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Ring waves as a mass transport mechanism in air-driven core-annular flows
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Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering applications.
Here we study, experimentally and theoretically, flows where a viscous liquid film lining the inside of a tube is
forced upwards against gravity by turbulent airflow up the center of the tube. We present results on the thickness
and mean speed of the film and properties of the interfacial waves that develop from an instability of the air-liquid
interface. We derive a long-wave asymptotic model and compare properties of its solutions with those of the
experiments. Traveling wave solutions of this long-wave model exhibit evidence of different mass transport
regimes: Past a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate
upward at wave speeds. This theoretical result is then confirmed by a second set of experiments that show
evidence of ring waves of annular fluid propagating over the underlying creeping flow. By tuning the parameters
of the experiments, the strength of this phenomenon can be adjusted in a way that is predicted qualitatively by
the model.
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I. INTRODUCTION

Core-annular flows arise in many applications (e.g., oil
recovery, lung pathways) where one fluid phase occupies
the core and an immiscible, more viscous fluid occupies the
annulus between the pipe wall and core. (Identical and lower
viscosity annular phases are relevant to applications outside
of our interest here; cf. Ref. [1].) Interfacial instabilities,
their growth rates, and saturation in coherent or irregular
structures, and the propagation of interfacial structures in
driven core-annular flow have been extensively explored both
experimentally and theoretically. Motivated by applications,
these studies have focused primarily on viscosity contrasts
typical of oil and water, low Reynolds numbers in both phases
(creeping flows), thin annular layers relative to the tube radius,
and small capillary numbers (surface tension forces dominate
viscous forces) [1–17]. Our focus here is on the mechanisms
by which forced steady airflow transports annular layers of
high-viscosity fluids, conditions appropriate to (large) lung
airways. Notable experimental work on this topic goes back to
Clarke et al. [18] and to Kim et al. [19–21], where the added
complexity of a viscoelastic fluid in the annular layer was also
considered. In lung biomechanics it is held that airway surface
liquids move toward the larynx as an annular creeping flow.
Mechanisms driving the flow include the coordinated motion
of carpets of cilia and air drag from tidal breathing or cough.
The relative mass transport rates of these mechanisms are not
known and are beyond the focus of this study.

In this work we duplicate the experiment of Kim et al.
[20] on air drag transport of annular wetting layers, with
special attention to the mechanisms of mass transport not
addressed in Ref. [20]. One such mechanism certainly involves
annular waves, which are spawned via interfacial instability or
growth of perturbations at the annular fluid source. Simply
by increasing the surface roughness of the liquid phase, it
is to be expected that waves could enhance the exchange of
momentum between core and annular fluids. In this article

we show that, under certain conditions, these waves play a
more direct role by trapping a propagating fluid core between
the wetting annular layer and air. Each trapped core is a
bolus of annular fluid that translates relative to the underlying
creeping flow, thus providing a mass transport mechanism.
For a traveling wave, viewed in the wave frame of reference,
this would correspond to a region of closed streamlines.
We hereafter refer to these waves as mass transport waves;
conversely, we shall refer to waves without a trapped core
as shear waves since these modify the shear flow only by
fanning and constricting the corresponding open streamlines.
Trapped cores in core-annular flow were previously identified
theoretically in models of water-oil flows at low Reynolds
numbers [2]. We show experimentally and theoretically that
such structures likewise arise in turbulent air-driven annular
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FIG. 1. (a) Schematic diagram of the experimental setup. Air
is forced upward through the tube while high viscosity fluid is
supplied through an annular slit. (b) Definition sketch of the flow
variables.

066305-11539-3755/2012/86(6)/066305(11) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.066305


CAMASSA, FOREST, LEE, OGROSKY, AND OLANDER PHYSICAL REVIEW E 86, 066305 (2012)

FIG. 2. (Color online) Color montage: successive snapshots of
the tube. Plot: Tracked wave crests in the tube (liquid volume
flux = 1.0 cm3/min, gas volume flux = 330 cm3/s, liquid viscosity =
600 P, snapshots 1 s apart). Each line represents one crest as it travels
up the tube. Inset zooms in on the front advancement whenever a
crest reaches the wetting front.

oil flow. These conditions are designed to mimic the trachea
and upper lung airways, with oil as a high viscosity proxy for
mucus. These ring waves are distinct from so-called plugs in
lung airways, which divide and disconnect the air core under
low Reynolds number airflow conditions [22].

The paper is organized as follows: In Sec. II we present
the results of experiments similar to Ref. [20]. In Sec. III
a long-wave asymptotic model is constructed and briefly
compared to the thin-film model in Ref. [2]. In Sec. IV we
find traveling wave solutions to the model and compare them
with the experiments. Section V contains the results of further
experiments which highlight the role of waves in transporting
mass. We conclude with a brief discussion of the results in
Sec. VI.

