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Statistics of the active temperature and passive concentration advected by the one-dimensional stationary
compressible turbulence at Reλ = 2.56 × 106 and Mt = 1.0 is investigated by using direct numerical simulation
with all-scale forcing. It is observed that the signal of velocity, as well as the two scalars, is full of small-scale
sawtooth structures. The temperature spectrum corresponds to G(k) ∝ k−5/3, whereas the concentration spectrum
acts as a double power law of H (k) ∝ k−5/3 and H (k) ∝ k−7/3. The probability distribution functions (PDFs)
for the two scalar increments show that both δT and δC are strongly intermittent at small separation distance
r and gradually approach the Gaussian distribution as r increases. Simultaneously, the exponent values of the
PDF tails for the large negative scalar gradients are qθ = −4.0 and qζ = −3.0, respectively. A single power-law
region of finite width is identified in the structure function (SF) of δT ; however, in the SF of δC, there are two
regions with the exponents taken as a local minimum and a local maximum. As for the scalings of the two SFs,
they are close to the Burgers and Obukhov-Corrsin scalings, respectively. Moreover, the negative filtered flux at
large scales and the time-increasing total variance give evidences to the existence of an inverse cascade of the
passive concentration, which is induced by the implosive collapse in the Lagrangian trajectories.
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I. INTRODUCTION

The one-dimensional (1D) randomly forced Burgers equa-
tion

∂tu + u∂xu = ν∂2
xu + f, (1.1)

among the simplest theoretical models in the nonequilibrium
statistical mechanics, is often served as a model for turbulence
without pressure [1–13]. More precisely, when driven by the
white-in-time, zero-mean force added at large scales, the
Burgers flow is dominated by shocks, leading to the energy
spectrum E(k) ∝ k−2 and the velocity structure function (SF)
Sp(r) =< |δu|p >∝ r1 at p � 1 [1,14,15]. Totally different
E(k) and Sp(r) are obtained when the force becomes all-scale
and its formula in spectra space satisfies [2]

〈f̂ (k,t)f̂ (k′,t ′)〉 = 2(2π )2Dk−1δ(k + k′)δ(t − t ′), (1.2)

where the circumflex denotes the Fourier representation.
It corresponds to the almost constant energy flux 	(k) ∝
ln(k/k0), where k0 is the largest allowed wave number.
Simulations on this all-scale forced Burgers flow give that
E(k) ∝ k−5/3, characteristic of Kolmogorov turbulence. But
Sp(r) shows strong deviations from the Kolmogorov picture,
it is Sp�3 ∝ r1, characteristic of shocks [2,3,16]. In a word,
this Burgers flow has both normal spectrum and anomalous
scaling.

The scalar advected by compressible hydrodynamic turbu-
lence is of fundamental importance in many problems ranging
from astrophysics [17] to combustion [18], because it is the
compressible rather than the Burgers turbulence arising in a
large number of applications such as supersonic combustion,
interplanet space exploration, and star-forming clouds [19].
Therefore, in this paper, we carry out a numerical investigation
on the statistical behaviors of temperature and concentration
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in the 1D compressible Navier-Stokes (NS) turbulence forced
by Eq. (1.2). Although both temperature and concentration are
scalars advected by the same velocity, their properties are quite
different. The temperature influences the velocity, as through
the buoyancy force [20], then is named as an active scalar.
Conversely, the concentration is a passive scalar because its
feedback on the velocity is negligible. This means that the
passive concentration belongs to the realm of linear problems,
whereas the active temperature coupling the velocity makes
the problem fully nonlinear [20].

Moreover, on the influence of the strong compressibility
of the 1D compressible flow, the Lagrangian trajectories of
the passive concentration collapse implosively, leading to
the appearance of the upscale inverse cascade in the flux
transfer [21–23]. The remainder of this paper is organized
as follows. In Sec. II we describe the numerical schemes
and simulated parameters, and then the basic properties
of the 1D compressible flow. The statistics of temperature
and concentration, including various probability distribution
functions (PDFs), SFs, scaling exponents, and spectra, are
analyzed in Sec. III. In Sec. IV, we give a summary and
discussion.

