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Phase transition to super-rotating atmospheres in a simple planetary model for a nonrotating
massive planet: Exact solution
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An energy-enstrophy model for the equilibrium statistical mechanics of barotropic flow on a massive
nonrotating sphere is introduced and solved exactly for phase transitions to rotating solid-body atmospheres
when the kinetic energy level is high. Unlike the Kraichnan theory which is a Gaussian model, we substitute
a microcanonical enstrophy constraint for the usual canonical one, a step which is based on sound physical
principles. This yields a spherical model with zero total circulation, microcanonical enstrophy constraint,
and canonical constraint on energy, leaving angular momentum free as is required for any model whose
objective is to predict super-rotation in planetary atmospheres. A closed-form solution of this spherical model,
obtained by the Kac-Berlin method of steepest descent, provides critical temperatures and amplitudes of the
symmetry-breaking rotating solid-body flows. The critical values depend linearly on the relative enstrophy,
with proportionality constant derived from the spectrum of the Laplace-Beltrami operator on the sphere, as
expected within an energy-enstrophy theory for macroscopic turbulent flows. This model and its results differ
from previous solvable models for related phenomena in the sense that the model is not based on a mean-field
assumption.
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I. INTRODUCTION

This paper offers results on the application of equilibrium
statistical mechanics to complex geophysical and astrophysical
flows [1–12]. In particular, we reexamine the enigmatic
super-rotation of the Venusian atmosphere [13] from the
point of view of self-organized emergence of domain-scale
coherent structures in nearly inviscid quasi-two-dimensional
(2D) flows. This well-known phenomenon was observed by the
Venera and Magellan missions, and is the objective of more
recent projects such as JAXA’s Venus Climate Orbiter. They
are confirmed in some numerical studies cited in [13]. Our
results complement recent results on the statistical mechanics
of atmospheric flows on rotating planets and related problems
connected to the energy-enstrophy model [9,14].

By super-rotation, I mean an atmospheric flow where a
significant part of a planet’s or moon’s atmosphere has a
primary component or mode that rotates like a solid body
at a spin rate greater than the planet’s spin. In addition to this
mode of highest energy in a super-rotating atmosphere, there
could be smaller nontrivial amounts of flow energy in other
spherical harmonics, as well as baroclinic (vertical) modes
which are not treated in this model. By this definition, in the
zero-planetary-spin case in this paper, any solid-body rotating
flow state is considered super-rotating. Likewise, we refer to a
nearly solid-body flow that rotates more slowly than the planet
as subrotation or counter-rotation.

Venus’s upper troposphere, which is about 20 km thick
and reaches to 65 km from the surface [13], rotates like a
solid body or top once in 4 Earth days with cloud-top wind
speed of 100 m/s while Venus the planet spins clockwise very
slowly once every 243 Earth days [13]—hence we have super-
rotation. Observations of Venus’s planetary spin rate show a
slight change in the length of the Venusian day to compensate
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for the super-rotation of its heavy carbon dioxide atmosphere.
We suggest the following reasons centered on the conservation
of angular momentum in a system with no external torques. For
simplicity, we assume that the mechanical system consisting
of the solid planet and its enveloping atmosphere does not
experience any significant external torques. While the planet
Venus has a mass that is about 80% the Earth’s mass, the
Venusian atmosphere has a mass of 4 × 1020 kg which is about
90 times the mass of the Earth’s total atmosphere; the surface
density of the Venusian atmosphere is 67 kg/m3, about 7% that
of liquid water. The significant energy of super-rotation comes
from torqueless solar radiation which acts via gravitational
instability at small scales. This convective mechanism—which
is not treated in the barotropic model here—can transfer
angular momentum from lower layers to upper layers of
the atmosphere through generated waves. Since there is in
principle zero net angular momentum in the solar radiation,
the small eddies produced in the gravitational instability under
the heating effect of the radiation are the likely mechanism
for transferring the substantial angular momentum from the
planet itself into the super-rotating atmosphere.