II. PRELIMINARY EXPERIMENTS

The experimental setup, after Ref. [19,20], is depicted in
Fig. 1(a). A 20.0 cm glass tube with a 1.0 cm inner diameter
represents the trachea. First, the tube is inserted into an O-ring-
lined hole in the lid of an annular chamber made of stainless
steel and glass. Next, liquid is forced into the annulus of the
chamber at a constant volume flux by a Harvard Apparatus
Model 975 Syringe Pump and is allowed to fill the chamber up
to a small annular gap. The gap is adjustable, set to 1 mm for
the experiments reported here. Finally a constant volume flux
of air is forced through the core of the chamber by an Aalborg
Digital Flow Controller where it meets the liquid at the gap.
Over the course of the experiment, liquid is forced into the gap
and dragged upward into the tube by sufficiently fast air flows.
In a matter of minutes, the liquid wetting front advances to the
top of the tube, completely coating the inner surface. When
the liquid reaches the top, it spills over into a collection cup.
We focus on the waves’ contribution to the advancement of
the wetting front as well as the long-time air-liquid interfacial
dynamics.

FIG. 3. (Color online) Same as Fig. 2 but with spatiotemporal
chaotic behavior (liquid volume flux = 1.0 cm3/min, gas volume
flux = 670 cm3/s, liquid viscosity = 129 P, snapshots 0.5 s apart).

We use two silicone oils with viscosities of 129 P and 600 P.
Oil densities were calculated with an Anton Paar DMA 4500
density meter to be 0.95–0.98 g/cm3. The liquids are injected
into the apparatus with a constant volume flux in the range
0.5-1.0 cm3/min, while air is forced through the apparatus
at a constant volume flux in the range 330–1170 cm3/s. As
each experiment progresses, waves develop and travel from
the bottom of the tube to the wetting front. These waves are
tracked by HD video recording.

We then use a MATLAB script to track the waves and to
find the statistics of various wave properties like speed and
frequency. Figures 2 and 3 show montages of the tube video
footage paired with the results of the tracking. At first glance
one sees an evident front advancement phenomenon: The front
advances in spurts precisely when a new wave arrives. This
strongly suggests the hypothesis that these are mass transport
waves as opposed to shear waves. Furthermore, since the core
air stream is continuous, these putative mass waves are torus
shaped, which we call ring waves by analogy with vortex rings.

The properties of the liquid film and the interfacial waves
are worth discussing. Figure 4(a) shows the trend of mean
thickness of the film as a function of air volume flux for various
viscosities and oil fluxes. The film thickness decreases with
increasing airflow rate, decreasing viscosity, and decreasing
liquid flux. These results were found by letting the experiments
run for several minutes after the entire tube was coated with
oil. The liquid was then weighed using an Ohaus Adventurer
high-precision scale. The film thickness was calculated using
this weight, the oil density, and the tube inner radius. For
each set of parameters several experiments were performed;
both the average mean thickness and range of thicknesses
are displayed. In Fig. 4(b) we plot the mean speed of the
liquid film by dividing the liquid volume flux by the liquid’s
cross-sectional area calculated from the mean thickness.
(Dashed lines correspond to results from the model derived
in Sec. III; further discussion of these results is taken up in
Sec. IV.)
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FIG. 4. (Color online) (a) Mean thickness of the liquid film for
various viscosities μ(l), liquid fluxes Q(l), and air fluxes Q(g). Bars
indicate range of values over several trials of each experiment.
Dotted lines indicate trends in experimental data; dashed lines
represent model predictions (see Sec. IV for discussion). (b) Mean
liquid cross-sectional average velocities calculated using data in
panel (a).

Figure 5 shows the mean wave velocity, wavelength, and
wave mass for experiments where μ(l) = 129 P and Q(l) =
1.0 cm3/min; error bars represent one standard deviation.
The wave mass was calculated in the following way. From
the steplike advancement of the wetting front upon the
arrival of each wave, we determine the step height per wave
crashing event. The mean thickness of the liquid film, the
geometry of the tube, and the wetting front displacement
then determine the approximate mass of liquid in each wave.
Figures 6 and 7 present the distributions of wave velocities
and wavelengths, respectively, used to construct Figs. 5(a)
and 5(b).

Note that an increase in airflow rate, with liquid volume
inflow rate held fixed, leads to slower, shorter wavelength,
and less massive trapped cores. These observations suggest
a threshold airflow rate at which the dominant mechanism
of mass transport shifts from ring waves to the more
widely held mode of creeping shear flow of the wetting
layer. This shift is confirmed by the model and simulations
given below. The creeping shear mode transport would more
closely resemble the exact Navier-Stokes solution for the
core-annular pipe flow problem, which is formed by nested
Poiseuille flows with constant interfacial diameter. However,
such an exact solution is far from the experimentally observed

FIG. 5. (Color online) Mean values of wave (a) velocity,
(b) wavelength, and (c) mass with bars indicating one standard devi-
ation. Dashed lines represent model predictions (see Sec. III). Q(l) =
1.0 cm3/min, μ(l) = 129 P.

regimes; in particular, the mean (airflow) core diameter
for the exact solution would be much smaller than that
measured in the experiments, which implies that the actual
stress applied by the air to the annular liquid layer is
much larger in the experiment than in the exact Poiseuille
regime.