II. NUMERICAL SCHEMES AND BASIC
FLOW PROPERTIES

The numerical schemes for constructing the 1D com-
pressible flow are the seventh-order Weighted Essentially
Non-Oscillatory (WENO) method [24] for space discretization
and the third-order total variation diminishing (TVD) Runge-
Kutta method [25] for time advancement. By introducing the
scales of length L, velocity U , temperature T0, density ρ0,
dynamic viscosity μ0, thermal conductivity κ0, and molecular
diffusivity χ0, the dimensionless form of governing equations
are written as

∂tρ + ∂x(ρu) = 0, (2.1)
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∂t (ρu) + ∂x

(
ρu2 + p

γM2

)
− 1

Re
∂x(μ∂xu) = ρfu, (2.2)

∂tE + ∂x

[
(E + p

γM2
)u

]
− 1

Re
∂x[(μ∂xu)u] − 1

α
∂x(κ∂xT )

= ρufu, (2.3)

∂t (ρC) + ∂x(ρuC) − γM2

α
∂x(χ∂xC) = ρfC, (2.4)

p = ρT , (2.5)

where ρ, u, T , and C are for density, velocity, temperature,
and concentration, respectively, and the total energy per unit
volume E is

E = p

(γ − 1)γM2
+ ρu2

2
. (2.6)

Here, α ≡ RePr(γ − 1)M2, Re ≡ ρ0UL/μ0 is the Reynolds
number, Pr ≡ μ0Cp/κ0 is the Prandtl number with value of
0.7, Cp is the heat capacity at constant pressure. M ≡ U/c0 is
the reference Mach number, c0 = √

γRT0 is the sound speed,
R is the gas constant, γ is the adiabatic exponent of gas and
its value is set as 1.4.

We employ the Sutherland’s law [26] to specify the
temperature-dependent dynamic viscosity, thermal con-
ductivity, and molecular diffusivity. Their dimensionless
forms are

μ,κ,χ = 1.4042T 1.5

T + 0.40417
. (2.7)

The randomly driving forces fu and fC are two independent
realizations of the same formula. In other words, they are both
white-in-time, zero mean, and their expressions in Fourier
space are as follows [2,16]:

f̂{u,C}(k,t) = Af k−s/2σk√
dt

k � kc;

(2.8)
f̂{u,C}(k,t) = 0 k > kc,

where σk is a Gaussian random variable with zero mean and
unity covariance, s = 1.0, and Af = √

2 × 10−3, dt = 5.0 ×
10−6 is the time step. The cutoff wave number kc = 20480 is
chosen well inside the dissipation range of energy spectrum.
In the simulation, we use the periodic boundary condition
of x ∈ [0,2π ] and the initial fields of {ρ,u,T ,C}(x,0) =
{1.0,1.0,1.0,1.0}. The grid resolution is set as N = 192 000.
Moreover, the 1D compressible flow is characterized by two
basic parameters, namely, the Taylor microscale Reλ and
turbulent Mach number Mt , defined as

Reλ = u′λρ
〈μ〉 , (2.9)

Mt = Mu′
√

T
, (2.10)

where u′ is the root-mean-square (r.m.s.) component fluctuat-
ing velocity and λ = u′/

√
(∂xu)2 is the Taylor microscale. The

definitions of other simulated parameters such as the energy
spectrum E(k), integral length scale LI , Kolmogorov length
scale η, and viscous dissipation rate ε are as follows:∫ ∞

0
E(k)dk = 1

2
u′2, (2.11)

FIG. 1. (Color online) The signals of velocity (top), temperature
(middle), and concentration (bottom) in the 1D compressible turbu-
lence at time t = 5.0 (solid lines) and t = 0 (dotted lines, the initial
data).

LI = 1

〈u(x,t)2〉
∫ ∞

0
〈u(x,t)u(x + r,t)〉dr, (2.12)

η =
〈

μ3

ρ3ε

〉1/4

, (2.13)

ε = 1

Re

〈
μ

ρ
ξ 2

〉
. (2.14)

The stationary state of the 1D compressible flow is achieved
for the first time at t0 = 3.4. The time-averaged values of the
Taylor Reynolds number and turbulent Mach number in the
stationary state are Reλ = 2.56 × 106 and Mt = 1.0. In Fig. 1,
we plot the stationary signals of the 1D compressible flow
at time t = 5.0. It is seen that the velocity, temperature, and
concentration are all full of the small-scale sawtooth structures,
which also appear in the Burgers turbulence driven by the same
style random force [2,3,16]. All these signals are superimposed
by the fluctuating components around their initial data. We
notice that the stationary velocity is consistent of a few large-
amplitude shocks and many small-amplitude ones. As time
progresses, these shocks may merge into a single strong shock,
but the subsequent breakdown makes it change into several
smaller ones again. In Fig. 2 we plot ργ−1 versus T , showing
that all data collapse onto the solid line, implying that the
isentropic condition is approximately valid in the 1D all-scale
forced compressible flow, which is similar to that in Ref. [27].
The time-averaged energy spectrum is plotted in Fig. 3. We
observe that in an inertial range of about two decades, the
Kolmogorov k−5/3 spectrum is reproduced.