The main objective of our spherical model energy-
enstrophy theory and its exact solution is to provide a simple
plausible explanation for this enigmatic phenomenon [13]
which remains an open problem for solar system astrophysics.
For the practical purpose of applying the analytical results in
this paper, we will take Venus’s spin rate to be effectively zero
as a first approximation. The only other related example in
our solar system, to which may be applied an extension of our
model in this paper to the case of rotating planets, is the moon
Titan which has a faster spin rate than Venus and an atmosphere
that super-rotates. As a disclaimer, at the outset we emphasize
that the barotropic model on which our statistical mechanics
analysis is based neglects all baroclinic effects such as the
convective instability mechanism [15] by which solar radiation
transfers its energy to the atmosphere, as well as bottom
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friction. We propose this nondivergent barotropic model as
a first-step statistical mechanics study of an idealized situation
that may be applicable to some actual planetary phenomena.
In the future, more realistic flow models for the atmospheres
of Venus and Titan, such as the shallow-water model, could
be incorporated. Then the likelihood of an exact analytical
solution is small but numerical solutions of these subsequent
models are not without value, as depicted in some results for
the gas giants [16–19].

For obvious technical reasons, experimental data on self-
organized macroscopic angular momentum in 2D flows are
available only for the planar geometry. Previous experimental
and numerical results [3,6], in particular those concerning
planar vortex flows in a box, have shown that domain-scale
coherent vortices that spin up spontaneously from the small
eddies are robust and sometimes intermittent.

In brief, we outline here the main physical ideas on
which the formulation of the pherical models of energy-
enstrophy theory is based. First, Stokes’ theorem implies the
conservation of zero total circulation of the flows, which then
leads naturally to fixing it microanonically in the statistical
mechanics model. Next, although enstrophy is conserved in
ideal 2D flows but not in the barotropic flows with planetary
torques in this paper, we need enstrophy to be conserved
only on the time scales of equilibration. Assuming this,
we impose a microcanonical constraint on the enstrophy
or square norm of the vorticity. Last, the flow of kinetic
energy in the atmosphere is generated by insolation and
gravitational-thermal overturning. This suggests that as a
first step, a plausible equilibrium statistical model here is
one where the kinetic energy is constrained canonically, and
hence a conjugate variable, namely, the temperature, while
the angular momentum is left unconstrained. It is easy to see
that the latter is correct for it is unphysical to constrain all
three related quantities: kinetic energy, enstrophy, and angular
momentum. Unlike other theories [4] which do not have simple
closed-form solutions, these spherical models do not constrain
any higher-vorticity moments.

The main objectives of this paper are thus (1) implementa-
tion of the microcanonical enstrophy constraint leading to an
energy-enstrophy non-mean-field theory that is grounded in
the physics of barotropic fluid flows, (2) exact solutions of the
resulting spherical model with finite long-range interactions
using the Kac-Berlin method [20] of steepest descent, and
(3) physical justification of the microcanonical and canonical
constraints. Further discussion of the use of an energy reservoir
in this model will be given in the next section.

The main point is that the exact solutions of the resulting
spherical model support high-energy phase transitions to
super-rotation, which may be compared to the nearly-solid-
body super-rotating upper troposphere of Venus.

Effective computer simulations and mean-field approxima-
tions of these energy-enstrophy models have been discussed
elsewhere [9,10,16,21–25]. It is well known that in 2D, the
mean-field approximation is exact for equilibrium statistical
mechanics provided the interactions in the model are of
infinite range. Indeed, rigorous results for the exactness of
the mean field have been obtained for some specific flow
geometries even when the interactions are of long but finite
range. However, our present work establishes the exactness of

the mean field for the barotropic vorticity model coupled by
torques to a massive sphere, which will be shown below to
have finite long-range interactions.

We note here the significant fact that, contrary to popular
belief, we know of several spherical models with finite long-
range interactions which support nontrivial phase transitions
to ordered phases at sufficiently small but nonzero numerical
values of the temperature [20,26]. We will calculate in closed
form the critical temperature and the energy amplitudes in
the super-rotation modes as functions of the fixed amount of
relative enstrophy in the flow. It is not surprising that the critical
temperature is linear in the fixed relative enstrophy in the case
of nonrotating planets.