III. LONG-WAVE ASYMPTOTIC MODEL

We are interested in modeling axisymmetric disturbances in
a two-phase vertical pressure-driven core-annular flow with the
(much) more viscous fluid in the annulus, and we summarize
the model developed in Ref. [23] with some extensions. As our
primary motivation is flow with a gas core and liquid annulus,
we refer to the core variables with the superscript (g) and
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FIG. 6. Distribution of wave velocities in Fig. 5(a) for airflow
rates of (a) 333 cm3/s, (b) 500 cm3/s, (c) 667 cm3/s, (d) 833 cm3/s.

the annular variables with the superscript (l) throughout. The
governing equations for the flow of both the gas and the liquid
are the incompressible axisymmetric Navier-Stokes equations
in cylindrical coordinates:

ρ̄(ūt̄ + ūūr̄ + w̄ūz̄) = −p̄r̄ + μ̄

[
1

r̄
∂r̄ (r̄ ūr̄ ) + ūz̄z̄ − ū

r̄2

]
,

ρ̄(w̄t̄ + ūw̄r̄ + w̄w̄z̄) = −p̄z̄ + μ̄

[
1

r̄
∂r̄ (r̄w̄r̄ ) + w̄z̄z̄

]
− ρ̄ḡ,

1

r̄
∂r̄ (r̄ ū) + w̄z̄ = 0, (1)

where the coordinates are (r̄ ,θ̄ ,z̄) with associated velocity
components (ū,v̄,w̄) [see Fig. 1(b)]. Here p̄ is pressure, ρ̄

is density, μ̄ is molecular viscosity, and ḡ is gravity. All
dimensional quantities are marked by overbars, and subscripts
denote partial derivatives.

We nondimensionalize (1) with a typical (wave)length scale
in the z̄ direction, λ̄, and a typical length scale in the r̄ direction,
R̄0, the radius of the cross section of the gas core. If ε =
R̄0/λ̄ � 1 the distortions to the air-liquid interface are long-
wave. Other scales are set by the gas core centerline laminar
axial velocity W̄0 = 2Q̄(g)/(πR̄2

0) and a radial velocity Ū0 =
εW̄0.

We then nondimensionalize (1) with the following vari-
ables:

r = r̄/R̄0, z = z̄/λ̄, u = ū/Ū0, w = w̄/W̄0,
(2)

t = t̄ W̄0/λ̄, p = εp̄R̄0/(μ̄(l)W̄0), τ = τ̄ R̄0/(μ̄(l)W̄0),

where t is the dimensionless time, τ is the dimensionless
tangential stress, and p is the dimensionless pressure. Im-

(d)

Wavelength (cm)

0 2 4 6 8 10

(c)

(b)

%
 o

f t
ra

ck
ed

w
av

es

0

5

Wavelength (cm)

0 2 4 6 8 10

(a)

%
 o

f t
ra

ck
ed

w
av

es

0

5

FIG. 7. Distribution of wavelengths in Fig. 5(b) for airflow rates
of (a) 333 cm3/s, (b) 500 cm3/s, (c) 667 cm3/s, (d) 833 cm3/s.

portant parameters in the problem are the Reynolds number
Re(l) ≡ ρ̄(l)W̄0R̄0/μ̄

(l) and Froude number Fr = W̄0/
√

ḡR̄0.
We substitute (2) into (1) and take the limit ε → 0. For

fixed mean radius R̄0, the liquid has fixed Reynolds number
and hence εRe(l) → 0. To leading order then (1) becomes

0 = pr, (3)

1

r
∂(rwr ) = pz + Re(l)

Fr2 , (4)

1

r
∂r (rw) + uz = 0. (5)

The boundary condition at the wall r = a is

w = 0. (6)

At the interface r = R(z,t) we require continuity of tangential
stress

wr = τ (g) (7)

and continuity of normal stress

−p(l) = −p(g) + ε

C
(R−1 − ε2Rzz) (8)

after long-wave asymptotics is used to estimate the curvature
in the longitudinal direction, and where C = W̄0μ̄

(l)/γ̄ is the
capillary number. While the higher-order terms vanish as ε →
0 in Eq. (8), it is essential to retain the surface tension terms at
the leading order, for which one term is of O(ε) and the other
is of O(ε3). The O(ε) term is responsible for instability growth
from an initial disturbance while the O(ε3) term stabilizes the
instability growth. Hence it is important to retain both of them,
regardless of the order of magnitude (see, e.g., Ref. [24] for a
discussion).

The kinematic condition at the interface is

u = Rt + wRz. (9)

Integrating the continuity equation (5) across the annular-
sectional area of the liquid and using (9) yields the layer-mean
equation,

Rt − 1

R

∂

∂z

∫ a

R

wr dr = 0, (10)

for the interface location; an approximate expression for w

would then make (10) a decoupled equation for the evolution
of the interface.

