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We derive the energy spectrum in wave-number–frequency space for turbulent flows based on Kraichnan’s
idealized random sweeping hypothesis with additional mean flow, which yields the instantaneous energy
spectrum multiplied by a Gaussian frequency distribution. The model spectrum has two adjustable parameters,
the mean flow velocity and the sweeping velocity, and has the property that the power-law index of the
wave-number spectrum translates to the frequency spectrum, invariant for arbitrary choices of the mean velocity
and sweeping velocity. The model spectrum incorporates both Taylor’s frozen-in flow approximation and the
random sweeping approximation in a natural way and can be used to distinguish between these two effects when
applied to real time-resolved multipoint turbulence data. Evaluated in real space, its properties with respect to
space-time velocity correlations are discussed, and a comparison to the recently introduced elliptic model is
drawn.
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I. INTRODUCTION

One main feature of turbulence is the excitation of a
broad spectrum of fluctuations observable in most turbulent
quantities, such as the velocity, passive or active scalars,
and electromagnetic fields. Among the most important statis-
tics characterizing these fluctuating fields are second-order
quantities, such as the energy spectrum or correlation func-
tions. When measuring these quantities in turbulent flows
using time-resolved single-point measurements, one faces the
challenge to relate temporal fluctuations with spatial ones
as, e.g., Kolmogorov’s inertial-range spectrum was derived
in the wave-number domain [1]. Two distinct methods or
approximations are known in observational turbulence studies
that associate frequencies with wave-numbers: One is the
frozen-in flow hypothesis proposed by Taylor [2], which
assumes that the flow field is advected past the probe with
a mean flow in a quasifrozen manner, i.e., the turbulent
fluctuations evolve slowly compared to the mean velocity. This
naturally restricts its application to low turbulence intensities.
The second relation between temporal and spatial fluctuations
has been developed by Kraichnan [3] and Tennekes [4] in
terms of the so-called random sweeping hypothesis and is
based on the assumption that the small-scale fluctuations in a
turbulent flow are swept by the large-scale eddies in a random
manner.

Whereas, a single-point measurement is not sufficient
to decide which of these relations is valid for a given
turbulent flow, multipoint measurements have the potential to
determine the wave-number–frequency turbulence spectrum
without assuming Taylor’s hypothesis or the random sweeping
hypothesis. Multipoint measurements are available in various
laboratory and geophysical turbulence studies but are often
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limited in their statistical quality due to the challenges imposed
by real-world turbulent flows. This motivates the construction
of a simple model spectrum, which contains both the effects
of mean flow advection and the effects of random sweeping
velocity as parameters. Whereas, modeling of wave-number
spectra has been largely discussed in the literature, see, e.g.
Davidson [5] and references therein, the joint consideration
of frequencies and wave-number is treated more rarely.
Formulated in real space, this problem has been addressed
recently in the framework of the so-called elliptic model (He
and Zhang [6] and Zhao and He [7]). In the elliptic model,
two-point–two-time velocity correlations are constructed such
that the isocorrelation lines are ellipses parametrized by the
mean and sweeping velocities, which lead to much better
agreement with experimental and direct numerical simulation
(DNS) data than the classic Taylor hypothesis. This gives
further motivation to consider a simplified theoretical model
in real space and Fourier space.

Here, we derive a simple model containing the mean
flow velocity and the random sweeping velocity as free
parameters, which is motivated by an idealized advection
problem originally introduced by Kraichnan [3]. As a result,
the model spectrum consists of an instantaneous wave-vector
spectrum weighted by a Gaussian frequency distribution,
which includes the mean flow effects as a Doppler shift
term and sweeping effects as a Doppler broadening. For
power-law spectra, the model has the interesting feature that
the wave-number spectrum and frequency spectrum exhibit the
same spectral index, which leads to a |ω|−5/3 dependence of
the frequency when a classical Kolmogorov scaling is assumed
for the energy spectrum in wave-number space, independent
of the mean and sweeping velocities. We, furthermore, show
that this spectrum is consistent with the elliptic model recently
introduced by He and Zhang [6] and Zhao and He [7] and
discuss its properties with respect to space-time correlations
of the velocity.
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II. INFLUENCE OF MEAN AND SWEEPING VELOCITIES