II. BACKGROUND: DYNAMICS AND
STATISTICAL MECHANICS

A. Dynamics

To provide the background (and justification for excluding
the case of rotating planets in this paper) for the spherical
model energy-enstrophy theory, we summarize an earlier
dynamical theory for barotropic flows on rotating planets [27].
The dynamical and variational stability theory predicts the
following results for a rotating planet: (1) the super-rotating
organized flow state occurs as the stable global energy
maximum only when the kinetic energy of the flow is higher
than a critical value that depends on the atmospheric enstrophy
(square norm of the vorticity field) and the planetary spin
rate, (2) below this critical value, the observable organized
flow state is subrotation, which is a global energy minimum
provided that, in addition, the planetary spin is large enough
relative to atmospheric enstrophy; subrotation is a saddle point
when the planetary spin is smaller than this critical value and
should not be observable, (3) for all other combinations of
energy, enstrophy, and planetary spin, the flow states are not
organized ones and consist of multiple length scales.

The above results come from a variational dynamics theory
that does not account for entropy effects, which are considered
essential to a fuller theory. Such an improved theory—the
chief aim here—is needed to predict phase transitions between
the high-entropy unordered flow states and a small set of
organized flows with extreme energies. The spherical model
in this paper is a step further towards this aim, in the sense
that it is not a mean-field theory, but because its partition
function is solved exactly, it provides rigorous justification
for the correctness of the mean-field approximation in the
statistics of barotropic flow.

B. Statistical mechanics of 2D fluid flows

Fjortoft’s and later, Kraichnan’s [28] study of energy inverse
cascades in nearly inviscid quasi-2D turbulence—a nonequi-
librium result—renewed interest in Onsager’s approach [29]
to 2D turbulence which is based on equilibrium statistical
mechanics [30]. The mean-field sinh-Poisson equations arising
from the Lagrangian vortex gas methodology have yielded
notable results on the emergence of domain-scale flows
consisting of one or several large coherent vortices [29,30].

At the same time, the equilibrium statistical mechanics of
the 2D Euler equations and the barotropic vorticity model
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in spectral and lattice forms has been studied extensively
[1,4,12,28]. The classical theory in this field is Kraichnan’s
energy-enstrophy theory [1,28] which is based on the key
assumption of existence of an inverse energy cascade that
supports relatively short equilibration times during which
the total flow energy and enstrophy are approximately fixed.
Indeed before the successful work of Miller [4] and Robert and
Sommeria [5], which stopped just short of producing closed-
form solutions that support phase transitions involving the
emergence of macroscopic angular momentum, Kraichnan’s
energy-enstrophy theory was considered the end of the line
of thought begun by Onsager. Recent applications of the
Miller-Robert-Sommeria theory include [9,10].

Although Onsager introduced the notion of negative tem-
peratures to vortical flows in the 1940s with his seminal
paper [29], Kraichnan and others solved the Gaussian energy-
enstrophy theories for nearly inviscid 2D flows and showed that
they did not support any interesting phase transitions to large-
scale coherent flow structures even at negative temperatures.
This inability of the classical energy-enstrophy theories to
predict phase transitions to domain-scale flows is not due to
the use of an incorrect energy functional, nor is it because
of a fundamental shortcoming of the basic assumptions used
to formulate these theories. The reasons for this inability are
simple and lie in the incorrect choice of constraints in the
partition function as discussed below. It will require the right
number and correct choice of statistical mechanics constraints
to produce an exactly solvable, predictive scientific theory for
atmospheric super-rotation.

Due to the doubly canonical form of its Gibbs ensemble or
partition function, the classical energy-enstrophy theories are
exactly solvable Gaussian models which are not well defined at
low numerical values of statistical temperatures [21]. However,
most of the interesting physics of transitions to super-rotation
and other domain-scale flows are expected to occur at
sufficiently low numerical values of the relevant temperature.
Note the important fact that the critical temperatures could
be either positive or negative in the equilibrium statistical
mechanics of many quasi-2D flows. In the latter case, the
ordered phase usually coincides with negative temperatures
that have numerical values less than the critical, which
corresponds to flow states with extremely high kinetic energy.
A non-Gaussian energy-enstrophy model is therefore the first
requirement for a model that supports interesting transition
physics in atmospheric flows.

What we offer here differs from previous works in three
key ways: (A) formulation of a scientifically correct and
solvable statistical mechanics theory of barotropic flows based
on canonical constraint on energy, microcanonical constraint
on enstrophy, and total circulation and nonconservation of
angular momentum, (B) this theory is not a mean-field theory
and its partition function is non-Gaussian, and (C) formulation
of exact closed-form solutions of this model which predict
qualitatively the phenomena of atmospheric super-rotation.