The boundary value problem (3), (4), and (6)–(8) can
be solved for w in terms of the unknown quantities p

(g)
z

and τ (g). The air flow in all our experiments is at a high
enough Reynolds number (Re(g) > 3000) to be fully turbulent.
Hence, to estimate these terms, we model the gas flow using
the so-called zero equation turbulence closure [25]. A crude
way to account for turbulent effects is to use an effective
viscosity based on the Blasius formula [25] instead of the
actual molecular viscosity,

μ
(g)
eff = 0.0791

(Re(g))3/4μ(g)

16
, (11)

where Re(g) = ρ̄(g)W̄0R̄0/μ̄
(g). The mean gas flow uses a

locally Poiseuille solution with this viscosity, and we modulate
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this to take into account the slow variation in z of the gas-liquid
interface. Since m = μ̄(l)/μ̄(g) = O(106), we assume that the
velocity at the interface r = R(z,t) is of order ε or smaller.
Hence we take the mean velocity of the gas to be

w(g)(r) = m

4

(
p(g)

z + ρ̄(g)Re(l)

ρ̄(l)Fr2

)
(r2 − R2). (12)

By integrating the velocity field across the core region, the two
unknowns p

(g)
z and τ (g) can be estimated in terms of the fixed

gas flux and interface location. Substituting p
(g)
z and τ (g) into

the liquid velocity field w, and w into (10), gives the evolution
equation for the interface:

Rt + [S1f1(R; a) + S2(a)f2(R; a)]Rz

+ S3(a)

R
[f3(R; a)(Rz + R2Rzzz)]z = 0, (13)

where the fi are given by

f1(R; a) = a2

R4

(
a2

R2
− 1

)
,

f2(R; a) = R2 − a2 + 2R2 ln

(
a

R

)
, (14)

f3(R; a) = a4

R2
− 4a2 + 3R2 + 4R2 ln

(
a

R

)
,

and the Si by

S1 = 1

m
, S2(a) = (ρ̄(l) − ρ̄(g))Re(l)

2ρ̄(
)Fr2 , S3(a) = 1

16C
.

(15)

The functional notation for S2 and S3 highlights their depen-
dence on a. Note that (13) does not depend on either the
thickness of the annulus being small or on the interfacial
disturbances being weakly nonlinear; i.e., the model is fully
nonlinear and still contains the cylindrical geometry of the
original problem. If (13) is rescaled in time, the dynamics of
the model can be completely determined by the value of three
parameters: F (a) = S2/S1, S(a) = S3/S1, and a.

If the annular film is thin, Eq. (13) can be further simplified
by letting

η = 1 − R

a
; (16)

η � 1 represents the thickness of the thin annular film. Each
of the functions fi(R; a) in Eq. (14) can be expanded about
η = 0:

f1(η) =
(

2

a2

)
η +

(
11

a2

)
η2 +

(
36

a2

)
η3 + O(η4), (17)

f2(η) = (−2a2)η2 +
(

2a2

3

)
η3 + O(η4), (18)

f3(η) =
(

16a2

3

)
η3 + O(η4). (19)

The gravity term f2 vanishes at leading order; i.e., the effects
of interfacial tangential stress dominate the effects of gravity
in the thin-film limit. As before, f3 = O(η3) is retained to keep
the effects of surface tension. Substituting (16)–(19) into (13)

gives

ηt + 2

ma2
ηηz + a3

3C
[η3(ηz + a2ηzzz)]z = 0, (20)

whose solutions have been studied in Refs. [2,26]. In Ref. [2]
the radial coordinate is stretched across the annular fluid, so
that the thickness of the fluid is h = a

β
η where β = a − 1 � 1.

Applying this stretch to (20) and rescaling in time by the speed
of the undisturbed interface gives (to leading order in β)

ht + hhz + S∗[h3(hz + hzzz)]z = 0, (21)

where

S∗ = m

6C
β2 = πγ̄ R̄2

0

12Q̄(g)μ̄(g)
β2. (22)

Note that (21) is a conservation law for h, so that mass
in a planar sense is conserved. This is in contrast to (13)
which is a conservation law for R2. (The consequences of this
will be returned to briefly in Sec. IV, but a full discussion
lies somewhat outside of the goals of this work and will be
discussed elsewhere.)

IV. MODEL RESULTS

The experimental observations clearly show that traveling
wave solutions play a central role in most experimental
regimes. These solutions can then be analyzed to provide
information on fluid transport independently of time evolution.
Since our model is not exactly solvable, we employ an iterative
numerical strategy. A good initial guess for this, as well
as information on time dependent regimes, can be provided
by solving the PDE (13) with the method of lines and a
pseudospectral method (whereby the spatial derivatives are
calculated in Fourier space and the nonlinearities are calculated
in physical space). A second-order predictor-corrector scheme
for time integration is used.

Throughout the scheme implementation, the Fourier modes
of the derivatives and nonlinear terms are carefully monitored
to ensure conservation of volume. The strongly nonlinear terms
require dealiasing of the Fourier coefficients after each time
step. To ensure that all suppressed modes are insignificant in
the evolution, the spectra of R, R−1, and log R are monitored,
along with the mass of the liquid. If the suppressed modes
become significant (or the total volume of liquid varies), spatial
resolution is increased. For initial conditions, we perturb the
interface with either a single mode or multiple modes (typically
6), i.e., R(z,0) = R0 − ∑6

k=1 b cos(2πkz + αk) where αk is a
random phase shift for each mode and typically b < 0.05(a −
1) for the amplitude.