A. Kraichnan’s advection problem revisited

To understand the effects of sweeping and mean velocities
on the wave-number–frequency spectrum, we generalize a
simple idealized advection problem originally discussed by
Kraichnan [3]. In the following, we are interested in the
statistical properties of a small-scale velocity field u, which
is swept by a large-scale velocity field v. For the sake of
simplicity, field u is taken spatially varying but is constant in
time. The sweeping velocity field v is also considered constant
in time and, due to the large scale separation, is also constant
in space. However, the sweeping velocity is assumed to have
a Gaussian ensemble distribution. Furthermore, the large-
and small-scale fields initially are assumed to be statistically
independent. Additionally, we take into account a constant
mean flow v0, which is the same for all members of the
ensemble. As a result, the total velocity field is given by
u + v0 + v. We now follow along the lines of Kraichnan [3]
and assume that the small-scale turbulent velocity field is
passively advected by the mean and sweeping velocities,

∂u(k,t)

∂t
= −i[k · (v0 + v)]u(k,t), (1)

where u(k,t) is the Fourier transform of the velocity field from
real space to wave-vector space; the time dependence enters
due to the advection by the mean and sweeping velocities. This
advection equation is readily solved, yielding the expression
for the Fourier coefficients,

u(k,t) = exp[−ik · (v0 + v)t]u(k,0). (2)

Based on this result, we now connect the two-time energy
spectrum E(k,τ ) to the instantaneous energy spectrum E(k),
which is fully specified by the statistical properties of the
velocity field u (see Appendix A for a precise definition of
the spectra). A straightforward calculation, which is detailed
in Appendix B, then yields

E(k,τ ) = E(k)〈exp[−ik · (v0 + v)τ ]〉, (3)

where E(k) = �ii(k)/2 denotes the energy spectrum in the
wave-vector domain, defined as half the trace of the spectral
energy tensor. It can also be noted that, for τ = 0, the two-time
energy spectrum reduces to the instantaneous energy spectrum
E(k,0) = E(k). The above expression can be evaluated further
as we are assuming a Gaussian sweeping velocity field, which
leads to

E(k,τ ) = E(k) exp[−ik · v0τ ]〈exp[−ik · vτ ]〉 (4)

= E(k) exp

[
−ik · v0τ − 〈v2〉k2τ 2

6

]
. (5)

For Eq. (4), we used the fact that the mean velocity is the
same for all ensemble members and, hence, can be pulled out
of the average. The averaging operation, leading to Eq. (5),
was evaluated under the above assumption of a Gaussian
distributed sweeping velocity. For the case of vanishing
mean flow v0 = 0, the original random sweeping hypothesis,
introduced in Ref. [3], is recovered. In the presence of the
mean velocity v0, the two-time energy spectrum is expressed
as a combination of harmonic oscillation exp[−ik · v0τ ] and
exponential decay exp[−ατ 2] (where α = 〈v2〉k2/6). With

this, the temporal correlations are fully specified. The (small-
scale) energy spectrum in wave-vector space E(k), however,
remains unspecified in these simple considerations and is taken
from classic turbulence theory as discussed below.

B. Wave-number–frequency spectrum

To obtain the wave-number–frequency spectrum, we note
that Eq. (5) consists of the spectrum in wave-vector space
multiplied by the Fourier transform of a Gaussian distribution
with mean velocity U = v0 and a variance specified by the
sweeping velocity V =

√
〈v2〉/3. Hence, the Fourier transform

of Eq. (4) from the time to the frequency domain leads to a
general expression for the wave-number–frequency spectrum
according to

E(k,ω) = 1

2π

∫
dτ E(k,τ ) exp[iωτ ]

= E(k)√
2πk2V 2

exp

[
− (ω − k · U)2

2k2V 2

]
. (6)

This clarifies that the mean velocity leads to a Doppler shift
in frequencies, whereas, the sweeping velocity broadens the
spectrum in the frequency domain. We emphasize that U
and V are free parameters that can be determined from flow
measurement. Although this result has been obtained for an
idealized advection problem, the main features (Doppler shift
due to mean flow and Doppler broadening due to sweeping
effects) are expected to also hold for real turbulent flows.