III. SIMPLE PLANETARY ATMOSPHERE MODEL

Consider the system consisting of a (possibly rotating)
massive rigid sphere of radius R, enveloped by a thin shell of
nondivergent barotropic fluid. The barotropic flow is assumed

to be inviscid, and bottom friction is not included. It is assumed,
however, that the fluid can exchange angular momentum with
the infinitely massive solid sphere through an unmodeled
torque mechanism. We also assume that the fluid is in radiation
balance and there is no net energy gain or loss from inso-
lation. This provides a simple model of the complex planet-
atmosphere interactions, including the enigmatic torque mech-
anism responsible for the phenomenon of atmospheric super-
rotation—one of the main applications motivating this work.

For a geophysical flow problem concerning super-rotation
on a spherical surface there is little doubt that one of the key
parameters is the angular momentum of the fluid. It is also clear
that a 2D geophysical flow relaxation problem such as this one
will also involve enstrophy. In nondivergent barotropic flows,
there is no potential energy in the fluid because it has uniform
thickness and density, and its upper surface is a rigid lid.

In principle, the total kinetic energy and angular momentum
of the fluid and solid sphere are conserved quantities. By taking
the sphere to have infinite mass, the active part of the model
is just the fluid which exchanges angular momentum dynami-
cally with the sphere and relaxes by exchanging kinetic energy
with an infinite reservoir that crudely models the insolation
plus gravitational instability mechanism at small scales.

A. Canonical energy constraint

As explained above, the microcanonical enstrophy con-
straint in the spherical model is introduced to derive a
non-Gaussian model that remains exactly solvable; the mi-
crocanonical constraint on total circulation follows from
the topology of vorticity fields on a sphere. The canonical
constraint here is associated with a reservoir that exchanges
energy with intermediate and smaller scales in the flow that
are bounded below by and widely separated from molecular
scales. The smallest scales where viscous dissipation acts are
not treated in our model. This is a crude first attempt to model
the realistic energy exchange mechanism of an atmosphere
such as Venus’s which is largely based on insolation coupled to
gravitational-thermal instability. Our adoption here of a simple
barotropic model precludes any meaningful modeling of these
effects beyond precisely that of a canonical constraint in a
statistical mechanics setting. The logarithmic Green’s function
in the barotropic model, having finite long-range interactions,
is not ideally treated by a reservoir, but the alternative choice
of a microcanonical constraint on energy yields a model that
cannot be solved in closed form.

Nonetheless, the role of constraints has been debated in
the context of mean-field models—in summary, there can
be significant physical and mathematical differences between
canonical versus microcanonical constraints on energy when
the interactions are long range. For a review of the connec-
tions between several variational principles that have been
introduced in statistical theories of 2D flows depending on the
choice of the constraints, see [31].

Moreover, in this discussion of the physics of the canonical
constraint on energy, it should be emphasized that the largest
scales (near the domain length scale) in the barotropic flow
are excluded by design from this exchange of energy with the
reservoir—these scales comprise the long-range order from
the phase transition and are treated in our application here of
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the steepest descent method as nonergodic scales separately
from smaller so-called ergodic ones. These largest scales do
interact and exchange energy and angular momentum with the
solid planet (taken here to be infinitely massive and hence
do not change its spin) through realistic mountain torque and
other topographic stress for example (cf. also [3,6]).

B. Model equations

We will use spherical coordinates, cosθ where θ is the
colatitude and longitude φ. The total vorticity is given by

q(t ; cos θ,φ) = �ψ + 2� cos θ, (1)

where 2� cos θ is the planetary vorticity due to the spin rate �

(which will be zero for the remainder of the paper), w = �ψ is
the relative vorticity given in terms of a relative velocity stream
function ψ , and � is the negative of the Laplace-Beltrami
operator on the unit sphere S2. Thus, a relative vorticity field,
by Stokes’ theorem, has the following expansion in terms of
spherical harmonics:

w(x) =
∑

l�1,m

αlmψlm(x). (2)

A key property that will be established later is that the
three spherical harmonics α1mψ1m(x) contain all the angular
momentum in the relative flow with respect to the frame
rotating at the fixed angular velocity � of the sphere.

