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Experiments and analysis of drainage displacement processes relevant to carbon dioxide injection

Saman A. Aryana and Anthony R. Kovscek
Department of Energy Resources Engineering, Stanford University, Stanford, California 94305, USA

(Received 26 March 2012; published 13 December 2012)

The motivation for this work is a dramatically improved understanding of the fluid mechanics of drainage
processes with applications such as CO2 storage in saline aquifers and water-alternating-gas injection as an
enhanced oil recovery method. In this paper we present in situ distributions of wetting and nonwetting fluids
obtained during core-scale two-phase immiscible drainage experiments. The ratio of the viscosity of the resident
fluid to that of the invading fluid varies across a range of 0.43 to 150. Saturation distributions observed during
dynamic displacement experiments are surprisingly smooth and do not display only one or a few dominant fingers,
contrary to the indications of the current literature. The analysis of the saturation distribution using the fractal
dimensions of the dynamic three-dimensional saturation distributions suggests that the constitutive relationships
for porous media, namely, the relative permeability functions, are history dependent. Accordingly, it is suggested
that the nonlinear, unstable flow regime is the regime where efforts to improve physical understanding must be
focused.
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I. INTRODUCTION

Multiphase flow associated with CO2 sequestration in
geological saline formations and injection of slugs of CO2

as part of enhanced oil recovery schemes is complex. A
fundamental understanding of two-phase, immiscible flow
in natural porous media across a range of parameters, i.e.,
viscosity ratios, helps us understand the behavior and develop
models that approximate physics more closely. Capillary,
viscous, and gravitational forces determine the dynamics of
two-phase, immiscible flow. The relative magnitude of these
forces are often quantified as

Nca = Uμ

σ
(capillary number), (1)

M = λi

λr

(mobility ratio), (2)

Bo = �ρgd2

σ
(Bond number), (3)

where the subscripts i and r refer to the invading and resident
phases, respectively, U is the invading phase Darcy velocity,
μ is viscosity, σ is the interfacial tension, λ is phase mobility,
�ρ is the difference in density between the two phases
(resident and invading), g is acceleration due to gravity,
and d is a characteristic distance. The current challenges in
formulating multiphase dynamics arise from the difficulty in
characterizing the heterogeneity and complexity inherent in
natural geological porous media and the instability of the flow
dynamics due to large differences in density and viscosity
between CO2 and the resident fluid. Significant research has
been conducted to date to characterize unstable multiphase
flow processes [1–7]. Nevertheless, multiscale experimental
data suggest current models are lacking in terms of predictive
capabilities [1,8,9].

The objective of this research is to investigate the rele-
vant physical mechanisms responsible for instabilities during
drainage (i.e., nonwetting phase injection) via detailed exper-
imentation. In this effort, we investigate the flow dynamics
of drainage processes via core-scale experiments across a
range of viscosity ratios. The following section describes

the apparatus, methods, and fluid pairs. An analysis of the
data follows along with the results. The analysis comprises
two parts. The first part presents a comparison between the
wavelength of perturbations on the interface between the two
fluids in the displacement experiments and the predictions
of linear stability analysis. The second part explores the
self-similar and fractal characteristics of the experimental sat-
uration distribution. The analysis reveals the time dependence
of the two-phase fractional flow function and as a consequence
the constitutive relationships for porous media.

II. EXPERIMENTS

The experimental apparatus used in this research includes
a Teledyne ISCO 500D syringe pump, a Berea Sandstone core
placed in an aluminum sleeve and potted with epoxy, and eight
differential pressure Celesco transducers (one at the inlet, one
at the outlet, and six along the core at 10-cm intervals). The
setup is shown in Fig. 1. Core characterization and in situ
measurements of saturation distributions are obtained using
an x-ray computerized tomography (CT) scanner (GE HiSpeed
CT/i helical CT). The spatial resolution of the measurements
is determined by voxel volume, which is 0.195 mm2 × 3
mm along the length of core. Due to practical limitations on
the number and frequency of scans, 12 sections along the
length of core are scanned throughout the experiments. Raw
CT data are processed to obtain porosity and phase saturation
distributions. According to Beer’s law, the porosity for each
voxel is determined as

φ = χwet − χdry

χw − χa

, (4)

where χ is proportional to x-ray attenuation as a result of
its passage through the setup and is measured in units of
Hounsfield (H). χwet and χdry refer to CT numbers associated
with fully water and air saturated rock, respectively. χw and
χa represent CT numbers associated with pure water and air,
respectively. The nonwetting phase saturation for each voxel
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FIG. 1. (Color online) Experimental setup.

is calculated as

Sn = χexp − χwet

φ (χn − χw)
, (5)

where χexp are CT numbers associated with the rock during
experiments, χwet are CT numbers obtained while the rock
is fully saturated with a wetting phase, φ is the voxel-by-
voxel matrix of porosity at the particular image location, and
χw and χn are CT numbers of pure wetting and nonwetting
phases, respectively. Equations (4) and (5) yield porosity and
saturation values for voxels that make up the scanned sections
of the core. The values corresponding to points in the rock
between the scanned sections are calculated using a linear
interpolation between the sections.