The energy spectrum E(k,ω) may be anisotropic, either by
anisotropy of the small-scale field u, resulting in a wave-vector
anisotropy of E(k), or by the term related to the Doppler
shift k · U . Whereas, the former is an intrinsic anisotropy of
the physical system, the latter is rather a measurement effect
that can be eliminated by Galilean transformation into the
comoving frame with the mean flow. It is worthwhile to note
that Fung et al. [8] also derived a model spectrum in the wave-
number–frequency domain very similar to the one proposed
here. Our model differs in that the frequency shift is solely by
the Doppler shift imposed by the mean flow, whereas, Fung
et al. [8] assume that random sweeping affects both frequency
shift and frequency broadening in the Gaussian distribution.

For the following discussion, we assume that the small-
scale velocity field u exhibits statistical isotropy, which implies
that the spectral tensor [9],

�ij (k) = E(k)

4πk2

[
δij − kikj

k2

]
(7)

is fully determined by the energy spectrum E(k), which
then is a function of the modulus of the wave-vector only.
Applying Kolmogorov’s similarity hypotheses [1] then leads
to an expression for the inertial-range spectrum E(k) for E(k)
in Eq. (6) according to

E(k) = CKε2/3k−5/3, (8)

with the energy dissipation rate ε and the Kolmogorov constant
CK. Interestingly, the only directional dependence in Eq. (6)
then comes from the Doppler shift term.
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FIG. 1. Streamwise wave-number–frequency spectrum for varying sweeping velocity for various ratios U/V of the mean to sweeping
velocity where the mean velocity is set at U = 0.01 m/s. Left: U/V = 1.0, middle: U/V = 5.0, and right: U/V = 20.0. The units of the
spectrum (contour scale bar) are [E(kz,ω)] = m3/s.

C. Graphical representation

The effects of the mean and sweeping velocities on the
energy spectrum can be understood from a wave-number–
frequency diagram, especially enabling us to visualize the
spectral transitions into the frozen-in flow approximation
and the random sweeping approximation. For a graphical
presentation, it is useful to consider a mean flow in the z di-
rection, U = U ez, and to reduce the wave-number–frequency
spectrum E(k,ω) to the streamwise wave-number–frequency
spectrum,

E(kz,ω) =
∫

dkx

∫
dkyE(k,ω), (9)

where kz denotes the streamwise wave-number. In the follow-
ing, we assume the Kolmogorov spectrum (8) with CK = 1.5.
A fifth-order Newton-Cotes method is used for the numerical
integration. Figure 1 (left panel) displays an example of the
streamwise spectrum in the ranges |kz| � 100 rad/m and |ω| �
2 rad/s for the energy dissipation rate ε = 1.0 × 10−6 W/kg,
the mean velocity U = 0.01 m/s, and the sweeping velocity
V = 0.01 m/s. These values are typical for oceanic turbulence
[10,11]. The spectrum exhibits a reflection symmetry under
the transformation (kz,ω) → (−kz, − ω). The spectral energy
peaks at the origin due to the algebraic decay of the spectrum
and has an elongation aligned with the Doppler shift imposed
by the mean velocity ω = kzU .

To study the limiting case of Taylor’s hypothesis, we
keep the mean velocity U = 0.01 m/s fixed and consider
U/V = 1.0 (Fig. 1, left), U/V = 5.0 (Fig. 1, middle), and
U/V = 20.0 (Fig. 1, right). The ratio of the mean to the
sweeping velocity U/V can be used to judge the validity of
frozen-in flow approximation such that larger values qualify a

better approximation. The tilt of the spectral extension reflects
the Doppler shift, which does not vary among the three cases.
The frequency broadening, on the other hand, becomes smaller
for increasing ratios of the mean to the sweeping velocity. In
the limit of vanishing sweeping velocity (V → 0), Taylor’s
frozen-in flow hypothesis is restored, and relabeling the
frequency into the wave-number [ω−5/3 → (kU )−5/3] is valid.