III. NUMERICAL RESULTS

A. Probability distribution function

Figure 4 shows the time-averaged normalized PDFs for the
fluctuating components of velocity, temperature and concen-
tration, where u′

rms, T ′
rms and C ′

rms are the r.m.s. fluctuations.
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FIG. 2. (Color online) ργ−1 versus T , 1920 points are used in the
plot. The solid line is for the isentropic relationship.

The Gaussian distribution is plotted for comparison. We
observe that these PDFs are all near Gaussian at small
amplitudes and decay faster than Gaussian at large amplitudes.
This means that the tails of the PDFs are sub-Gaussian, which
is in agreement with the sub-Gaussian PDFs of scalars in
the three-dimensional (3D) NS flow [28,29] but contrasted
to the super-Gaussian PDFs of scalars in the Kraichnan flow
[20,28,30–32].

To see how the distributions of the velocity and scalars
change with increase in scale, we plot in Fig. 5 the PDFs for
the normalized velocity, temperature and concentration incre-
ments (i.e., δu/σδu, δT /σδT , δC/σδC) at different separation
distances. At the small normalized separation distance r/η,
the left and right long tails in these PDFs imply the existence
of strong intermittencies for δu < 0, δC < 0, and δT > 0,
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FIG. 3. (Color online) The energy spectrum E(k), where kc is for
the cutoff wave number of fu.
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FIG. 4. (Color online) The PDFs for velocity (dotted line),
temperature (dashed line), and concentration (solid line) normalized
by their standard deviations. The long dashed line is for the Gaussian
PDF.

respectively. The PDF tails for the three increments are all
concave at large amplitudes. This feature is consistent with
the scalar PDFs observed the experimental measurements. As
r/η increases, the PDFs are more and more narrow and become
Gaussian at r/η = 2048.

The change of the distributions of velocity and scalar
increments can be characterized by the skewness and flatness
as well. For example, those for δu are defined as follows [29]:

Sδu = 〈δu3〉
〈δu2〉3/2

, Kδu = 〈δu4〉
〈δu2〉2

, (3.1)

where 〈·〉 denotes ensemble average. Similar definitions are
for δT and δC. In Fig. 6, we plot the three skewnesses against
r/η. It shows that Sδu and SδC are negative and their local
minima are −11.06 and −6.62, respectively, whereas SδT is
positive and its local maximum is 9.57. As r/η increases, the
magnitudes of these skewnesses decrease rapidly and approach
zero, implying that when r is large enough, δu, δT , and
δC all recover to the Gaussian distribution. Additionally, the
magnitude of SδC is smaller than that of Sδu throughout the
whole r/η range, especially for the small range, indicating
that the mean flux of concentration transferring to the small
scales is smaller than that of velocity. Figure 7 shows that
the curves for δu and δT are overlapped, giving Kδu = KδT .
Moreover, the three flatnesses all increase rapidly as r/η

decreases, implying the increase in the intermittencies of δu,
δT , and δC. In the range of r/η < 750, KδC is smaller than
both Kδu and KδT , whereas they are nearly the same in the
larger-scale range. The detailed variation in flatness against
r/η is plotted in the inset. It shows that as r/η increases, all
the flatnesses approach three, the Gaussian distribution with
no intermittency.

In Fig. 8, we plot the time-averaged normalized PDFs
for the normalized velocity, temperature, and concentration
gradients (i.e., ξ/σξ , θ/σθ , ζ/σζ ). It is seen that the three
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FIG. 5. (Color online) The PDFs for δu, δT , and δC normalized
by their standard deviations at different separation distances r =
1,8,32,256,2048.
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FIG. 6. (Color online) The variations of the skewnesses of the
velocity (dotted line), temperature (dashed line), and concentration
(solid line) increments against the normalized separation distance.