The core is a Berea Sandstone cylinder of 5.08 cm in
diameter and 60 cm in length (Cleveland Quarries). The core
is strongly water-wet and has an average porosity of 0.19 and
permeability of 0.25 D (μm2). The average porosity at each
scan location is shown in Fig. 2. The rock is characterized as
fairly homogeneous, especially in the cross sections normal to
flow where little variation in porosity is measured.

The experiments are conducted using pairs of fluids that
are analogous to CO2 injection into saline aquifers in the
sense that the viscosity ratio is characteristic of the two fluids
in each pair during drainage processes. The fluid pairs are
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FIG. 2. Porosity profile along sandstone core.

TABLE I. Experimental fluids and capillary numbers.

Experiment Invading Resident vr
a Nca

1 n-decane brineb 1.1 2 × 10−7

2 isooctanec brineb 2.1 3 × 10−7

3 n-heptane brineb 2.6 3 × 10−7

4 n-hexane brineb 3.2 4 × 10−7

5 n-pentane brineb 4.4 4 × 10−7

6 n-decane mix15d 15.0 1 × 10−6

7 n-decane mix10e 10.0 2 × 10−6

8 n-decane mix20f 19.7 3 × 10−6

9 n-decane mix30g 30.0 4 × 10−6

10 n-pentane mix150h 150.0 8 × 10−6

11 white mineral oil mix15d 0.43 5 × 10−5

aViscosity ratio.
b8% (by weight) sodium bromide solution,
c2,2,4-Trimethylpentane.
dMixture of 8% (by weight) sodium bromide solution and glycerin at
a volume ratio of 5:8.
eMixture of 8% (by weight) sodium bromide solution and glycerin at
a volume ratio of 11:12.
fMixture of 8% (by weight) sodium bromide solution and glycerin at
a volume ratio of 11:21.
gMixture of 8% (by weight) sodium bromide solution and glycerin at
a volume ratio of 25:61.
hMixture of 8% (by weight) sodium bromide solution and glycerin at
a volume ratio of 46:125.

also analogous to the gas-water displacement of a water-
alternating-gas injection process. Major factors contributing to
the choice of pairs of analogous fluids include the following:
(1) target injection rates and viscosity ratios of interest are
achieved while the experimental setup is under much lower
average pressure than would be required if CO2 was used in
experiments, and (2) a much wider range of viscosity ratios
are examined than would be possible with CO2 and saline
solutions. The pairs of fluids are listed in Table I. The two
fluids of each pair are placed in contact with each other for
several hours prior to preparation of the experimental setup to
minimize dissolution during displacement experiments. The
pre-equilibration process minimizes mass transfer across the
interface between fluids during experiments. Subsequently, the
immiscibility assumption is more accurate and the observed
dynamics of flow is attributable to the fluid mechanics and the
relevant physical mechanisms. Sodium bromide (NaBr) (8%
by weight) is dissolved in the wetting phase in all experiments
to increase the contrast between the CT numbers of the wetting
and nonwetting phases and to minimize the possibility of
heaving of any clay particles that may reside in the natural
porous medium.

Prior to each experiment, the core is fully saturated with
the wetting phase. During displacement experiments, the
nonwetting phase is injected at a rate of 1.41 cm3/min, which
translates to U = 1 m/day and the core is scanned at prescribed
time intervals. The analogous sets of fluids used in experiments
are listed in Table I. Foster [10] and Gupta and Trushenski
[11] established the critical capillary number and the total
desaturation capillary number for Berea Sandstone using brine
and oil (decane in Gupta and Trushenski’s case) to be in
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(a) t = 0.15 pvi
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(b) t = 0.18 pvi
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(c) t = 0.21 pvi
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FIG. 3. (Color online) One-dimensional saturation profiles for experiments 11 (vr = 0.43, dotted black line with right triangles), 5
(vr = 4.4, bold dashed blue line with circles), and 6 (vr = 15, solid red line with squares) (a) at time = 0.15 pore volume injected,
(b) at time = 0.18 pore volume injected, (c) at time = 0.21 pore volume injected, and (d) at time = 0.25 pore volume injected.

the range of 10−5–10−4 and 10−2–10−1, respectively. Hence,
the flow dynamics in our experiments is viscous dominated.
The experiments described herein are drainage processes with
viscosity ratios (vr ; defined as the ratio of viscosity of the
resident fluid to that of the invading fluid at 20 ◦C) ranging
from 0.43 to 150.