The other limit, vanishing mean velocity, is investigated in
Fig. 2. The sweeping velocity is fixed at V = 0.01 m/s as in
the left panel of Fig. 1, and the spectrum is evaluated for the
ratio U/V = 2.0 (Fig. 2, left); U/V = 0.5 (Fig. 2, middle);
and U/V = 0.0 (Fig. 2, right). Because the sweeping velocity
does not change, the frequency broadening is the same among
the three spectra; but the Doppler shift or the tilt of the spectral
extension is diminished with decreasing mean velocity. In the
right panel of Fig. 2, the random sweeping approximation
is restored, and the spectrum exhibits not only the reflection
symmetry (kz,ω) → (−kz, − ω), but also it is invariant
under the transformations (kz,ω) → (−kz,ω) and (kz,ω) →
(kz, − ω).

III. PROPERTIES OF THE MODEL SPECTRUM

A. Eulerian wave-number spectrum

The model spectrum (6) exhibits various interesting proper-
ties. First, we check that the Eulerian wave-number spectrum
can be recovered from our model. To this end, we integrate
over the frequency contribution,

E(k) =
∫

dω E(k,ω), (10)

which is a trivial task due to the Gaussian frequency contribu-
tion. To obtain the energy spectrum, we additionally integrate

FIG. 2. Streamwise wave-number–frequency spectrum for varying sweeping velocity for various ratios U/V of the mean to sweeping
velocity, where the sweeping velocity is set at V = 0.01 m/s. Left: U/V = 2.0, middle: U/V = 0.5, and right: U/V = 0.0.
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over solid angles yielding

E(k) =
∫ 2π

0
dϕ

∫ π

0
dϑ k2 sin ϑE(k) = CKε2/3k−5/3. (11)

That means the frequency shift, imposed by the Doppler effect
k · U , does not influence the frequency integration, leaving the
spectrum Eq. (11) invariant under a Galilean transformation.
Hence, the wave-number spectrum should be independent of
the choice of reference frame. The reduction to the wave-
number spectrum, of course, is a trivial consequence of the
fact that our model spectrum is a product of the wave-vector
contribution with a Gaussian frequency contribution.

B. Eulerian frequency spectrum

Obtaining the Eulerian frequency contribution is a more
involved task. To reduce to the frequency contribution,
integration of the full wave-vector space has to be performed.
The result reads (see Appendix C for a step-by-step evaluation)

E(ω) = C(U,V )CKε2/3|ω|−5/3, (12)

where

C(U,V ) =
∫ ∞

0
dγ

γ 2/3

4U

[
erf

(
γ + U√

2V

)
− erf

(
γ − U√

2V

)]
.

For this calculation, we have assumed an infinitely extended
inertial range, and we have chosen the coordinate system such
that U = U ez. Note that the term in brackets corresponds
to a function localized around the origin with a width
related to U and a steepness related to V , thus, leading
to a convergent integral. If we limit the inertial range and
introduce a large-scale cutoff, C(U,V ) will also depend on ω

introducing integral and dissipative effects for the Eulerian
frequency spectrum. An important feature of this result is
that the frequency spectrum is given as a power law with
precisely the same spectral index as the Eulerian wave-number
spectrum, which is a direct consequence of the fact that
the spectral broadening and the Doppler shift are linear
functions of k. This, in turn, is the outcome of Kraichnan’s
idealized advection problem. It is, furthermore, noteworthy
that the spectral index is independent of U and V , which
has interesting implications for experimental observations. In
turbulence experiments, the Eulerian wave-number spectrum
often is obtained from the Eulerian frequency spectrum by
exploiting the Taylor hypothesis and neglecting sweeping
effects. The reason why this yields satisfactory results is
revealed by our simple model calculation: The spectral index
is independent of the sweeping velocity! However, as the
prefactor C depends on U and V . This has to be taken into
account when determining the Kolmogorov constant from
experimental single-point measurements.