PDFs all deviate drastically from Gaussian, implying strong
intermittencies. Moreover, the PDFs for ξ/σξ and ζ/σζ

are negative asymmetric whereas that for θ/σθ is positive
asymmetric. The skewnesses of ξ , θ and ζ are defined as

Sξ = 〈ξ 3〉
〈ξ 2〉3/2

, Sθ = 〈θ3〉
〈θ2〉3/2

, Sζ = 〈ζ 3〉
〈ζ 2〉3/2

. (3.2)

Here, their measured values are Sξ = −9.71, Sθ = 8.07, and
Sζ = −4.88. It is striking that the signs of Sξ (or Sζ ) and Sθ are
opposite, because similar to the concentration, the temperature
is advected by the velocity as well. The explanation is that in
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FIG. 7. (Color online) The variations of the flatnesses of the
velocity (dotted line), temperature (dashed line), and concentration
(solid line) increments against the normalized separation distance.
Inset: the same plot in the range of r/η = 101 ∼ 104.
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FIG. 8. (Color online) The PDFs for velocity (dotted line),
temperature (dashed line), and concentration (solid line) gradients
normalized by their standard deviations. Inset: the log-log plot of
PDFs for the negative gradients.

the stationary state, the mass continuity equation is reduced to

∂ρ

∂x
= −ρξ

u
. (3.3)

Combining with the isentropic condition T = ργ−1 gives the
expression for the ratio of Sθ to Sξ

Sθ

Sξ

= −〈ργ−2〉〈(ργ−2)2〉−1/2

〈(ρ

u

)3
〉 〈(

u

ρ

)2
〉3/2

. (3.4)

Based on the fact that both ρ and u are positive, the result of
Sθ > 0 is obtained.

In the inset of Fig. 8, we show the log-log plot of the three
negative gradients versus their PDFs. It is seen that the power-
law exponent values of the PDF tails for the large negative ξ , θ ,
and ζ are qξ = −3.1, qθ = −4.1, and qζ = −3.0. In contrast,
simulations of the 1D Burgers turbulence driven by various
forces give qξ = −3.0, −3.4, or −3.5 [7,13,33,34]. The major
contributions for these tails are from the sawtoothlike shocklets
rather than a single strong shock, which is similar to the 3D
compressible turbulence [35].

In Fig. 9, we plot the contours of the time-averaged
normalized joint PDFs for (ξ/σξ ,θ/σθ ) and (ξ/σξ ,ζ/σζ ) [i.e.,
Qj (ξ,θ ), Qj (ξ,ζ )]. As we know, the contour shape of the joint
PDF for (∂xv,∂xw) in a linear problem (v,w) is concentric
circles [29]. Back in Fig. 9(a), the contour shape of Qj (ξ,θ )
remarkably deviates from the concentric circles, implying that
the feedback on the velocity from the advected temperature
leads (u,T ) to be a nonlinear problem. In contrast, there is no
coupling between the velocity and the advected concentration,
making (u,C) a linear problem. Indeed, the contour shape
of Qj (ξ,ζ ) shown in Fig. 9(b) approximately appears as
concentric circles.

The maximum positions of the single PDFs shown in Fig. 8
are all origins. In contrast, the maximum positions of Qj (ξ,θ )
and Qj (ξ,ζ ) are (0.3, − 0.02) and (0.24,0.02), respectively,
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FIG. 9. (Color online) The joint PDFs for the normalized velocity
and temperature gradients (a), and the normalized velocity and
concentration gradients (b), respectively.

where the transverse drifts �a
θ = −0.02 and �b

ζ = 0.02 can
be attributed to the numerical errors. Unfortunately, so far
we do not know the mechanism for the longitudinal drifts
�a

ξ = 0.3 and �b
ξ = 0.24. But it can be still concluded in two

respects: (i) the rarefaction wave generates frequently, though
the 1D compressible flow is full of the discontinuous sawtooth
structures; (ii) the scalar fluctuations in the rarefaction wave
region are weak, in other words, most of the strongly variant
front structures of scalars arise around the shocks [36,37].

B. Structure function, scaling exponent, and spectrum

The SFs for δu, δT and δC are defined as follows:

SV
p (r) ≡ 〈|δu|p〉, ST

p (r) ≡ 〈|δT |p〉, SC
p (r) ≡ 〈|δC|p〉.

(3.5)

In Fig. 10, we plot SV
p , ST

p , and SC
p against r/η for the order

number p = 2,4,6,8. For both SV
p and ST

p , in the range of
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FIG. 10. (Color online) The velocity (dotted line), temperature
(dashed line), and concentration (solid line) structure functions
against the normalized separation distance.

