6 × 105. The mean
velocity was about 7.8 m s−1 and σu/u∗ = 3.1.

C. Grass surface

The experiment was conducted from July 12 to 16 in 1995 at
a grass site within the Blackwood division of the Duke Forest
near Durham, North Carolina. The site is a 480-m by 305-m
grass-covered forest clearing, and a mast, situated at 250 m
and 160 m from the north-end and west-end portions of a 10-m
Loblolly pine forest edge, respectively, was used to mount a
triaxial ultrasonic anemometer (Gill Instruments/1012R2) at
z = 5.2 m above the ground surface. The hc = 1.0 m and LAI
was around 1.5 m2 m−2. The sampling frequency and period
per run were 56 Hz and 19.5 min, respectively. Further details
can be found elsewhere [24]. The data reported here are for a
3.9-hour composite run made up of 12 consecutive runs with
a u∗ = 0.45 m s−1 resulting in z+ = 1.6 × 105. The mean
velocity is about 4.1 m s−1 and σu/u∗ = 3.4. The selected day
here had the highest u∗ values.

D. Pine forest

The experiment was conducted from October 6 to 10 in
1997 at the Blackwood Division of the Duke Forest near
Durham, North Carolina, as part of a spatial variability in
turbulent statistics campaign. The site is a uniformly aged
managed loblolly pine plantation that extends at least 1 000 m
in the north-south direction and 300 m to 600 m in the
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east-west direction. The stand, originally grown from seedlings
planted at 2.4-m by 2.4-m spacing in 1983 following clear
cutting and burning, is approximately 14 m tall (=hc). The
measurements were performed at 5 Hz using a CSAT3 triaxial
sonic anemometer (Campbell Scientific Inc., Logan, UT)
positioned at z = 15.5 m above the forest floor. The LAI
spatially varied from 2.65 to 4.56 m2 m−2 across the stand [25].
The data reported here are for a 7-h composite run made up
of 14 consecutive 30-min runs having a u∗ = 0.38 m s−1

and resulting in z+ = 1.6 × 105. The mean velocity is about
1.1 m s−1 and σu/u∗ = 2.0.

E. Hardwood forest

The hardwood (HW) experiment was conducted from June
16 to July 11 in 1996 at an 80- to 100-year-old second-growth
Oak-Hickory forest situated at the Blackwood division of
the Duke Forest, near Durham, North Carolina. The mean
hc = 33 m and the LAI is about 6 m2 m−2. The velocity
measurements were performed at 10 Hz using a symmetric
three-axis ultrasonic anemometer (Gill Inst. Ltd.) positioned
at the canopy top (z = hc). Three days in which strong and
steady winds occurred were used here, and are presented
separately. Further details of the experiment can be found
elsewhere [26]. The data reported here are for three separate
days in which 5 consecutive hours were used per day resulting
in a near-constant across days of u∗ = 0.63, 0.56, 0.57 m s−1

and z+ = 7.4, 6.6, 6.7 × 105. The mean velocity for those

runs were 1.9, 1.5, 2.0 m s−1 and σu/u∗ = 2.0, 1.9, and 1.9,
respectively.

Because of their differencing properties, OWTs are usually
preferred for spectral analysis when some nonstationarity is
expected (as is the case here). A drawback of OWT spectral
analysis is their poor locality in the wavenumber domain due
to dyadic scale arrangement. Hence, repeating the analysis in
the Fourier domain allows some assessment of how robust
the findings are to the analyzing basis functions. Figure 2
shows the Fourier spectra for Eu and Ew along with the
−1 and −5/3 scaling exponents. The Fourier-based spectral
density calculations are conducted using Welch’s averaged
modified periodogram method in which each time series is
first divided into 10 sections with 50% overlap, then each
section is processed using a Hamming-type window, and the
resulting periodograms are computed and averaged with no
prior detrending. Note that while the Fourier-based Eu(k)
exhibit an approximate −1 power-law scaling for all the sites,
Ew(k) does not. As earlier noted, ETKE(k) is primarily driven
by Eu(k), not Ew. Hence, the −1 power law in ETKE(k) is
primarily due to the onset of a −1 power law in both Eu