We also verify the reduction property for our graphical ex-
ample by integrating over the frequencies and wave-numbers,
yielding the streamwise wave-number spectrum E(kz) and the
Eulerian frequency spectrum E(ω), respectively,

E(kz) =
∫

dω E(kz,ω), (13)

E(ω) =
∫

dkzE(kz,ω). (14)

FIG. 3. Upper panel: streamwise energy spectrum and lower
panel: frequency spectrum for the choice of parameters of Fig. 1,
left panel.

Integrals are again evaluated numerically using the fifth-order
Newton-Cotes method. As can be seen in Fig. 3, both the
streamwise energy spectrum E(kz) and the frequency spectrum
E(ω) exhibit a power law with the spectral index −5/3,
confirming the above analytical result.

C. Space-time correlations and the relation to the elliptic model

To conclude the discussion of the properties of the model
spectrum, we would like to connect our results to the elliptic
model introduced by He and Zhang [6] and Zhao and He [7].
In Ref. [7], a turbulent shear flow has been considered and the
streamwise space-time correlation,

R(r,τ ) = 〈u(x,t) · u(x + rez,t + τ )〉 (15)

has been investigated. Here and in the following, we assume
the mean flow again to point into the z direction, U = U ez. The
isocorrelation lines of the space-time correlation are defined
by

R(r,τ ) = R(rE,0). (16)

With the aim to generalize Taylor’s hypothesis and motivated
by experimental and DNS results, it was proposed that
rE specifies ellipses depending on the mean and sweeping
velocities,

r2
E = (r − UEτ )2 + V 2

E τ 2. (17)

In the original paper, UE and VE have been obtained by a
second-order Taylor expansion of the streamwise correlation
function according to

UE = −Rrτ

Rrr

and V 2
E = Rττ

Rrr

− U 2
E, (18)

with Rrr = ∂2R
∂r2 (0,0), Rrτ = ∂2R

∂r∂τ
(0,0), and Rττ = ∂2R

∂τ 2 (0,0).
It turns out that our model spectrum is related to the elliptic

model in a straightforward manner. However, here, we do not
take into account shear in the mean flow but only the effects
of mean and sweeping velocities. The velocity correlation
(or covariance) is obtained from our model spectrum by
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(see also Appendix A for the definition of the two-point–two-
time velocity covariance tensor)

R(r,τ ) = Rii(rez,τ ) = 2
∫

dk dω E(k,ω) exp[i(kzr − ωτ )].

(19)
With this relation, we can also calculate the Taylor coefficients
from our model Eq. (6) yielding

Rrr = −2
∫

dk dω k2
zE(k,ω) = −2

3

∫
dk k2E(k), (20)

Rrτ = 2
∫

dk dω kzωE(k,ω) = 2

3
U

∫
dk k2E(k), (21)

Rττ = −2
∫

dk dω ω2E(k,ω)

=
(

−2V 2 − 2

3
U 2

) ∫
dk k2E(k). (22)

This leads us to the result,

U = −Rrτ

Rrr

and 3V 2 = Rττ

Rrr

− U 2, (23)

which is almost identical to the definitions (18). The additional
factor 3 comes due to the fact that we have defined V as the
standard deviation of a single component of the sweeping
velocity field. As in our model U and V , by construction,
are the mean and sweeping velocities, this result confirms the
physical interpretation of the parameters UE and VE of the
elliptic model.

Next, we derive a relation between the streamwise velocity
correlation function and the energy spectrum. To this end, we
consider

R(r,τ ) = Rii(rez,τ ) = 2
∫

dk E(k,τ ) exp[ikzr]. (24)

Now, inserting our model Eq. (5) and assuming an isotropic
small-scale velocity field, we obtain

R(r,τ ) = 2
∫

dk E(k)
sin[k(r − Uτ )]

k(r − Uτ )
exp

[
−1

2
k2V 2τ 2

]
.