III. RESULTS AND ANALYSIS

Experiments cover a range of viscosity ratios spanning
from more stable (vr = 0.43) to quite unstable displacements
(vr = 150). The evolution of the one-dimensional saturation
distributions for experiments 11, 5, and 6 (viscosity ratio =
0.43, 4.4, 15, respectively) are representative and presented
in Fig. 3. The three profiles corresponding to the different
viscosity ratios in each subfigure are at the same time. From
subfigure (a) to (d), the time spans from 0.15 to 0.25 pore
volume injected (pvi). All times precede breakthrough of the
nonwetting phase to the core outlet. There is an effect on the
displacement as the tests transition to less stable conditions.
Clearly, the degree of desaturation diminishes and the fronts
become more dispersed. For experiment 6 with vr equal to
15, the displacement front is hardly recognizable, especially
for times greater than 0.21 pvi . The displacement appears to
be mostly dispersed and resembles a rarefaction rather than a
shock.

Three-dimensional surfaces highlighting the spatial distri-
bution of the nonwetting-phase saturation of the middle of
the displacement front are shown in Figs. 4–6 for viscosity
ratios of 0.43, 4.4, and 15, respectively. The choice of the
nonwetting-phase saturation in each experiment to construct
the surfaces impacts the position of the surfaces along the core.
The rugosity of these surfaces, however, is insensitive to the
Snw chosen. The time sequences in Figs. 4 to 6 are evenly
spaced and identical in each figure, and sufficient spatial detail
is given for one to view the lack of emergence of dominant
fingers. While the average saturation front is clearly more
dispersed at greater viscosity ratios as shown in Fig. 3, Figs. 4
to 6 demonstrate that the nature of this dispersed front is the
emergence of a great number of fingers that are small in the
flow direction as well as normal to it. There seems to be a
significant amount of local instability around the front that
does not translate into a few dominant fingers engulfing all the
other fingers and propagating in the direction of flow.

A. Linear stability analysis

It has been demonstrated through experiments [2,7,12–16]
that in a displacement process where the invading fluid is
less viscous than the resident fluid the interface exhibits
instabilities that appear in the form of spatial perturbations
of the moving displacement front from the plane interface
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(a) t = 0.15 pvi (b) t = 0.18 pvi

(c) t = 0.21 pvi (d) t = 0.25 pvi

FIG. 4. (Color online) Spatial distribution of shock nonwetting-phase saturation (Snw = 0.55) for experiment 11 (vr = 0.43) (a) at time =
0.15 pore volume injected, (b) at time = 0.18 pore volume injected, (c) at time = 0.21 pore volume injected, and (d) at time = 0.25 pore volume
injected. In each subfigure, the axis corresponding to the length of the core is represented in millimeters. The other two axes are represented in
pixels where 1 pixel ≈ 0.195 mm.

between the two fluids. As a preliminary step to further
analysis, we apply the linear stability analysis of an interface
under the influence of viscous, gravity, and capillary forces
as outlined by Chuoke et al. [17]. The modes of these
deformations are greater than a critical wavelength, λc, given
by

λc = 2π

√
σ ∗K

U (μr − μi)
. (6)

The wavelength (twice the finger width) of maximum instabil-
ity, λm, is calculated by

λm = 2
√

3π

√
σ ∗K

U (μr − μi)
. (7)

In these equations μr and μi refer to viscosity of the
resident and invading fluids, respectively, K is the absolute
permeability of the medium, U is the injection Darcy velocity,
and σ ∗ is an effective interfacial tension. A basic assumption
is that instabilities occur when (μr − μi) > 0.

Chuoke et al. [17] found, through comparison with experi-
mental results, the value of σ ∗ to be about eight times the bulk
fluid-fluid interfacial tension (σequilibrium) at equilibrium. The

approach adopted by Chuoke et al. [17] describes cases where
the two immiscible fluids involved in the displacement process
are separated by a sharp interface, such as is the case in Hele-
Shaw cells [18–20]. This approach, however, is merely a first-
order approximation for two-phase, immiscible displacements
in porous media where capillary forces act over a transition
zone rather than a sharp interface. The displacement is not
complete and the two phases may flow simultaneously through
the pores [18,21]. It is, nonetheless, a first-order approxima-
tion, as evident in a number of studies [1,22], to determine
whether wavelengths associated with viscous fingers in the
experiments are expected to be much greater than the diameter
of the core. By using the bulk interfacial tensions reported in
Table I and assuming σ ∗ ≈ 8σequilibrium, the most prominent
finger width for each experiment is calculated and listed in
Table II. Importantly, the finger widths predicted by Eq. (7)
are much smaller than the diameter of the core used in experi-
ments, and therefore fingers are predicted to emerge during the
dynamic displacement process. Although providing some in-
sight, this analysis is insufficient to describe later-time forma-
tion and growth of fingers. Shortly, we turn to other methods.