(shown here for reference) and Ev . Figure 3 also presents the
Fourier-based ETKE in premultiplied form to emphasize the
range of scales exhibiting an approximate −1 power law. In
this representation, a −1 power law appears as a constant.
As with the orthonormal wavelet analysis, the inhomogeneous
grass site does not exhibit a clear −1 power-law scaling in the
expected range of normalized scales (shown as dashed vertical
lines). The other experiments do exhibit an approximate −1
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FIG. 2. (Color online) Measured normalized Eu(k) and Ew(k) using Fourier analysis. The normalizing velocity and length scales are
measured u∗ and z. The −1 (solid) and −5/3 (dashed) power laws are shown. The time domain is converted to wavenumbers using Taylor’s
frozen turbulence hypothesis and wavenumbers shown must be interpreted along the x direction, not three-dimensional.
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FIG. 3. (Color online) Measured normalized ETKE(k) presented
in premultiplied form.

power law, though variations around a constant CTKE are not
small across experiments (e.g., 0.6 to 1.5) for kz bounded
between 0.1 and 1.0. Interestingly, the lower CTKE values
appear to be associated with rougher forested sites (pines
and hardwoods) collected within the canopy sublayer while
the higher CTKE values are associated with the smooth-wall
cases (open channel and ice sheet). Considering that (i) the
atmosphere is nonuniformly heated during the day, (ii) the
boundary layer dynamics cannot be ignored over several hours,
(iii) Taylor’s hypothesis is used in high-intensity flows and this
usage is likely to distort the scale range upon which the −1
power law ought to be detected, and (iv) several data sets are
collected just above tall forested sites and hence are within the
canopy sublayer; some 20% variations in CTKE within a given
experiment or site is not surprising. Thus, the findings here
do suggest that the results derived from the OWT analysis are
robust to the analyzing basis function.

The geophysical flows here are characterized by an H+ >

100z+ or z/H < 0.01 resulting in at least one order of
magnitude larger Reynolds number when compared to the
super-pipe experiments in Ref. [16], while for the open channel
flow, z/H = 0.05 − 0.1. The measurements in Fig. 1 suggest
that ETKE is roughly dominated by the exponents −5/3
(when kz > 1) and an approximate −1 (when kz < 1) with
the k−1 scaling spanning just under one decade (except for
the grass site). If the transition wavenumber from k−1 to
k−5/3 occurs sharply at k1 = 1/z, as suggested by all the
data here, then CTKE = Cok

−2/3
v , which implies that CH =

(4/3)C−3/2
o , a reasonable choice given that CH should be

of order unity and not dependent on kv . For a Co = 1.55,
CH ≈ 0.7 and upon setting kv = 0.4, CTKE = 0.84, consistent
with a number of studies, including atmospheric surface layer
flows [11]. The constant CTKE = kETKE/(u∗)2 of the −1
power-law range for the experiments in Fig. 1 deviates from
0.84 and varies from 0.5 to 1.4. The highest CTKE = 1.4 is
for a highly inhomogeneous grass-covered forest clearing,
where u∗ may not be constant with z as assumed due to
forest-edge disturbances. Moreover, Ev is mediated by nearby
forest edges, while the lowest CTKE = 0.5 are for the tall

hardwood forest canopy measurements (z/hc < 1.5, where
hc is the mean canopy height). These measurements are
impacted by momentum flux-transport terms [27] unbalancing
the production and dissipation of TKE. Some laboratory
measurements report CTKE = 0.8 for zero-pressure gradient
[17], minor increases in CTKE = 0.6–0.8 with three orders
of increase in Reynolds number [14], and lack of a k−1

scaling in adverse pressure-gradient flows but a presence
of a k−1 scaling in the range of 0.06 < kz < 1 for zero-
and favorable-pressure gradients with CTKE = 0.8–1.0 [28].
In short, agreement between the phenomenological theory
predictions for the −1 scaling and the plausible range of values
of CTKE appears consistent with a wide range of geophysical
flows (at least, when the inhomogeneity is not too large as is
the case with the grass site) and a large number of laboratory
experiments.