2 � r/η � 200, the flat regions of finite width are identified,
whereas for SC

p , in the same range, there are two scaling regions
in which the local scaling exponents take a local minimum and
a local maximum. The crossover occurs in range of 8 � r/η �
17. In the range 2 � r/η � 8, the local minimum approaches
an asymptotic value of zC,min

p ≈ 1.5, whereas in the range
17 � r/η � 200, the local maximum increases with p but
the rate of increase becomes smaller. In Fig. 11, we plot the
mixed velocity-temperature SF SMT

p (r) and mixed velocity-
concentration SF SMC

p (r) against r/η, with their definitions

SMT
p (r) ≡ 〈|δu(δT )2|p/3〉, SMC

p (r) ≡ 〈|δu(δC)2|p/3〉. (3.6)
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FIG. 11. (Color online) The mixed velocity-temperature (dashed
line) and velocity-concentration (solid line) structure functions
against the normalized separation distance.
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FIG. 12. (Color online) The scaling exponents as functions
of the order number. Velocity: diamonds; temperature: squares;
concentration: circles; mixed velocity-temperature: triangles; mixed
velocity-concentration: gradients. The solid and dashed lines are for
the Burgers and Obukhov-Corrsin scalings, respectively.

It is seen that the behaviors of the curves for SMT
p and SMC

p

are similar to those for SV
p and ST

p . In other words, there are
neither local minima nor local maxima in these curves. For
SMT

p , in the range of 2 � r/η � 1000, the p = 8 curve has a
flat region of finite width, and the width gradually decreases as
p decreases. Similarly, for SMC

p , the flat finite-width region for
the p = 8 curve locates in the range of 2 � r/η � 750, and the
width also decreases with decrease in p. This says that for a
fixed p, SMC

p (r) scales with a single power law regardless
of whether r/η lies in either 2 � r/η � 8 or 17 � r/η �
200. This observation motivates the following conjecture: the
concentration transfer function at a given p has a single scaling
exponent throughout the range of 2 � r/η � 750.

The scaling exponents of SV
p , ST

p , SC
p , SMT

p , and SMC
p (i.e.,

zV
p , zT

p , zC
p , zMT

p , and zMC
p ) as functions of the order number p

are plotted in Fig. 12, where the solid and dashed lines are for
the Burgers and Obukhov-Corrsin (OC) scalings, respectively.
These scaling exponents are computed by taking averages of
the values of the local scaling exponent curves, which are at
plateaus of finite widths, and the corresponding error bars are
marked by their standard deviations. It is seen that among zV

p ,
zT
p , and zC

p , for each p, zT
p is smallest and close to the Burgers

scaling, whereas zC
p is largest and to some extent approaches

the OC scaling. This phenomenon indicates that in the 1D
compressible flow, the active temperature is most intermittent,
whereas due to the existence of inverse cascade (see below),
the intermittency of the passive concentration is weakened.
It is also found that zMC

p locates between zV
p and zC

p , which is
similar to that in the incompressible limit. But it is striking that
zMT
p is smaller than both zV

p and zT
p , which is also observed

in the 3D weakly compressible turbulent flow [38]. This is a
topic for future study. Note that the simulation results shown
in Fig. 12 are obtained by using a long-time average (about
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FIG. 13. (Color online) The second-order structure functions of
the temperature and concentration increments against the normalized
separation distance. Inset: the local scaling exponents for the two
structure functions.

large-eddy turnover time). In fact, the scalar scaling exponents
for each single time frame have intense fluctuations with time,
much larger than that of the velocity scaling exponent.

In Fig. 13 we plot the second-order SFs of temperature and
concentration [i.e., ST

2 (r) and SC
2 (r)] against r/η. According

to the Kolmogorov-Obukhov-Corrsin (KOC) theory, both ST
2

and SC
2 scale as r2/3. Nevertheless, our simulation results are

quite different: in a flat region, the slope of the ST
2 curve slowly

varies with r/η. Contrarily, for the SC
2 curve, its slope distinctly

changes as r/η increases, and there are two different scaling
regions.