C. Physical quantities of the coupled barotropic vorticity model

The rest frame total kinetic energy of the fluid expressed
in a frame that is rotating at the angular velocity of the solid
sphere is

HT [q] = 1

2

∫
S2

dx
[
(ur + up)2 + v2

r

]
= −1

2

∫
S2

dx ψq + 1

2

∫
S2

dx u2
p,

where ur and vr are the zonal and meridional components of
the relative velocity, up is the zonal component of the planetary
velocity (the meridional component being zero since planetary
vorticity is zonal), and ψ is the stream function for the relative
velocity. Since the second term 1

2

∫
S2 dxu2

p is fixed for a given
spin rate �, it is convenient to work with the pseudoenergy as
the energy functional for the model,

H [w] = −1

2

∫
S2

dx ψq = −1

2

∫
dx ψ(x) [w(x) + 2� cos θ ]

= −1

2

∫
dx ψ(x)w(x) − �

∫
dx ψ(x) cos θ.

The relative vorticity circulation in the model is fixed to be∫
wdx = 0, which is a direct consequence of Stokes’ theorem

on a sphere. It is easy to see that the kinetic energy functional
H is not well defined without the further requirement of a
constraint on the size of its argument, the relative vorticity
field w(x). A natural constraint for this quantity is therefore
its square norm or relative enstrophy, which gives a further
justification for fixing microcanonically the relative enstrophy
in the spherical models below.

The second term in the energy is equal to 4� times the
variable angular momentum density of the relative fluid motion
and has units of m4/s. Incidentally, this further justifies our
decision not to constrain the angular momentum in addition to
the total kinetic energy, since it follows from this expression
that the angular momentum is only one part of the total kinetic
energy of the flow. The flow angular momentum in the case of
a rotating planet is given by

ρ

∫
S2

dx w cos θ = ρ 〈w, cos θ〉 , (3)

and implies that the only mode in the eigenfunction expansion
of w that contributes to its net angular momentum is α10ψ10,
where ψ10 = a cos θ is the first nontrivial spherical harmonic;
it has the form of solid-body rotation vorticity. We shall
see below that in the case of the massive nonrotating planet
discussed here, the angular momentum in the super-rotating
modes can be any combination of the three lowest spherical
harmonics, which represents a symmetry-breaking phase
transition in the sense that the turbulent barotropic flow has
zero angular momentum in the disordered phase.

IV. SPHERICAL MODEL FOR
ENERGY-ENSTROPHY THEORY

There is a natural vectorial formulation of the above
physical quantities on a 2D mesh over the sphere that leads
to a spherical model for barotropic flows on a massive sphere.
We represent the normal vorticity at site j by the vector

�sj = sj �nj ,

where �nj denotes the outward unit normal to the sphere S2

at xj . Similarly, we represent the spin � � 0 of the rotating
frame by the vector

�h = 2π

N
��n,

where �n is the outward unit normal at the north pole of S2.

Denoting by γjk the angle subtended at the center of S2 by
the lattice sites xj and xk, we obtain the following energy
functional for the total (fixed frame) kinetic energy of a
barotropic flow in terms of a rotating frame at spin rate � � 0:

HN = −1

2

N∑
j �=k

Jjk�sj · �sk + �h ·
N∑

j=1

�sj , (4)

where the interaction matrix is now given by the long- (finite-)
range

Jjk = 16π2

N2

ln(1 − cos γjk)

cos γjk

,

where the center dot denotes the inner product in R3 and �h
denotes a fixed external field arising from planetary spin if it is
nonzero. Although long range in the sense that antipodal sites
j and k on the planetary sphere have nonvanishing interaction
Jjk, it is finite in the sense that as the size N of the mesh
tends to infinity, the first term in HN tends to the well-defined
and finite limiting expression of the kinetic energy of relative
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flow, namely,

Er
kin = −1

2

∫
S2

dx ψ(x)w(x)

= −1

2

∫
S2

dx ′
∫

dx �−1(w(x ′))w(x) < ∞.

The resulting spherical model consists of a canonical Gibbs
ensemble with the following microcanonical constraints:
(i) relative enstrophy

4π

N

N∑
j=1

�sj · �sj = Q > 0,

and (ii) zero total circulation

4π

N

N∑
j=1

�sj · �nj = 0,

which will be imposed by dropping the lowest spherical
harmonic ψ00 from the eigenfunction representation of the

vorticity. This will be explicit in the next section where
the method of the saddle point will be used to solve this
spherical model. It will be evident that the exact solutions
will have a saddle point that sticks at a nonzero critical inverse
temperature precisely because its long-range interactions have
finite total energy.