IV. DISCUSSION

The present theory can also be linked to the framework
of Townsend’s attached eddies [29] in several ways. Both
approaches assume an approximate balance between TKE
production and dissipation rates. Moreover, the characteristic
velocity of an eddy of size kz = 1 in this framework is
given as (kETKE)1/2 = √

CTKEu∗ ≈ u∗. Hence, analogous to
the characteristic velocity of Townsend’s attached eddies,
eddies of size z here do have a representative velocity that is
almost identical to u∗. The dissipation rate of e in Nikora [15]
can also be reconciled with the spectral budget approach
when assuming (i) infinite Reynolds number (needed when
assuming the K41 spectrum represents all k ∈ [k1,∞] with
no intermittency or dissipation corrections for kz � 1), and
(ii) very deep boundary layer allowing the extension of a single
self-similar spectrum ETKE = Ak−a to represent k ∈ [0,k1].
Departures from these conditions can fingerprint absence of a
k−1 in the ETKE.

The proposed theoretical framework also allows us to
analyze possible corrections to the k−1 scaling. One obvi-
ous departure is due to intermittency corrections to K41.
Such corrections, either produced internally via heavy-tailed
fluctuations from ε̄ [3,30] or externally via interactions
between coherent structures and inertial scale eddies within the
logarithmic region [31], can lead to a revised K41 spectrum

whose simplest form is given as Ciε(k1)
2/3

k′−5/3(k′/k1)−μ,
where Ci is a revised Kolmogorov constant. For this spectrum,
and upon assuming an extensive ETKE = Ak−a range for
k ∈ [0,k1], the spectral budget with intermittency corrections
to K41 scaling at kz > 1 now requires that

2A
k3−a

1

a − 3
= (8 + 3μ)

6k
2/3
v CHC

1/2
i

u2
∗k

2+μ

1 . (9)

It follows that a = 1 − μ, resulting in a scaling not as steep as
k−1. For the internal intermittency corrections, a conventional
μ ≈ 0.06 [4] results in ETKE ∼ k−0.94. If coherent structures
or large-scale motion (including VLSM) interact with inertial
size eddies (e.g., external intermittency) within the logarithmic
region, then μ is expected to be larger than 0.06 and dependent
on the Reynolds number, thereby weakening any evidence or
universal signature of a k−1 scaling. Some studies reported
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a μ ≈ 0.15 due to external intermittency effects [31,32],
which would produce an a ≈ 0.85 rather than near unity.
As a result, the argument here suggests that modulations or
even absence of a k−1 scaling may be partially attributed
to “steepening” in the k−5/3 for kz > 1 or even “censoring”
its occurrence, as may occur when the viscous dissipation
“cutoff” significantly intrudes into the inertial subrange. The
converse is also true, if for kz >1 the exponent describing
the ETKE is lower than −5/3 (i.e., μ < 0), as may occur
when the spectrum is gradually transitioning from production
toward an inertial subrange regime, the spectral budget
requires that a > 1. If a finite upper wavenumber bound is
imposed on the K41 spectrum at the Kolmogorov dissipation
wavenumber scale kd ∼ η−1 = (ε/ν3)1/4 and νt is evaluated in
the range k ∈ [k1,kd ] instead of k ∈ [k1,∞], then νt/ν can be
explicitly derived and is given as νt

ν
= 3

4

√
Co( u∗z

ν
− 1) 
 1,

which results in z+ 
 1 + 4/(3
√

Co) ≈ 2.78. Assuming that
this corresponds to z+ > 30, a conventional value typically
assumed to reach a fully turbulent boundary layer [33], any
steepening of the spectrum due to viscous dissipation en-
croaching into the inertial subrange from higher wavenumbers
would substantially increase this threshold by a factor of 2–4,
based on numerical model calculations (not shown). These
increases are consistent with the necessary conditions for the
onset of a k−1 power law previously noted [17]. Finally, to
naively include some effects originating from VLMS on ε̄, it
is useful to decompose the low k range on the left-hand side
of Eq. (6) as∫ klow

0
2ETKE(k′)k′2dk′ +

∫ k1

klow

2ETKE(k′)k′2dk′. (10)