To more carefully examine the scaling behaviors of ST
2 and

SC
2 , in the inset of Fig. 13 we plot the local scaling exponents

zT
2 (r) and zC

2 (r), defined as

zT
2 (r) ≡ d log

[
ST

2 (r)
]

d log
(

r
η

) , zC
2 (r) ≡ d log

[
SC

2 (r)
]

d log
(

r
η

) . (3.7)

It is found that in the range of 30 � r/η � 90, a narrow
plateau in the zT

2 curve is identified, with zT
2 ≈ 0.68, a slightly

larger than 2/3. In contrast, starting from r/η = 10, the zC
2

curve decreases and achieves a local minimum z
C,min
2 = 0.21

at r/η = 172, then quickly increases until it achieves a local
maximum z

C,max
2 = 0.88 at r/η ≈ 245, after that, the curve

decreases again.
The temperature and concentration spectra are defined as

follows:∫ ∞

0
G(k)dk = 1

2
〈T ′2〉,

∫ ∞

0
H (k)dk = 1

2
〈C ′2〉. (3.8)

We then plot G(k) and H (k) against the wave number k in
Fig. 14. It is seen that in the inertial range of about two decades,
G(k) obeys a single power-law spectrum ∝ k−5/3. Contrarily,
H (k) can be divided into the so-called inertial-convective
and viscous-convective ranges of about two decades and one
decade. Their corresponding power-law spectra are H (k) ∝

k
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FIG. 14. (Color online) The spectra of temperature and concen-
tration, where kc is for the cutoff wave number of fu and fc.

k−5/3 and H (k) ∝ k−7/3, respectively. We point out that the
observation on H (k) and SC

2 (r) indicates that there is a
one-to-one correspondence between the spectrum and the
second-order SF of the concentration.

To investigate the inverse cascade of the passive concentra-
tion, we carry out a subensemble decomposition on the velocity
by introducing the concept of group velocity difference (GVD)
g(x,r)

g(x,r) = 2

r

∫ r/2

0
u(x + r ′)dr ′ − 2

r

∫ 0

−r/2
u(x + r ′)dr ′

= δũ(x,r/2). (3.9)

The sign of g(x,r) and its association with the rarefaction
wave and shock is seen in Ref. [27]. Next, we define the two
subensemble SFs according to g � 0 and g < 0 as follows:

S+
p (r) ≡ 〈|g � 0|p〉 = 〈|δ+ũ|p〉,

(3.10)
S−

p (r) ≡ 〈|g < 0|p〉 = 〈|δ−ũ|p〉.
Their scaling exponents z+

p (r) and z−
p (r) then are

z±
p (r) ≡ d log[S±

p (r)]

d log
(

r
η

) . (3.11)

In Fig. 15, we plot z±
p , zT

p , and zC
p as functions of p. For

comparison, we plot the Burgers and Kolmogorov (K41)
scaling (i.e., zB

p , zK
p ) as well. This shows that though the values

of zK
p − z+

p and z−
p − zB

p increase with p, z+
p and z−

p are close
to the K41 and Burgers scalings, respectively, implying that
the g � 0 subensemble has a conspicuous Gaussian property
with little intermittency whereas the g < 0 subensemble is
strongly intermittent. Therefore, the observation of the zT

p and
zC
p curves separately locating in the Burgers and K41 regimes

means that the intermittencies of the active temperature and
passive concentration are quite different: strong and weak,
respectively.
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FIG. 15. (Color online) The scaling exponents as functions of
the order number. δu > 0: open squares; δu < 0: open circles;
temperature: solid squares; concentration: solid circles. The solid and
dash-dotted lines are for the Burgers and the Kolmogorov scalings,
respectively.

In the 1D compressible flow, the strong compressibility
makes most of the Lagrangian trajectories of the passive
concentration collapse implosively, leading to an inverse
cascade of the energy with suppressed intermittency. This
means that the flux is negative at large scales. According to
Eqs. (2.3) and (2.4), the expressions of the temperature and
concentration fluxes in the high Reλ condition are

	T (x,r) = (
γ − 1

2

)
ρT 2u, (3.12)

	C(x,r) = 1
2ρC2u, (3.13)

r/η

flu
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FIG. 16. (Color online) The filtered fluxes of temperature and
concentration against the normalized separation distance.

time
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FIG. 17. (Color online) The time evolutions of the total tempera-
ture variance eT (t) and total concentration variance eC(t).