(25)
For a given model energy spectrum, the space-time correlation
is hereby fully specified. In general, the last integration
now can be performed numerically. The relation of our
model spectrum to the elliptic model can still be pursued
further. Evaluating relation (16) leads to the condition for the

isocorrelation lines of our model,

∫
dk E(k)

sin[k(r − Uτ )]

k(r − Uτ )
exp

[
−1

2
k2V 2τ 2

]

=
∫

dk E(k)
sin krE

krE
. (26)

Although this relation cannot be solved for rE analyti-
cally, a second-order Taylor expansion of the integrands
leads to

r2
E = (r − Uτ )2 + 3V 2τ 2, (27)

which is precisely the starting point of the elliptic model.
Hence, our calculations give further theoretical justification
for the elliptic model. Because this result is obtained as a
second-order approximation, it is also interesting to compare
the ellipses defined by Eq. (27) to the isocorrelation lines of
our model. This is shown in Fig. 4 for a spectrum, which
is chosen to obey E(k) ∼ k−5/3 in the inertial range from
k = 0.1 to k = 100.0 rad/m and vanishing elsewhere for three
different parameter sets: U = 0.0 and V = 0.01 m/s (Fig. 4,
left, random sweeping approximation); U = V = 0.01 m/s
(Fig. 4, middle); and U = 0.01 and V = 0.002 m/s (Fig. 4,
right, close to the frozen-in flow approximation). As expected
for a low-order approximation, in all three cases, the elliptic
model compares satisfactorily to the isocorrelation lines of
our model for small temporal and spatial distances. For larger
distances, however, systematic deviations become apparent
especially for small ratios of mean and sweeping velocities.
This is especially visible for the case where mean and sweeping
velocities are identical (Fig. 4, middle) where our model
clearly predicts nonelliptical and asymmetric isocorrelation
lines. The agreement of the two models becomes better for
increasing ratios of mean and sweeping velocities. Because the
elliptic model can be regarded as a higher-order improvement
of Taylor’s hypothesis, it is evident that a better agreement
occurs with an increasing ratio of mean and sweeping
velocities as can be seen in Fig. 4 (right). We would like to
stress, though, that it is not evident at this stage which of the
models yields a more accurate description of turbulent flows.
A comparison to experimental or DNS data as presented in
Refs. [12–15] as well as an investigation of different choices
of model wave-number spectra is a possible direction for future
work.

FIG. 4. Streamwise space-time correlation evaluated from Eq. (25) in the wave-number range from 0.1 to 100.0 rad/m for three cases: left
panel: U = 0.0 and V = 0.01 m/s; middle panel: U = V = 0.01 m/s; and right panel: U = 0.01 and V = 0.002 m/s. The solid black lines
define the isocorrelation lines (27) of the elliptic model.
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IV. SUMMARY AND DISCUSSION

By extending a simple advection problem initially proposed
by Kraichnan [3], we derived a simple model spectrum in
the wave-number–frequency domain including the mean and
sweeping velocities in a natural way. The model spectrum
consists of an instantaneous spectrum in the wave-vector
domain multiplied by Gaussian frequency distribution. The
mean value of this distribution depends on the mean flow
velocity and induces a Doppler shift, whereas, the variance
is specified by the random sweeping velocity inducing a
frequency broadening.

The spectrum is reduced either to the wave-number or to
the frequency spectrum by integration. Provided the energy
spectrum in wave-number space has a power-law dependence,
the model has the interesting property that the frequency
spectrum exhibits the same spectral index, independent of the
mean and sweeping velocities. As our calculations show, this
is a simple consequence of the fact that the Doppler shift and
frequency broadening are linear functions of the wave-number.
Opposed to this invariance of the spectral index, the prefactor
of the spectrum is found to depend on the mean and sweeping
velocities.