To further separate finite boundary depth from contributions
originating from VLMS, it is initially assumed that the first
term is small compared to the second and that ETKE = Ak−a

extends only from a finite klow ∼ (αH )−1 to k1 ∼ z−1, with
α � 1 being a fraction defining the size of the detached eddies
in relation to H . This argument leads to

C2k
3−a
1 [1 − (y)3−a] = CTKEu2

∗k
2
1, (11)

where y = klow/k1 and C2 = 2A/(3 − a). With klow ∼
(αH )−1 necessitates a z/H � α at minimum to recover the
k−1 scaling. This condition is similar to the condition that the
overlap region between inner and outer layers be sufficiently
wide to admit asymptotic matching arguments. If, on the
other hand, the VLSM admit self-similar spectrum of the
form ETKE = B k−b for k ∈ [0,klow], then the revised Eq. (11)
reads

C2k
3−a
1 [1 − (y)3−a] = C3k

2
1

[
1 − C4 (y)2 k1−b

low

]
, (12)

where C3 = CTKEu2
∗ and C4 = 2B/[(3 − b)C3]. Again, if

klow � k1, then the onset of k−1 requires that 3 − a =
2 (or a = 1) provided b < a. However, for VLSM, the
B ∼ u2

∗ (HVLSM)1−b and noting that C3 ∼ u2
∗ results in a new

and far more stringent condition for the onset of the k−1, given
as (

z

H

)2 (
HVLSM

H

)1−b

� α3−b. (13)

A number of studies already reported HVLSM/H ∼ 10
[19,34]. For an α = 0.8, b = 0, and HVLSM/H ∼ 10 results
in z/H � 0.23. Hence, the small range of z/H needed is not
only to ensure an adequate overlap region between inner and
outer layers as earlier noted, but also to minimize modulations
originating from VLSM. In fact, these modulations require
an even more stringent z/H range. It should be noted that
detecting the spectral contributions of VLMS in Fig. 1 for the
geophysical flows may be complicated by the fact that the
spectra are composites of several hours during the day where
H may be evolving in time. It is difficult to separate VLSM
from nonstationarity in H within such setup.

V. CONCLUSION

The multiple mechanisms explaining a “ − 1” power-law
scaling at low wavenumbers in ETKE (and in Eu) of wall-
bounded turbulence can be unified via a phenomenological
theory rooted in Heisenberg’s eddy viscosity approach. The
theoretical framework accounts for intermittency corrections
within the inertial subrange and the presence of very-large
scale motion, resulting in exponents not as steep as k−1,
at least for eddy sizes larger than z but much smaller
than H .
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APPENDIX: A SIMPLIFIED SPECTRAL BUDGET

Consider the Reynolds-averaged TKE budget in a stationary
and planar-homogeneous flow with no mean vertical velocity
(i.e., W̄ = 0) given by Ref. [35]

∂e

∂t
= 0 = −u′w′ dŪ

dz
− ∂

∂z
(w′e + w′p′) − ε̄, (A1)

where e is, as before, the turbulent kinetic energy =
1
2 (σ 2

u + σ 2
v + σ 2

w), Ū is the mean velocity at z, u′w′ is the
momentum flux, and the first, second, and third terms are
the mechanical production, the TKE transport by turbulence
and pressure-velocity interactions, and viscous dissipation,
respectively. In the equilibrium or logarithmic region of
a boundary-layer, the transport terms are usually small
resulting in a near-balance between production and dissi-
pation of TKE as was assumed by Townsend and many
others [35].