(see the detailed derivations in the Appendix). Following
Eyink’s definition [39], we write the filtered versions of 	T

and 	C as

	̃T

(
x,

r

2

)
=

(
γ − 1

2

)
ρ̃(T̃ 2 − T̃ 2)

∂ũ

∂x

(
x,

r

2

)
, (3.14)

	̃C

(
x,

r

2

)
= 1

2
ρ̃(C̃2 − C̃2)

∂ũ

∂x

(
x,

r

2

)
. (3.15)

Now we plot the variations of 	̃T and 	̃C against r/η in
Fig. 16. It is seen that 	̃T is positive throughout the whole r/η

range, implying that the active temperature always cascades
from large to small scales. In contrast, 	̃C intersects the zero
line at r/η ≈ 10 and then becomes negative, implying that the
passive concentration acts direct cascade at small scales (r/η <

10) but inverse cascade at large scales (r/η > 10). As a further
investigation, the time evolutions for the total variances of the
temperature and concentration (i.e., eT (t) = ∫ ∞

0 ET (k,t)dk,
eC(t) = ∫ ∞

0 EC(k,t)dk [20,32]) are plotted in Fig. 17. We
observe that from the initially stationary time t0 = 3.4 to time
te = 16.5, eT (t) always has small fluctuation around unity,
whereas eC(t) continuously grows. The reason behind this
is that for the active temperature, a dissipative anomaly is
presented in its downscale cascade and equals the input energy
converted from the kinetic energy through viscous dissipation.
On the contrary, there is no dissipative anomaly generated
in the upscale inverse cascade of the passive concentration.
Thus, the input energy from the randomly driving force fc is
accumulated and then makes eC(t) increase over time.

IV. SUMMARY AND DISCUSSION

In this paper, we carry out the systematically numerical
investigation on the statistical behaviors of the active and
passive scalars (i.e., temperature and concentration) in the
1D compressible hydrodynamic turbulence. The simulation

066307-8



STATISTICS OF ACTIVE AND PASSIVE SCALARS IN . . . PHYSICAL REVIEW E 86, 066307 (2012)

is run by using the seventh-order WENO method for space
discretization and third-order TVD Runge-Kutta method for
time advancement. Simultaneously, the same type of randomly
driven all-scale forces are added at the velocity and concen-
tration fields, in order to achieve a stationary state, in which
the values of the Taylor Reynolds number and turbulent Mach
number are Reλ = 2.56 × 106 and Mt = 1.0.

Similar to the Burgers turbulence, the stationary velocity
of the 1D compressible flow is consistent with a few large-
amplitude and many small-amplitude shocks, and its spectrum
is found to be E(k) ∝ k−5/3 over about two-decade wave
numbers. At the same time, the signals of temperature and
concentration are full of the small-scale sawtooth structures,
and the signals of density and temperature approximately
satisfy the isentropic condition.

The PDFs for the fluctuating components of velocity
and scalars are computed and compared with the simulation
results from 3D NS and Kraichnan flows. It is found that
all the three PDFs are Gaussian at the small amplitudes but
change into sub-Gaussian at large amplitudes. The PDFs for
the velocity and scalar increments at small separation distance
are strongly intermittent, and approach Gaussian when the
separation distance increases. The features of the PDFs for
the velocity and scalar gradients are similar to those for the
increments at the small separation distance, such as r/η = 1.
Moreover, the values of the power-law exponents of the PDF
tails for the large negative gradients are qξ = −3.1, qθ = −4.0,
and qζ = −3.0, contrasting to qξ = −3.0, −3.4, or −3.5 in
the various 1D Burgers turbulence simulations. Although the
active temperature and passive concentration are both advected
by the compressible velocity, their statistical properties are
radically different. The passive concentration belongs to the
realm of linear problems, whereas the feedback from the
active temperature couples the velocity and makes the problem
nonlinear. In order to describe this difference, the joint PDFs
for (ξ,ζ ) and (ξ,θ ) are computed and compared. It is found
that the contour shape of the former was close to concentric
circles, a crucial characteristic for the linear problem, whereas
that of the latter is obviously not.

The SFs of the velocity and scalar increments are computed
against the separation distance, it is found that both SV

p and
ST

p have a flat region of finite width, whereas for SC
p , there

are two different regions with a local minimum and a local
maximum. Simultaneously, the comparison of the flatnesses
between the velocity and concentration increments implies
that δu is always more intermittent than δC. As for the mixed
velocity-scalar SFs SMT

p and SMC
p , their behaviors are similar

to SV
p and ST

p . The scaling exponents of the five SFs are
computed as functions of the order number p. It is seen that
zT
p is close to the Burgers scaling, whereas to some extent zC

p

approaches the OC scaling, implying that the existence of an
inverse cascade remarkably weakens the intermittency of the
passive concentration. Furthermore, zMC

p locates between zV
p

and zC
P , which is similar to that in the incompressible limit,

whereas it is striking that zMT
p is smaller than both zV

p and zT
p .