As the interface evolves, instabilities grow due to the
azimuthal curvature of the interface, which enters (13) through
the term f3(R; a)Rz. The axial curvature has a stabilizing effect
for long waves through the term f3(R; a)R2Rzzz. The interface
eventually develops into a series of waves that either exhibit
spatiotemporal chaotic behavior or form a train of traveling
waves or pulses; examples can be seen in Figs. 8 and 9.
(See also Ref. [27] for a mathematical assessment of the
stabilizing effects of higher derivative terms in PDE’s with
similar structure.)
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FIG. 8. Time snapshots showing the evolution of solutions to
Eq. (13) in a periodic domain for S ≈ 0.051, F ≈ 2.92, and a ≈ 1.24
[corresponding to experiment with Q(l) = 0.6 cm3/min, Q(g) =
667 cm3/s, μ(l) = 129 P, and modified effective viscosity given
by (23)]. Interfacial profiles are shown successively shifted at time
intervals �t = 200 s. Profiles are shown in the frame of reference
moving with an undisturbed interface. Dotted lines indicate mean
thickness for the selected snapshots; amplitude scale is given on the
right-hand side.

The model may be used to predict the thickness of the liquid
film by monitoring the liquid flux as the interface evolves.
The experiments in Sec. II were conducted with fixed liquid
flux, but this flux condition is not automatically matched in
our model simulations. By employing an iterative bisection-
method strategy, the mean film thickness that produces a flux
within the desired accuracy of the experimental value is found
(to within 1% here).

A comparison of the mean thicknesses predicted by the
model with those of the experiments in Sec. II is displayed in
Fig. 4(a). The data show how exchange of momentum between
air and liquid flow is qualitatively captured by the model,
though the model consistently overpredicts the film thickness.
We also track the speed of the waves that develop in each
simulation, and their mean wavelength. A comparison of the
speeds and wavelengths in our model simulations with the
results from Sec. II can be seen in Figs. 5(a) and 5(b).

We note that as the effective viscosity in the turbulent
closure we used assumes a smooth wall, its value may be
too low for experiments with a wavy air-liquid interface. We
briefly examine how increasing the viscosity may improve the
quantitative agreement between the model and experiments.
Data from a previous study [23] suggest using a phenomeno-
logically modified effective viscosity

μ
(g)
eff =

(
μ(l)

μ(g)

)1/5

0.0791
(ReD)3/4μ(g)

16
. (23)

FIG. 9. Same as Fig. 8 but with S ≈ 2.45 and �t = 80 s.

We remark that the additional scaling by the ratio of viscosities
of the fluids lies outside the turbulent closure model for
the airflow and is suggested purely by phenomenological
comparison with a subset of the experimental data; all other
points in the data set also closely follow this law. Using
this modified viscosity the simulations are repeated and the
model is found to predict thicknesses and liquid speeds much
closer to those seen in the experiments. Results are shown for
μ(l) = 129 P in Fig. 10 (cf. Fig. 4; similar improvements are
found for μ(l) = 600 P). We note here that while this agreement
shows the model can offer predictive insight, the improvement
in mean thickness may be offset by less accurate quantification
of other properties, specifically mass transport by the waves.
A discussion of these quantitative capabilities of the model is
taken up at the end of this section and in Sec. VI.

Once the evolution has settled into a quasi-steady state, we
look for a traveling wave solution which satisfies the ordinary
differential equation

[−c + S1f1(R; a) + S2(a)f2(R; a)]R′

+ S3

R

d

dZ
[f3(R; a)(R′ + R2R′′′)] = 0, (24)

where we have moved to a frame of reference moving with
the wave, i.e., the independent variable is Z = z − ct . With
the quasi-steady PDE solution as the initial guess, we use a
collocation method two-point boundary value problem solver
to refine the solution; conservation of volume is monitored as
before.

To explore mass transport mechanisms of the annular fluid
on the basis of streamline topology, we reconstruct the stream
function defined by the velocity field:

u = −∂z�, w − c = 1

r
∂r (r�). (25)

The radial velocity u may be found by using w (calculated
for the previous section) and the continuity equation (5). By
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FIG. 10. (Color online) (a) Comparison of mean thickness pre-
dicted by the model with modified effective viscosity (dashed lines)
with those of the experiments (dotted lines) in Sec. II with μ(l) =
129 P. (b) Mean liquid cross-sectional average velocities calculated
using data in panel (a).

integrating (25) the stream function is given by

� =
[
− S1

R4
+ S2

2
+ 4S3

R2
(Rz + R2Rzzz)

][
1

4r
(a2 − r2)2

]

− [S2R
2 + 8S3(Rz + R2Rzzz)]

×
{

1

4r
[a2 − r2 + 2r2 ln(r/a)]

}
. (26)

We are now in a position to plot streamlines within the
annular fluid for a variety of parameter values. We want
to compare flows with different parameters, e.g., capillary
number, at a fixed liquid volume flux. In order to hold this
mean liquid volume flux constant as the capillary number is
changed, the mean film thickness is adjusted as needed.