If the mean TKE dissipation rate (=ε̄) is a conservative
quantity in the energy cascade, then a spectral budget can be
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derived as [36]:

ε̄ = −dŪ

dz

∫ ∞

k

τ (p)dp + F (k) + 2ν

∫ k

0
p2ETKE(p)dp,

(A2)

where the first, second, and third terms represent the pro-
duction of turbulence in the range of [k,∞], the transfer
of turbulence energy in the range [k,∞], and the viscous
dissipation in the range of [0,k]. Here, the functions F (k),
τ (k), and ETKE(k) are averaged over all directions in the
wavevector space as the turbulence is nonisotropic, and
k = √

k2
x + k2

y + k2
z , where x, y, and z are the longitudinal,

lateral, and vertical directions, respectively. The treatment
of dŪ/dz as a constant external to the spectral budget is a
major simplification permitting analytical tractability. Two
asymptotic conditions must now be satisfied so that this
spectral budget recovers the classical results of turbulent
boundary layers in the equilibrium or logarithmic regions. The
first is that at k = 0, F (0) = 0, and

ε̄ = −dU

dz

∫ ∞

0
τ (p)dp = −dŪ

dz
(u′w′), (A3)

so that
∫ ∞

0 τ (p)dp = u′w′. This is the main result for the
equilibrium region as earlier noted, necessitating a balance
between mechanical production and ε̄. The second is that as
k → ∞, F (∞) → 0, and

ε̄ ≈ 2ν

∫ ∞

0
p2ETKE(p)dp, (A4)

or the mean TKE dissipation rate is primarily occurring via
the viscous term at very large k.

As noted in the main text, the Heisenberg model for F (k)
is given as

F (k) = νt (k)|curl ũ|2 ≈ 2νt (k)
∫ k

0
p2ETKE(p)dp, (A5)

where the eddy viscosity coefficient νt (k) is produced by the
motion of eddies with wavenumbers greater than k, and ũ

is the “macro-scale” component of the velocity. With these
approximations, the spectral budget can be expressed as

ε(k)= ε̄+ dŪ

dz

∫ ∞

k

τ (p)dp=2[νT (k) + ν]
∫ k

0
p2ETKE(p)dp.

(A6)

Noting that ∫ ∞

0
τ (p)dp = u′w′ = −ν̄t

dŪ

dz
, (A7)

and assuming an analogous gradient-diffusion closure in the
spectral domain yields,

dŪ

dz

∫ ∞

k

τ (p)dp ≈ Atνt (k)

(
dŪ

dz

)2

, (A8)

where At is a normalizing constant needed to ensure that
Eq. (A3) is satisfied for a given ETKE(p) shape, and as before,

νt (k) = CH

∫ ∞

k

√
ETKE(p)

p3
dp, (A9)

is the Heisenberg eddy viscosity. If ETKE(p) = Coε̄
2/3p−5/3 is

also assumed for p ∈ [1/z,∞], then

νt (k) = 3

4
CH

√
Coε̄

1/3k−4/3. (A10)

Noting that in the equilibrium layer, dŪ/dz = u∗/(kvz), the
production term associated with the spatial gradients can now
be estimated and is given as

dŪ

dz

∫ ∞

1/z

τ (p)dp ≈ −AtCH

3
√

Co

4k
4/3
v

u3
∗

kvz
. (A11)

Hence, the spectral budget equation in the vicinity of kz ≈ 1
is

ε̄ + dŪ

dz

∫ ∞

k

τ (p)dp ≈
(

1

kv

u3
∗k

)
[A′], (A12)

where

A′ =
[

1 − AtCH

3
√

Co

4k
3/4
v

]
. (A13)

The original spectral budget equation is now given as

A′ 1

kv

u3
∗k ≈ 2(νt (k) + ν)

∫ k

0
p2ETKE(p)dp. (A14)

Depending on the value of At , the spatial gradient term remains
significant at kz ≈ 1 and may not be neglected, but the fact
that it scales with u3

∗/(kvz), as shown here, allows us to recover
the original argument leading to the −1 power law to within
a constant A′. To further illustrate, note that upon adopting
the Heisenberg representation of the eddy-viscosity results
in

A′ 1

kv

u3
∗k ≈

[
2CH

∫ ∞

k

√
ETKE(p)

p3
dp

] ∫ k

0
p2ETKE(p)dp,

(A15)

where ETKE(p) = Coε̄
2/3p−5/3 is again assumed for p ∈

[1/z,∞], but a general power-law spectrum of the form
ETKE(p) = Apα is assumed for p ∈ [0, 1/z]. This result
differs from the original version of the manuscript only by
a constant A′.
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