In a recent study, Tang and Kovscek [5] conducted a
series of imbibition displacement experiments, using a Berea
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(a) t = 0.15 pvi (b) t = 0.18 pvi

(c) t = 0.21 pvi (d) t = 0.25 pvi

FIG. 5. (Color online) Spatial distribution of shock nonwetting-phase saturation (Snw = 0.52) for experiment 5 (vr = 4.4) (a) at time =
0.15 pore volume injected, (b) at time = 0.18 pore volume injected, (c) at time = 0.21 pore volume injected, and (d) at time = 0.25 pore volume
injected. In each subfigure, the axis corresponding to the length of the core is represented in millimeters. The other two axes are represented in
pixels, where 1 pixel ≈ 0.195 mm.

Sandstone core similar in dimension to that used in the
present study and a CT scanner to capture the dynamics
of flow. The experimental observations were compared with
high-accuracy numerical simulations and in-depth and more
accurate linear stability analyses [9] similar in formulation to
that by Yortsos and Hickernell [18]. It was concluded that the
appearance of the reported dominant fingers is supported by
the linear stability analysis. In-depth and rigorous analytical
and numerical treatments of linear stability analysis have been
presented by several authors, i.e., [18,23]. The absence of
dominant fingers within the displacement front in this study
leads us to take another look at the constitutive relationships
for porous media and the continuum equations that describe
such phenomena, as discussed next.

B. Fractal analysis

Fractal dimension (df ) is a measure of the volume of a
fractal set with respect to its linear size. The fractal dimension
of a solid line or a solid cylinder is a nonfractal set and equals
the Euclidean dimension in which it exists. The dimension
df associated with a set S in a Euclidean space Rn is

defined as [24]

df (S) = lim
l→0

log N (l)

log 1/l
, (8)

where N (l) represents the number of boxes with side length
l required to contain the set fully. If the displacement experi-
ments were perfectly piston-like, sets of S in the experimental
results would be right circular cylinders. The volume of such a
cylinder is enclosed by the outer surface of the core, with
one plane corresponding to the inlet and the other plane
corresponding to the surface between the two phases. The
displacements, however, are far from perfect cylinders. Sets
of S in the experiments reside in R3 Euclidean space and
are three-dimensional shapes defined by the outer surface of
the core, the inlet plane, and a jagged surface corresponding
to the deformations due to instabilities in flow. This uneven
surface is defined as a surface comprising points in the medium
that have reached prescribed saturation values, selected to
represent the shock. The fractal dimensions, as defined in
Eq. (8), are calculated for each and every saturation distribution
and reported in Table III. Also given are their standard errors of
estimation, associated with the regression analysis performed
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(a) t = 0.15 pvi (b) t = 0.18 pvi

(c) t = 0.21 pvi (d) t = 0.25 pvi

FIG. 6. (Color online) Spatial distribution of shock nonwetting-phase saturation (Snw = 0.45) for experiment 6 (vr = 15) (a) at time = 0.15
pore volume injected, (b) at time = 0.18 pore volume injected, (c) at time = 0.21 pore volume injected, and (d) at time = 0.25 pore volume
injected. In each subfigure, the axis corresponding to the length of the core is represented in millimeters. The other two axes are represented in
pixels where 1 pixel ≈ 0.195 mm.

in the calculation of the fractal dimensions [25], defined as

se =
√√√√1

v

n∑
i=1

(ŷ − yi)2. (9)

Above, se is the standard error of estimation, v is the degree of
freedom and is equal to the sample size (n) minus the number
of unknowns estimated by the regression process (in the case
of a bivariate regression model such as ours there are two
unknowns), yi is the criterion variable, and ŷ is the predicted
value of the criterion variable by the regression model.

The evolution of the calculated fractal dimensions as
a function of dimensionless time, pvi , for all experiments
is shown in Fig. 7 using dashed lines. Each subfigure in
Fig. 7 highlights the evolution of fractal dimension for one
experiment, where dots correspond to points in time when
data were collected and the corresponding fractal dimension
was calculated and the solid lines connect the dots under the
assumption of a linear interpolation between each two adjacent
points. At long time, df converges to a value of 2.93 to 2.97
depending on the viscosity ratio. For a fractal set embedded
in the three-dimensional Euclidean space, the variation of side
length l in Eq. (8) is recommended by statisticians to be at least

of an order of magnitude of 3 [26,27]; however, unambiguous
results may be obtained from the use of data that provide

TABLE II. Width of viscous fingers as predicted by the method
of Chuoke et al. [17].