These results have interesting consequences for mea-
surements of turbulent flows: Due to the independence of
the spectral index of the mean and sweeping velocities, it
is not possible to uniquely determine the wave-number–
frequency spectrum from the measurement of either the
wave-number or the frequency spectrum without knowl-
edge of the characteristic velocities (U and V ). The wave-
number–frequency spectrum is accessible only by proper
multipoint measurements that allow us to distinguish be-
tween temporal and spatial fluctuations. Moreover, once
the two characteristic velocities are available from multi-
point measurements, our model can be used for a low-
dimensional parametrization of a full wave-number–frequency
spectrum.

It is worth mentioning that the determination of the charac-
teristic velocities might also be possible from spatio-temporal
sampling of data other than velocity, for example, from a
measurement of density or temperature variation (assuming
a passive scalar model), providing an independent method of
velocity measurements.

We have also discussed the implications of our model
spectrum for the two-point–two-time velocity correlations,
which are obtained by Fourier transform. As expected, the
space-time correlations decay with increasing temporal and
spatial separations leading to approximately elliptical isocor-
relation lines. The model spectrum has also been shown to
be closely related to the recently introduced elliptic model. In
particular, we have shown that the assumptions underlying the
elliptic model can be derived from our simple model giving
further theoretical justification.

In Ref. [16], the random sweeping hypothesis has been used
to evaluate time correlations of the pressure field. A possible
generalization of these calculations to the case of additional
mean flow remains an interesting future application of the
current model.
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APPENDIX A: NOTATION AND CONVENTIONS

This section gives a brief overview of the notation and
conventions used in this paper. We introduce the Fourier
transform of the velocity field according to

u(x,t) =
∫

dk u(k,t) exp[ik · x], (A1)

u(k,t) = 1

(2π )3

∫
dx u(x,t) exp[−ik · x]. (A2)

In the following, we will consider statistically stationary
and homogeneous turbulence, which implies that two-point
quantities depend only on the distance vector r , and two-time
quantities depend only on the time lag τ .

In the literature, the two-point–one-time velocity covari-
ance tensor for turbulence usually is defined as (see, e.g.,
Ref. [9])

Rij (r) = 〈ui(x,t)uj (x + r,t)〉. (A3)

Its Fourier transform, the so-called energy spectrum tensor, is
defined as

�ij (k) = 1

(2π )3

∫
d r Rij (r) exp[−ik · r]. (A4)

The inverse relation simply reads

Rij (r) =
∫

dk �ij (k) exp[ik · r]. (A5)

The kinetic energy per Fourier coefficient can simply be
obtained from the energy spectrum tensor by

E(k) = �ii(k)

2
. (A6)

We will refer to this quantity as the instantaneous energy
spectrum. Until now, only single-time quantities have been
considered. To generalize these considerations to the two-time
case, we define the two-point–two-time velocity covariance
tensor,

Rij (r,τ ) = 〈ui(x,t)uj (x + r,t + τ )〉, (A7)

and its Fourier transform to wave-vector space,

�ij (k,τ ) = 1

(2π )3

∫
d r Rij (r,τ ) exp[−ik · r] . (A8)

Relation (A6) can be generalized in the same manner to

E(k,τ ) = �ii(k,τ )

2
, (A9)

066308-6



WAVE-NUMBER–FREQUENCY SPECTRUM FOR . . . PHYSICAL REVIEW E 86, 066308 (2012)

which will be called the two-time energy spectrum. As
becomes clear from these definitions, the two-time quan-
tities are distinguished from the one-time quantities only
by an additional argument. The energy spectrum in the
wave-number–frequency domain is then obtained by

E(k,ω) = 1

2π

∫
dτ E(k,τ ) exp[iωτ ], (A10)

with the inverse transform,

E(k,τ ) =
∫

dω E(k,ω) exp[−iωτ ]. (A11)

Compared to the definitions (A4)–(A5), we have defined the
Fourier transform with opposite sign, which is physically
consistent with an expansion into forward propagating waves
along the wave-vector k.