Two examples with identical liquid flux but differing
capillary number and film thickness are shown in Figs. 11
and 12. (We remark that the parameter values for these waves
do not correspond to those in the experiment and these model
results only show qualitative agreement with the experimental
data.) The fluid for the wave in Fig. 11(a) flows along open
streamlines only, while the wave in Fig. 12(a) displays a
region of closed streamlines under the wave crest. This closed
streamline pattern is a trapped core, a liquid vortex ring, that
rotates while translating at wave speeds. Taking axisymmetry
into account, there is a separatrix sheet between the train of
trapped cores and the wetting layer. Closed streamlines were
also identified in the water-oil flow regime of Kerchman [2].
We remark that all traveling wave solutions for this model
(21) exhibit a trapped core: This is an artifact of eliminating
the cylindrical geometry from (13), thus removing the model’s
ability to conserve mass. The more refined model (13) restores
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FIG. 11. (Color online) (a) Streamlines in the annular fluid
phase for a traveling wave solution of model (13) with parameters
F = 3.39, S = 1.5, ā = 0.5 cm, a = 1.25, Q(l) = 3.2 × 10−4cm/s.
(b) Evolution of one wavelength of fluid during the interval t =
(0,5000)s.

the possibility of traveling wave solutions without trapped
cores.

Figures 11(b) and 12(b) show the evolution of the fluid film
in each flow. The lightly shaded area represents a region of
the fluid film along one wavelength at an initial time. Particle
trajectories were calculated for particles lying on the boundary
of this region, and the location of the fluid area after a fixed
elapsed time is shown by the darker shaded region. Note that
the very fastest particles in the shear wave flow [Fig. 11(b)]
have traveled almost exactly the same axial distance as the
particles in the trapped core in Fig. 12(b). However, any parcel
of fluid in the shear wave regime is continuously thinning
while stretching in the axial direction, so that the percentage
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FIG. 12. (Color online) Same as Fig. 11 but with F = 4.36, S =
8.96, ā = 0.5 cm, a = 1.17, Q(l) = 3.2 × 10−4cm/s. The dashed
(red) streamline in (a) is close to a separating streamline.
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FIG. 13. The flat-interface shear velocity profile equivalent to that
of (a) Fig. 11(a) and (b) Fig. 12(a).

of the fluid parcels reaching a certain location at a given time
is much smaller than its trapped core counterpart, where the
whole core keeps its volume and shape intact.

This point is further illustrated in Figs. 13 and 14. Here
a sampling of fluid parcels throughout the fluid domain in
Figs. 11 and 12 were tracked over time, and their mean ve-
locities with respect to time calculated. These mean velocities
were then sorted, giving an equivalent shear velocity profile,
i.e., a flat-interface shear flow with the plotted axial velocity
profiles would be equivalent to the two traveling wave flows. In
Fig. 13(b) note the significant portion of fluid, corresponding
to trapped cores, moving at a uniform speed faster than any

FIG. 14. Distribution of velocities used to construct the shear
profiles depicted in Fig. 13.

FIG. 15. Liquid parcel axial velocities (measured in the traveling
wave reference frame) along radial slices through the wave crest of
Figs. 11(a) and 12(a).

particle for the shear wave case in Fig. 13(a). Figure 14 displays
the corresponding distribution as a histogram for the velocities
shown in Fig. 13. Note the presence of a trapped core is clearly
revealed by the spike in velocity at exactly the speed of the
wave in Fig. 14(b), while no fluid parcels travel at the speed of
the wave in Fig. 14(a). The spike corresponds to the significant
volume of fluid in the trapped core in Fig. 12.

In order to be certain that waves like Fig. 11(a) do not trap
a core which is masked by under-resolution in the streamlines,
we plot the axial velocity of the fluid (relative to the wave
velocity) as a function of r along one radial slice through
the wave crest of Figs. 11(a) and 12(a). Figure 15 shows
the velocity profile corresponding to Figs. 11(a) and 12(a).
For the shear wave in Fig. 11(a), the velocity is negative
throughout the fluid layer, indicating that a trapped core cannot
exist. For the mass transport wave in Fig. 12(a), the velocity
changes signs at the stagnation point, clearly indicating the
existence of a trapped core. This change of streamline pattern
with parameters is typical of dynamical systems’s bifurcations
whereby hyperbolic fixed points coalesce with their center
counterparts, leading to the removal of connecting heteroclinic
trajectories (see, e.g., Ref. [28] for a discussion in a context
appropriate to viscous fluids). Note that the shear wave’s
velocity profile close to the interface very nearly approaches
the speed of the wave, so that a very small change in capillary
number would result in the formation of a trapped core.

Figure 16 shows the location of each regime in parameter
space for a sample fixed thickness and wavelength. As S or
F decreases, the amplitude of a traveling wave solution de-
creases, and solutions trap a smaller core and eventually none
at all. Parameter values corresponding to a sample experiment
with various air viscosities, including the modified effective
viscosity, are shown; parameters corresponding to Fig. 11
are also shown. For this experiment (and all experiments
conducted) the model predicts waves which are well inside
the shear wave regime. It should also be noted that for large
values of F , larger than those shown here, gravity dominates
effects from the airflow and upward-moving traveling wave
solutions give way to downward-moving solutions. These
solutions exhibit the same type of bifurcation, where some
combinations of parameter values result in mass transport
waves while others result in shear waves. As these waves are
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FIG. 16. (Color online) Mass transport and shear wave regimes
for traveling wave solutions with fixed ā = 0.5 cm, a = 1.25, and
λ̄ = 2π cm. Values of S and F , which correspond to the experimental
parameters μ(l) = 129 P, Q(l) = 0.6 cm3/min, Q(g) = 667 cm3/s, and
various air viscosities are indicated by the dashed line; the modified
effective viscosity is indicated by the purple “x.” Parameter values
corresponding to Fig. 11 are indicated by the purple “o.”

outside the scope of the present experiments, we leave this
topic for future study.