Experiment μr (cp) μi (cp) 1
2 λc

a (mm) 1
2 λm

b (mm)

1 1.05 0.92 5 8
2 1.05 0.50 2 4
3 1.05 0.41 2 3
4 1.05 0.33 2 3
5 1.05 0.24 1 3
6 13.8 0.92 1 1
7 9.2 0.92 1 1
8 18.1 0.92 <1 1
9 27.6 0.92 <1 1

10 36.0 0.24 <1 1
11 13.8 32.0 – –

aRounded to nearest integer, calculated using Eq. (6), and assuming
σ ∗ ≈ 8σequilibrium.
bRounded to nearest integer, calculated using Eq. (7), and assuming
σ ∗ ≈ 8σequilibrium.
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TABLE III. Fractal dimensions (df ) and their corresponding standard errors of estimation (se) as a function of dimensionless time (pvi).

pvi 0.12 0.18 0.25 0.31 0.37 0.43
Expt. 1 df 2.83 2.87 2.88 2.91 2.91 2.93

se 0.03 0.03 0.01 0.01 0.01 0.01

pvi 0.09 0.12 0.18 0.21 0.25 0.28 0.31 0.34 0.37 0.40
Expt. 2 df 2.78 2.83 2.87 2.86 2.88 2.89 2.90 2.91 2.91 2.93

se 0.05 0.04 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01

pvi 0.12 0.15 0.18 0.21 0.25 0.28 0.31 0.34 0.37 0.40
Expt. 3 df 2.85 2.83 2.86 2.90 2.91 2.92 2.92 2.93 2.93 2.94

se 0.03 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01

pvi 0.09 0.12 0.15 0.18 0.21 0.25 0.28 0.31 0.34 0.40
Expt. 4 df 2.81 2.84 2.83 2.86 2.86 2.90 2.92 2.92 2.93 2.95

se 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01

pvi 0.09 0.12 0.15 0.18 0.21 0.25 0.28 0.31 0.34 0.37
Expt. 5 df 2.83 2.83 2.84 2.86 2.87 2.88 2.90 2.92 2.93 2.93

se 0.05 0.04 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01

pvi 0.09 0.12 0.15 0.18 0.21 0.25 0.28
Expt. 6 df 2.68 2.77 2.83 2.89 2.90 2.90 2.92

se 0.08 0.05 0.01 0.01 0.02 0.01 0.01

pvi 0.09 0.12 0.15 0.18 0.21 0.25 0.28
Expt. 7 df 2.80 2.82 2.86 2.87 2.90 2.91 2.94

se 0.05 0.04 0.02 0.01 0.01 0.01 0.01

pvi 0.06 0.09 0.12 0.15 0.18 0.21 0.25 0.28
Expt. 8 df 2.62 2.71 2.78 2.92 2.93 2.94 2.95 2.95

se 0.09 0.06 0.02 0.01 0.01 0.01 0.01 0.01

pvi 0.09 0.12 0.15 0.18 0.21 0.25 0.28 0.31
Expt. 9 df 2.81 2.87 2.91 2.94 2.96 2.96 2.97 2.97

se 0.04 0.02 0.02 0.02 0.01 0.01 0.01 0.01

pvi 0.09 0.12 0.15 0.18 0.21 0.25
Expt. 10 df 2.80 2.91 2.95 2.96 2.97 2.97

se 0.06 0.02 0.01 0.01 0.01 0.01

pvi 0.09 0.12 0.15 0.18 0.21 0.25 0.28 0.31
Expt. 11 df 2.79 2.88 2.89 2.90 2.91 2.91 2.92 2.94

se 0.06 0.02 0.02 0.01 0.01 0.01 0.01 0.01

smaller variations in l [8]. In our case, the maximum possible
variation in side length l available in the CT data is restricted
to a factor of about 280 by the spatial resolution of the CT
scanner. This two-order-of-magnitude variation appears to be
sufficient, as demonstrated in Fig. 7.

C. Scaling of saturation profiles

Invasion percolation as proposed by Wilkinson and Willem-
sen [28] is a model based on the advancement of a displacement
front following the path of least resistance governed by mi-
croscale capillary forces under constant flow rate conditions.
It was postulated that for an immiscible drainage process, the
growth of the volume of the invading nonwetting fluid in a
given sphere is proportional to the radius of the sphere raised
to the power of the fractal dimension of ordinary percolation,
deemed to be approximately 2.5 [8,29]. As a result of the
proposed fractal behavior, the nonwetting fluid saturation
scales as [8,28,30]

Snw ∼ Ldf −3, (10)

where L is the cluster size. Wilkinson [8] suggests that, if
the predicted behavior is not seen in physical observations,
a potential culprit is the pressure gradient due to viscous
forces. The problem of invasion percolation in the presence of
viscous forces has been studied by Xu et al. [31] for drainage
processes. The case of displacement under large viscosity
ratios is described by an extension of the invasion percolation
theory, called invasion percolation in a gradient (IPG) [31]. The
theory suggests that the width of the viscous invasion front (w)
is proportional to its propagation velocity. Lam reports results
of simple network models to be consistent with percolation
theory [32] and validates the assertion of Eq. (10).