Note that the vector

� = 4π

N

N∑
j=1

�sj

is the so-called magnetization, which turns out to be a natural
order parameter in numerical simulations for the statistics of
barotropic flows on a massive sphere.

V. SOLUTION OF THE SPHERICAL MODEL FOR � = 0

The partition function of the above spherical mod-
els is calculated using Laplace’s integral form for path
integrals:

ZN ∝
∫

D(�s) exp[−βHN (�s)]δ

⎛
⎝Q

N

4π
−

N∑
j=1

�sj · �sj

⎞
⎠ δ

⎛
⎝ N∑

j=1

�sj · �nj

⎞
⎠

=
∫

δ(
∑N

j=1 �sj ·�nj )
D(�s) exp[−βHN (�s)]

⎧⎨
⎩ 1

2πi

∫ a+i∞

a−i∞
dη exp

⎡
⎣η

⎛
⎝Q

N

4π
−

N∑
j=1

�sj · �sj

⎞
⎠
⎤
⎦
⎫⎬
⎭

=
∫

δ(
∑N

j=1 �sj ·�nj )
D(�s) exp

⎛
⎝β

2

N∑
j �=k

Jjk�sj · �sk

⎞
⎠
⎧⎨
⎩ 1

2πi

∫ a+i∞

a−i∞
dη exp

⎡
⎣η

⎛
⎝N − 4π

Q

N∑
j=1

�sj · �sj

⎞
⎠
⎤
⎦
⎫⎬
⎭ ,

where a > 0 is chosen large enough. Thus,

ZN ∝
∫

δ(
∑N

j=1 �sj ·�nj )
D(�s) exp

⎛
⎝β

2

N∑
j �=k

Jjk�sj · �sk

⎞
⎠∫ a+i∞

a−i∞

dη

2πi
exp

⎡
⎣η

⎛
⎝N − 4π

Q

N∑
j=1

�sj · �sj

⎞
⎠
⎤
⎦

=
∫

δ(
N∑

j=1
�sj ·�nj )

D(�s)
∫ a+i∞

a−i∞

dη

2πi
exp

[
N

(
η − 4π

QN
η

N∑
j=1

�sj · �sj + β

2N

N∑
j �=k

Jjk�sj · �sk

)]

=
∫

δ(
∑N

j=1 �sj ·�nj )
D(�s)

∫ a+i∞

a−i∞

dη

2πi
exp

⎡
⎣N

⎛
⎝η − 1

N

N∑
j �=k

Kjk(Q,β,η) �sj · �sk

⎞
⎠
⎤
⎦ ,

where

Kjk(Q,β,η) =
{ 4π

Q
η, j = k,

− β

2 Jjk, j �= k.
.

To evaluate the Gaussian integrals in ZN, we expand the relative vorticity vector field in terms of the spherical harmonics,

�ω(x) =
∞∑
l=1

l∑
m=−l

αlmψlm(x)�n(x),

where �n(x) is the outward unit normal to S2 at x. We stress that this expansion need not include the harmonic ψ00(x) because of
the zero-circulation condition on the vorticity �s.

Solution of the Gaussian integrals requires diagonalizing the interaction in HN in terms of the spherical harmonics {ψlm}∞l=1,

which are natural Fourier modes for Laplacian eigenvalue problems on S2 with zero circulation:

�sj = �nj

∞∑
l=1

l∑
m=−l

αlmψlm(xj ), − 1

2

N∑
j �=k

Jjk �sj · �sk = 1

2

∞∑
l=1

l∑
m=−l

λlmα2
lm,
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where the eigenvalues of the Green’s function for the Laplace-Beltrami operator on S2 are

λlm = 1

l(l + 1)
, l = 1, . . . ,

√
N, m = −l, . . . ,0, . . . ,l

and αlm are the corresponding amplitudes. Thus,

1

N

N∑
j �=k

Kjk(Q,β,η) �sj · �sk =
∞∑
l=1

l∑
m=−l

(
β

2N
λlm + η

Q

)
α2

lm

and

ZN ∝
∫

δ
(∑N

j=1 �sj ·�nj

) D(�s)
∫ a+i∞

a−i∞

dη

2πi
exp

⎡
⎣N

⎛
⎝η − 1

N

N∑
j �=k

Kjk(Q,β,η) �sj · �sk

⎞
⎠
⎤
⎦

=
∫ 1∏

m=−1

dα1m

∫
Dl�2(α)