Especially, ST
2 has one flat region, whereas there are two

regions with a local minimum of 0.21 and a local maximum
of 0.88 in SC

2 . This phenomenon is in accordance with the
observation in the spectra of the active temperature and

passive concentration, where G(k) follows the power law of
k−5/3, but H (k) can be divided into two different power-law
regions: k−5/3 and k−7/3, implying the coexistence of the
inertial-convective and viscous-convective ranges.

Using the subensemble decomposition, the scaling expo-
nents of the positive and negative GVDs (i.e., z+

P , z−
p ) are

computed and compared with zT
p and zC

p . It is found that zC
p

is close to z+
p , implying the existence of the upscale inverse

cascade in the passive concentration flux transfer. A further
direct proof for this inverse cascade is from the computation of
the filtered concentration flux against the separation distance,
where 	̃C is negative in the range of r/η > 10. By computing
the total variance of the passive concentration, it is confirmed
that the absence of the anomaly dissipation in the inverse
cascade of the concentration greatly weaken its intermittency,
leading the scaling to approach the OC scaling.

To some degree, the simulation results of the 1D com-
pressible turbulence are dependent on their driven forces.
For example, there exists differences in the statistics between
the all-scale and large-scale forced flows, such as the field
signals, energy spectra, and SF scalings [27]. The discrepancy
inevitably affects the intermittency of turbulence and thus
makes it seem as an artifact of numerics. The unresolved
issues include the mechanisms for the large longitudinal
drifts in the joint PDFs and the location of the mixed
velocity-temperature scaling exponent below its velocity and
temperature counterparts. It motivates us to study the statistics
of the active and passive scalars in the 3D highly compressible
turbulence in the future.

ACKNOWLEDGMENTS

We thank Alessandra Lanotte, Yipeng Shi, Massimo Ver-
gassola, and Jianchun Wang for many useful discussions. This
work was supported by the National Natural Science Foun-
dation of China (Grants No. 10921202 and No. 91130001)
and the National Science and Technology Ministry under a
subproject of the “973” program (Grant No. 2009CB724101).
Simulations were run on the supercomputer of Tianhe-1A at
the National Supercomputer Center in Tianjin.

APPENDIX: DERIVATIONS OF �T AND �C

In this appendix, the detailed derivations of 	T and 	C are
presented as follows. First, we split the total energy equation
[Eq. (2.3)] into the kinetic energy and internal energy equations

∂tEK + ∂x(EKu) + u∂x

(
p

γM2

)
= 1

Re
u∂x(μξ ) + ρuf,

(A1)

∂tEI + ∂x(EIu) + p

γM2
ξ = 1

Re
μξ 2 + 1

α
∂x(κ∂xT ), (A2)

where EK = ρu2/2 and EI = ρT/[(γ − 1)γM2]. Then, we
substitute the expression of EI into Eq. (A2)

∂t (ρT ) + u∂x(ρT ) + γρT ξ = μ

Re
ξ 2 + κ

α
∂2
xT . (A3)
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Combining Eq. (A3) with Eq. (2.1) gives the temperature
equation

ρ[∂tT + u∂xT + (γ − 1)T ξ ] = μ

Re
ξ 2 + κ

α
∂2
xT . (A4)

Multiplying both Eq. (A3) and Eq. (A4) by T yields

∂t

(
1

2
ρT 2

)
+ ∂x

(
1

2
ρT 2u

)
+ (γ − 1)ρT 2ξ

= μ

Re
T ξ 2 + κ

α
T ∂2

xT . (A5)

In the inviscid limit, the temperature “energy” conservation
recovers, and thus Eq. (A5) has the form of

∂t

(
1
2ρT 2

) + ∂x(	T ) = 0. (A6)

Comparing Eq. (A5) with Eq. (A6), we obtain the expres-
sion of 	T

	T = 1

2
ρT 2 + (γ − 1)

∫
ρT 2ξdx. (A7)

The concentration energy equation can be obtained through a
similar procedure. Equation (2.4) reads

∂t

(
1

2
ρC2

)
+ ∂x

(
1

2
ρC2u

)
= γM2χ

α
C∂2

xC + ρCfc. (A8)

In the inviscid limit, the first term in the right-hand side
of Eq. (A8) is negligible, therefore, the expression of
	C is

	C = 1
2ρC2u. (A9)
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