We scale saturation profiles observed in drainage displace-
ment experiments following Eq. (10) and assuming df ≈ 2.5
as reported in the literature to be the value of the fractal
dimension of invasion percolation-like structures in three
dimensions [29,33]. The spatial coordinate x is scaled as

Z = (x − x)/w, (11)

where x is the middle position of the front and w the width
of the front. This scaling, essentially, collapses the spatial
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FIG. 7. Evolution of fractal dimension with time (pore volumes
injected) for all experiments using dashed lines with each subfigure
highlighting one experiment: (a) experiment 11 (vr = 0.43), (b)
experiment 5 (vr = 4.4), and (c) experiment 6 (vr = 15). Dots corre-
spond to points in time when dynamic saturation data were collected
and fractal dimensions calculated. The solid lines connecting the dots
outline the time evolution of fractal dimensions under the assumption
of linear interpolation between each two adjacent points.

distribution of the leading edge of the fronts of all saturation
profiles to one point on the position axis. As evident in Fig. 8,
saturation profiles that are scaled as suggested in Eq. (10)
do not collapse. In fact, the tightness of the grouping of
the scaled profiles appears to have not benefited from the
transformation. Such lack of collapse using Eq. (10) is found
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FIG. 8. Experiment 6; viscosity ratio = 15. (a) Evolution of
normalized saturation profiles vs position with time; (b) saturation
profiles scaled using Eqs. (10) and (11). Roman numerals in subfigure
(a) represent times associated with each profile in pore volumes
injected: (i) 0.12, (ii) 0.15, (iii) 0.18, (iv) 0.21, and (v) 0.25.

for all experiments described here. It appears that our data are
not described by Eqs. (10) and (11).

Additionally, the widths of experimental fronts are plotted
on a log-log scale against their corresponding capillary
numbers in Fig. 9. The solid line is a linear regression fitted
to the data and has a slope of −9 × 10−4. That is, the slope is
essentially zero. The experimental front widths and capillary
numbers appear to be uncorrelated and our experiments seem
to be outside of the flow regime described by IPG.

Alternatively, we seek self-similarity in the experimental
saturation profiles inspired by work done by Ferer et al. [34]
and Sharma et al. [35]. The use of fractal dimension in the
following scaling relationships for saturation profiles stems
from a proportionality between mass of injected fluid and
time of injection given a constant injection rate [34], Eq. (12).

FIG. 9. Plot of experimental front widths vs their corresponding
capillary numbers. The front widths are dimensionless using the
length of the core as the characteristic length. The error bars represent
the range of variation of front widths in each experiment. The solid
line is a linear regression fitted to the data (average front widths for
each experiment and the corresponding capillary numbers).
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This result was revealed through numerical simulations of
diffusion-limited aggregation (DLA) [36]. Such models were
developed to capture the ramified fractal [37] structures that
form and propagate in the spatial domain with time under
conditions that promote extreme instabilities, i.e., large ratios
of the viscosity of the resident fluid to that of the invading
fluid. Such structures have been observed in a large number of
experiments using Hele-Shaw cells and artificial porous media,
i.e., two-dimensional and quasi-two-dimensional media using
glass beads [2,7,15,16,38]. Structures are analyzed using

〈m〉 ∝ t1+ε, (12)

where 〈m〉 is the first moment of mass of the invading fluid, t is
injection time under a constant injection rate, and ε is defined
as

ε = 1

df − 2
− 1. (13)

Using this relationship while seeking a self-similar solution to
the one-dimensional saturation profiles as they evolve in time,
we assume the following homogeneous functional form for
saturation [34,35]:

S(x,t) = tus(x/tv) (14)

and find u = −ε and v = 1 + ε; thus, the saturation function
scales as

S(x,t) = t−εs(x/t1+ε). (15)

Similarly, as demonstrated by Sharma et al. [35] and men-
tioned by Ferer et al. [34], the fractional flow function must
scale as

F (S,t) = f (t εS). (16)

A direct consequence of these scaling relationships is that
the constitutive relationships for porous media are functions of
both local saturation and time. In other words, the constitutive
relationships, namely, relative permeability and capillary pres-
sure functions, are history dependent. Assuming a fractional
flow that is solely a function of saturation (classical theory,
i.e., extension of Darcy’s law to multiphase flow [39]) yields