The wave profiles displayed in Figs. 11(a) and 12(a) each
exhibit a slight depression in front of the wave crest (traveling
left to right) regardless of the presence or absence of closed
streamlines. This depression is also seen in the thin-film model
[2]. Indeed, this fore-aft asymmetry in the wave profiles is
also observed in simulations of propagating liquid plugs [22].
It is interesting to speculate that some features of the free
surface and liquid flow pattern in Ref. [22] survive through
many orders of magnitude scalings of surface shear stress and
Reynolds number of the gas phase.

We remark that, while the model captures the qualitative
dynamics seen in the experiment, more work remains to be
done to achieve a quantitative comparison between wave
parameters generated by the model and those observed in
the experiment. For instance, the experiments in Sec. V
show evidence of trapped core waves (i.e., waves with closed
streamlines as in Fig. 12) in parameter regimes that lie outside
of those where this class of waves can be found as model
solutions. The modified phenomenological effective viscosity
(23) improves thickness predictions, at the expense of traveling
wave properties, by generally leading to smaller amplitudes
and hence open streamlines. This can be due to a number of
reasons: first, the closure assumption for turbulence of the air
flow we have used is fairly simple and may be insufficient
for modeling the stress at the liquid-air interface. Next, the
boundary conditions used in the model are periodic unlike
those of the experiment. Modeling of the inflow and outflow
boundary conditions within the asymptotic approximations
brings up a number of mathematical technicalities (mainly
due to the higher order derivatives in the PDE) that lie outside
the scope of this experimental investigation.

V. MASS TRANSPORT EXPERIMENTS

We turn now to an experimental verification of mass
transport by trapped-core ring waves. While Fig. 2 certainly
suggests discrete advances of the wetting front when waves
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FIG. 17. (Color online) Snapshots of a tube coated partway with
clear oil, then coated with blue dyed oil. Companion plots register
the color intensity along an average slice. Above (a), (b): Gas volume
flux = 500 cm3/s. (a) t = 183.5 s, (b) t = 348.5 s after dyed coating
begins. Below (c), (d): Gas volume flux = 1000 cm3/s. (c) t = 113 s,
(d) t = 217 s after dyed coating begins. The horizontal line represents
the color intensity of a tube coated only with clear oil.

arrive, the data are insufficient to discriminate mass waves from
shear waves. To do so we construct a variation of the previous
experiment, this time with two glass tubes, two chambers, and
two silicone oils, one dyed blue and the other left clear. Other
than color, both oils are identical in viscosity and density. As
before each chamber is filled with liquid at a constant volume
flux, and air is forced upward through each tube.

Dual experiments progress until the wetting front reaches a
predetermined height in both tubes. The tubes are then quickly
swapped, so that the tube partially wetted with a clear oil
layer is thereafter supplied with dyed oil, and vice versa. In
the shear wave scenario, dyed oil introduced into the tube
will remain near the bottom of the tube, while clear oil will
continue to occupy the advancing front. In the mass waves
scenario, dyed oil will be transported, with some mixing, over
the clear wetting layer to the advancing front. The result of
the mass transport will be to saturate both the bottom of the
tube and the wetting front with dye, while leaving clearer oil
in between.

Experiments at relatively low airflow rate (Q(l) =
500 cm3/s) match the latter, mass transport, expectation. They
reveal that some dyed oil introduced into the clear-coated tube
remains in the lower portion of the coating [see Figs. 17(a)–
17(b)] while the rest of it is transported all the way to the
wetting front. Thus we find that a significant portion of dyed
oil in the ring wave flows relative to the clear wetting layer.
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The rest of it mixes with the wetting layer as it travels. At some
later time, the top and bottom tube sections consist mostly of
dyed oil, while the middle consists mostly of clear oil. In a
companion experiment, this time with clear oil pumped over a
blue layer, the dynamics appear to be the same.

Figure 17 shows snapshots of a tube that was partially
coated with clear oil, then coated with dyed oil at two different
airflow rates. The color intensity of the snapshots is plotted
below each with low intensity indicating darker blue. To
generate these plots, the intensity was averaged along nine
parallel slicing lines connecting one end of the tube to the
other. The horizontal line represents the color intensity of the
tube coated only with clear oil.

In Figs. 17(a)–17(b) the bottom (left) of the tube has fallen
well below this baseline value indicating the clear oil has been
“pushed” further up the tube and replaced by the dyed oil.
The top (right) of the tube has also fallen well below this
baseline value indicating the dyed oil has been transported via
waves past the clear oil. The waves are the dark bands in the
snapshots, and they advance up the tube, here from left to right.
A rise in the middle of the intensity plots indicates that there
is a greater concentration of clear oil in the annular layer at the
center of the tube; blue mass waves have glided over the layer
and dumped blue oil at the front. This phenomenon matches
what is seen in traveling wave solutions of the model (13); cf.
Fig. 12(b).