APPENDIX B: COVARIANCE OF
FOURIER COEFFICIENTS

To derive a relation between the two-time energy spectrum
and the instantaneous energy spectrum for Kraichnan’s advec-
tion problem, it is convenient to first calculate the covariance
of two arbitrary Fourier coefficients and then to establish
a connection of the one-time and two-time spectral energy
tensors. To this end, we make use of Eq. (A2) and consider

〈ui(k,t)uj (k′,t ′)〉 = 1

(2π )6

∫
dx dx′〈ui(x,t) uj (x′,t ′)〉

× exp[−i(k · x + k′ · x′)]. (B1)

We now set t ′ = t + τ and x′ = x + r . Due to homogeneity,
the two-point–two-time velocity covariance is independent
of x and, hence, can be pulled out of the x integration.
Additionally, we note that

δ(k + k′) = 1

(2π )3

∫
dx exp[−i(k + k′) · x]. (B2)

This connects the covariance of the Fourier coefficients to the
two-point–two-time velocity covariance tensor and its Fourier
transform, the two-time spectral energy tensor,

〈ui(k,t)uj (k′,t + τ )〉
= δ(k + k′)

(2π )3

∫
d r Rij (r,τ ) exp[−ik′ · r]

= δ(k + k′)�ij (k′,τ ). (B3)

For τ = 0, this relation reduces to the corresponding single-
time relation.

For Kraichnan’s advection problem, the two-time and
single-time covariances are connected in a specifically simple
manner. By insertion of the solution (2), we obtain

〈ui(k,t)uj (k′,t + τ )〉
= 〈ui(k,0)uj (k′,0) exp[−ik · (v0 + v)t − ik′

· (v0 + v)(t + τ )]〉
= 〈ui(k,0) uj (k′,0)〉〈exp[−ik · (v0 + v)t

− ik′ · (v0 + v)(t + τ )]〉, (B4)

where the second equality comes from the fact that the small-
scale velocity field u and the sweeping velocity field v initially

are statistically independent. In terms of the spectral energy
tensors, this relation takes the form

δ(k + k′)�ij (k′,τ )

= δ(k + k′)�ij (k′)〈exp[−ik · (v0 + v)t − ik′

· (v0 + v)(t + τ )]〉. (B5)

Integration over k′ lets us eliminate the δ functions and finally
yields

�ij (k,τ ) = �ij (k)〈exp[−ik · (v0 + v)τ ]〉, (B6)

which especially implies the desired result,

E(k,τ ) = E(k)〈exp[−ik · (v0 + v)τ ]〉. (B7)

APPENDIX C: CALCULATION OF THE
FREQUENCY SPECTRUM

The frequency spectrum is obtained from the wave-
number–frequency spectrum by integration of the wave-vector.
A step-by-step evaluation yields

E(ω) =
∫

dk E(k,ω)

=
∫

dk
E(k)√
2πk2V 2

exp

[
− (ω − k · U)2

2k2V 2

]

=
∫ ∞

0
dk

∫ 2π

0
dϕ

∫ π

0
dϑ sin ϑ

CKε2/3k−8/3

4π
√

2πV 2

× exp

[
− (ω − kU cos ϑ)2

2k2V 2

]

=
∫ ∞

0
dk

CKε2/3k−8/3

4U

×
[

erf

(
ω + kU√

2kV

)
− erf

(
ω − kU√

2kV

)]

γ=ω/k= |ω|−5/3
∫ ∞

0
dγ

CKε2/3γ 2/3

4U

[
erf

(
γ + U√

2V

)

− erf

(
γ − U√

2V

) ]
= C(U,V )CKε2/3|ω|−5/3,

(C1)

where

C(U,V ) =
∫ ∞

0
dγ

γ 2/3

4U

[
erf

(
γ + U√

2V

)
− erf

(
γ − U√

2V

)]
.

For this calculation, we have assumed an infinitely extended
inertial range, and we have chosen the coordinate system such
that U = U ez. If we limit the inertial range and introduce a
large-scale cutoff, C(U,V ) will also depend on ω introducing
integral and dissipative effects for the Eulerian frequency
spectrum.
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