FIG. 10. (Color online) Standard deviation variation due to
variation in εx and εs .
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FIG. 11. Standard deviation variation due to variation in ε.

the wave speed (x/t) for the saturation profiles,

S(x,t) = s(x/t). (17)

We investigate self-similarity in the one-dimensional sat-
uration profiles obtained from our dynamic displacement ex-
periments using the following: the wave speed, x/t , predicted
by classical formulation [Figs. 12(b), 13(b), and 14(b)], and
the scaling suggested by Eq. (15), where the saturation values
are scaled by t−εs and their corresponding one-dimensional
position information is scaled by 1/t1+εx .

The two scaling variables, εs and εx , are varied indepen-
dently and the resulting standard deviation in the saturation

FIG. 12. Experiment 11; viscosity ratio = 0.43. (a) Evolution of
normalized saturation profiles vs position with time, (b) saturation
profiles scaled using the wave speed, (c) saturation profiles scaled
using ε = 0.2, and (d) saturation profiles scaled using the fractal
dimensions calculated from the experimental three-dimensional sat-
uration distributions (with each profile being scaled using df derived
from its corresponding three-dimensional saturation distribution).
Roman numerals in subfigure (a) represent times associated with
each profile in pore volumes injected: (i) 0.12, (ii) 0.15, (iii) 0.18,
(iv) 0.21, (v) 0.25, (vi) 0.28, and (vii) 0.31.

066310-9



SAMAN A. ARYANA AND ANTHONY R. KOVSCEK PHYSICAL REVIEW E 86, 066310 (2012)

FIG. 13. Experiment 5; viscosity ratio = 4.4. (a) Evolution of
normalized saturation profiles vs position with time, (b) saturation
profiles scaled using the wave speed, (c) saturation profiles scaled
using ε = 0.2, and (d) saturation profiles scaled using the fractal
dimensions calculated from the experimental three-dimensional sat-
uration distributions (with each profile being scaled using df derived
from its corresponding three-dimensional saturation distribution).
Roman numerals in subfigure (a) represent times associated with
each profile in pore volumes injected: (i) 0.15, (ii) 0.18, (iii) 0.21, (iv)
0.25, (v) 0.28, (vi) 0.31, (vii) 0.34, and (viii) 0.37.

data and their corresponding position data are calculated (see
Fig. 10). The intersection of the surfaces represents values
of the two scaling variables at which the scaled saturation
data and their corresponding position data assume the same
standard deviation. For every value of εx , the smaller the value
of εs the smaller is the resulting standard deviation in the
saturation data. The saturation profiles from each experiment

FIG. 14. Experiment 6; viscosity ratio =15. (a) Evolution of
normalized saturation profiles vs position with time, (b) saturation
profiles scaled using the wave speed, (c) saturation profiles scaled
using ε = 0.2, and (d) saturation profiles scaled using the fractal
dimensions calculated from the experimental three-dimensional sat-
uration distributions (with each profile being scaled using df derived
from its corresponding three-dimensional saturation distribution).
Roman numerals in subfigure (a) represent times associated with
each profile in pore volumes injected: (i) 0.12, (ii) 0.15, (iii) 0.18,
(iv) 0.21, (v) 0.25, and (vi) 0.28.

are scaled twice and each time by using the same value for εs

and εx :
(1) Based on a sensitivity analysis allowing εs and εx to

vary independently, a singular value is chosen to represent
both εs and εx for all times of each experiment such that the
standard deviation of the resulting scaled saturation profiles
are minimized [Figs 12(c), 13(c), and 14(c)]. The sensitivity
of standard deviations of the saturation and position data using

TABLE IV. Tightness of scaled saturation profiles. Smaller tightness indicates a better fit to the experimental data.

Classical Fixed exponent Variable exponent

Experiment Entire profile Across shock Entire profile Across shock Entire profile Across shock

1 0.220 0.324 0.205 0.317 0.194 0.245
2 0.171 0.257 0.162 0.186 0.141 0.161
3 0.276 0.406 0.251 0.385 0.200 0.200
4 0.250 0.387 0.215 0.352 0.193 0.180
5 0.250 0.360 0.236 0.358 0.202 0.224
6 0.282 0.330 0.319 0.384 0.266 0.276
7 0.214 0.288 0.172 0.248 0.151 0.111
8 0.170 0.258 0.159 0.206 0.135 0.189
9 0.322 0.460 0.300 0.450 0.208 0.270

10 0.310 0.378 0.278 0.344 0.200 0.261
11 0.204 0.365 0.226 0.401 0.197 0.339
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a singular ε for each experiment is also studied by varying
the value of ε and capturing the resulting standard deviation,
shown in Fig. 11.