We underscore that the strength of this mass transport
phenomenon depends on the experimental parameters. Fig-
ure 17(c)–17(d) shows the same experiment described above,
this time completed with higher airspeed. Note that unlike
Figs. 17(a)–17(b) the top (right) of the tube does not approach
the intensity of the blue oil. The waves are not transporting
blue oil to the top as efficiently as they did at lower airspeed.
This can be attributed to two effects. With less coherent wave
motion, and partial loss of axial symmetry occurring at higher
airspeeds, leakage and mixing of the trapped wave cores
is increased. Moreover, as the model suggests, the smaller
amplitude waves occurring at higher airspeeds imply smaller
trapped cores or even their absence, i.e., streamlines open in
the manner depicted by Fig. 11(a). Both effects would make
mass transport by waves less efficient. (The slight offset of
the intensity for a dry portion of the tube noticeable from
Figs. 17(a)–17(d) can be accounted by the camera aperture
adjusting for the darker portion of the tube.)

It is also interesting to note the presence of very thin bands
of dyed oil near the wetting front in Fig. 17(c). Each band
appears to correspond to a single wave that has dumped its
mass (containing dyed oil) at the wetting front, advancing the
front up the tube. The bands then provide a record of the
location of successive breaking waves at the wetting front.
[Over time, as the dye concentration at the front increases,
these bands become less distinguishable; e.g., no bands are
visible in Fig. 17(b).]

Figure 18 presents the time history counterpart of the spatial
snapshots from the experiment in Fig. 17. We fix two locations
along the tube for which the arrival time of the wetting
front is the same and record one-pixel-wide cross-sectional
images as time progresses at 30 fps. The montage of these
images thus gives the evolution of blue dye concentration
at each fixed location in time. In Fig. 18(a) the blue oil
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FIG. 18. (Color online) Evolution of a vertical slice of pixels from
the same tube as in Fig. 17. Companion plots once again register the
color intensity along an average horizontal slice. (a) Gas volume
flux = 500 cm3/s, location = 8.9 cm from bottom of tube. (b) Gas
volume flux = 1000 cm3/s, location = 10.6 cm from bottom of tube.
Blue color increases abruptly with the liquid front in panel (a), in
contrast with the gradual increase in panel (b).

appears coincidentally with the liquid wetting front. Here mass
waves have brought blue oil quickly to the front, dumping the
highly concentrated dye. By contrast, Fig. 18(b) shows that
a shear-dominated flow pulls blue color up the tube more
slowly. The dark band in this montage is not blue; it is merely
the dark refractive cast of the slow-moving front. Thus the
fastest way for newly injected particles to move up a wetting
tube is to catch a ride on the next available mass transport
wave.

In lung airways, the mucus layer interfaces with a
less viscous lining called the periciliary layer (PCL). The
dyed-clear oil experiment was repeated with the prewetted
clear oil having a lower viscosity in order to see how this
viscosity contrast affects the mass transport waves. As before
the tube was partially coated with the clear (less viscous) oil,
then coated with the dyed (more viscous) oil. The ring waves
of dyed oil are less stable gliding on this less viscous layer;
some breakup and asymmetry of the waves were observed.
Nevertheless, the same phenomenon of waves carrying dyed
oil to the wetting front persists.

The mass transport features identified above persist over a
large experimental and theoretical range. As described above,
our wave-tracking experiments were conducted with various
air flow rates (333, 500, 667, 833, 1000, 1167 cm3/s), liquid
flow rates (0.6, 1.0 cm3/min), and liquid viscosity (129,
600 P). (An example of less regular wave activity is shown in
Fig. 3.)

VI. DISCUSSION

We have identified both theoretically and experimentally
a mass transport mechanism for a wide range of core-
annular flow regimes where the annular-to-core viscosity ratio
spans many orders of magnitude. The mechanism is due to
vortex ring waves of the annular fluid spawned by air-driven
interfacial instabilities and inflow irregularities which amplify
as they propagate upward. The strength of this mass transport
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mechanism is experimentally and theoretically tunable, e.g.,
by varying airflow rate. While the long-wave asymptotic
model derived here qualitatively captures many of the features
seen in the experiments, achieving quantitative predictive
agreement requires further work. Nonetheless, the present
study establishes the groundwork for future improvements at
the modeling level, and preliminary results in ongoing studies
suggest that one area to focus attention on for improvements
would be that of careful estimates of the interfacial stress
created by the (turbulent) gas flow.

From an application viewpoint, while the conditions under
which the experiments were performed clearly do not match
those found in the lungs and airways (e.g., rigid glass tube,
unidirectional airflow, Newtonian fluids), the fundamental
aspects of this mass transport mechanism, in large lung

airways, are potentially relevant and can even be important
for optimizing therapeutic strategies. More study of this
phenomenon under conditions closer to those found in airways
is needed, some of which is currently underway.
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