(2) The values of ε extracted from saturation distribution
maps at each time of each experiment (see Table III) are used
in the scaling of each corresponding profile (again by assuming
εs = εx) [Figs. 12(d), 13(d), and 14(d)].

As a measure of the degree to which the scaling of the
saturation profiles is improved via the inclusion of ε in
the scaling factors, the average width of the distribution of
the scaled saturation profiles about their mean is calculated
for each experiment, once for the entire profile and a second
time for the compaction wave (the shock). In Table IV, these
average widths, referred to as tightnesses, are reported in the
following three categories: (1) classical: classical scaling using
wave speed, (2) fixed exponent: scaling using ε values based
on the aforementioned sensitivity analysis, and (3) variable
exponent: scaling using ε values obtained from experiments.
In the last case, each and every profile is scaled using its
corresponding fractal dimension.

With the exception of experiments 6 and 11, the use of
fixed exponents obtained from sensitivity analyses such as
that shown in Fig. 10 improves the tightness of the grouping
of the scaled saturation profiles. The use of variable exponents
derived from experiments results in tighter grouping of the
profiles for all experiments compared to both classical scaling
using wave speed and scaling using a single value of ε for
all profiles in each experiment. Clearly, scaling relationships
using ε are an improvement upon the use of the classical
wave-speed scaling relationship. This improvement is more
pronounced for displacement fronts with greater viscosity
ratios (see Figs. 12 to 14).

IV. DISCUSSION

Most multiphase flow experiments reported in the literature
are performed in artificial two-dimensional or quasi-two-
dimensional media, i.e., [2,7]. These processes do not consti-
tute true three-dimensional flows and are not directly compa-
rable to the experiments presented here. In a recent study, Tang
and Kovscek [5] conducted a series of imbibition displacement
experiments using a Berea Sandstone core and a CT scanner
to capture the dynamics of flow. They reported the formation
of large-scale viscous fingers and attributed the dispersed
nature of the one-dimensional saturation profiles for larger
viscosity ratios to macroscopic viscous instabilities. These
experimental observations were compared with high-accuracy
numerical simulations and linear stability analyses [9] similar
in formulation to work done by Yortsos and Hickernell [18].
It was concluded that the appearance of the reported dominant
fingers is supported by the linear stability analysis but that the
continuum model is deficient in the case of fully developed,
unstable forced imbibition. The dimensions of the core used
in these experiments are very similar to those used here.

The present study visualizes and analyzes flow instabilities
by performing core-scale primary drainage displacement ex-
periments using pairs of immiscible fluids ranging in viscosity
ratio from 0.43 to 150 in a homogeneous sandstone. A CT
scanner was used to obtain high-resolution, in situ images of
the flow dynamics and the evolution of saturation profiles in
each experiment. One-dimensional saturation profiles show
a reduction in the saturation differential associated with the
displacement front and an increase in the dispersion of the
front as a direct function of the viscosity ratio between the two
fluids. Similarly, the chaotic nature of the perturbations of the
front and the amount of bypassed resident fluid appear to have
a direct relationship with the viscosity ratio.

The results reported in Figs. 3 to 6 lead to the remarkable
observation that across a wide range of viscosity ratios the
displacement front is relatively smooth and dispersed. For
example, even large viscosity ratio displacements at the finest
scale of observation (Fig. 6) show a large number of small
viscous fingers that reside in the transition zone about the
displacement front, and no prominent fingers emerge to engulf
the smaller ones. The peak-to-peak separation between these
fingers becomes smaller with increasing viscosity ratios and
the transition zone becomes more extensive. The striking
disagreement between the predictions of linear stability
analysis and our observations inspires a renewed approach
to formulating the underlying constitutive relationships for
porous media [40].

In the classical formulation of multiphase flow in porous
media, the complexity of the constitutive relationships is
largely ignored and the relationships are assumed to be sole
functions of local saturations. One important dimension in
the domain of dependence of these relationships (relative
permeability and capillary pressure functions) is time. This
study finds evidence for time dependence of the constitutive
relationships for porous media. As shown in Figs. 12 to 14,
experimental one-dimensional saturation profiles were scaled
three different ways: once using the wave speed according to
the classical formulation and twice using scaling relationships
that make fractional flow functions time dependent. The
difference between the last two is whether the nature of
the time dependence is constant or variable. The use of
variably-time-dependent scaling relationships improves the
scaled saturation profiles somewhat compared to the other
methods (see Figs. 12 to 14). The observed improvement
is evidence for the need to provide temporal support in the
formulation of fractional flow functions. That is, constitutive
relationships evolve with time.
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