∫ a+i∞

a−i∞

dη

2πi
exp

{
N

[
η −

∞∑
l=2

l∑
m=−l

(
β

2N
λlm + η

Q

)
α2

lm −
(

β

4N
+ η

Q

) 1∑
m=−1

α2
1m

]}
,

where we have split off the integral over the three spherical harmonics ψ1m, m = −1,0,1 which are the only modes with angular
momentum. They represent the so-called nonergodic modes which motivate this split.

By choosing Re(η) = a > 0 large enough, we interchange the order of integration of the term exp[−N
∑∞

l=2

∑l
m=−l(

β

2N
λlm +

η

Q
)α2

lm] to obtain

ZN ∝
∫ 1∏

m=−1

dα1m

∫ a+i∞

a−i∞

dη

2πi
exp

{
N

[
η −

(
β

4N
+ η

Q

) 1∑
m=−1

α2
1m

]}∫
Dl�2(α) exp

[
−N

∞∑
l=2

l∑
m=−l

(
β

2N
λlm + η

Q

)
α2

lm

]
.

A. Restricted partition function and nonergodic modes

Next we write the problem in terms of the restricted partition function ZN (α10,α1,±1; β,Q), that is,

ZN (β,Q) ∝
∫ 1∏

m=−1

dα1m ZN (α10,α1,±1; β,Q) =
∫ 1∏

m=−1

dα1m

∫ a+i∞

a−i∞

dη

2πi
exp

{
N

[
η −

(
β

4N
+ η

Q

) 1∑
m=−1

α2
1m

]}

×
∫

Dl�2(α) exp

[
−N

∞∑
l=2

l∑
m=−l

(
β

2N
λlm + η

Q

)
α2

lm

]
.

Due to nonergodicity of the ordered domain-scale nature of modes ψ10,ψ1,±1, we do not integrate over these ordered modes
whose amplitudes are denoted by α1m. We also note that all the higher harmonics will turn out to have zero amplitudes in the
ordered phase of this problem. The statistics of the problem are therefore completely determined by the restricted partition
function ZN (α10,α1,±1; β,Q). The amplitudes α10,α1,±1 of the ordered modes appear as parameters in this restricted partition
function, and will have to be evaluated separately.

Standard Gaussian integration is used to evaluate the last integral, which yields, after scaling β ′N = β,

∫
l�2

D(α) exp

[
−
∑
l=2

l∑
m=−l

(
β ′Nλlm

2
+ Nη

Q

)
α2

lm

]
=

√
N∏

l=2

l∏
m=−l

(
π

Nη

Q
+ β ′N

2 λlm

)1/2

,

provided the physically significant Gaussian conditions hold: for l � 2,

β ′λlm

2
+ η

Q
= β ′

2l(l + 1)
+ η

Q
> 0. (5)

Substituting these Gaussian expressions in the partition function gives

ZN (α10,α1,±1; β,Q) ∝ 1

2πi

∫ a+i∞

a−i∞
dη exp

{
N

[
η −

(
β ′

4
+ η

Q

) 1∑
m=−1

α2
1m − 1

2N

∑
l=2

∑
m

ln

(
Nη

Q
+ β ′N

2
λlm

)]}
,
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where the free energy per site evaluated at the most probable macrostate is − 1
β ′ F (η(β ′),Q,β ′) with

F (η(β ′),Q,β ′) = η(β ′)

[
1 − 1

Q

1∑
m=−1

α2
1m

]
− β ′

4

1∑
m=−1

α2
1m − 1

2N

∑
l=2

∑
m

ln

(
Nη

Q
+ β ′N

2
λlm

)
.

The partition function is now in the form where the saddle point method can be applied for N large.

B. Saddle points and energy threshold for the transition
to super-rotation

Provided that the saddle point η(β ′) can be determined
at given inverse temperature β ′, the stable (most probable)
macrostate is given by the extremum of the expression
F (η(β ′),Q,β ′). The saddle point condition gives one equation
for the determination of four variables η,α1m in terms of the
inverse temperature β ′ and relative enstrophy Q,

0 = ∂F

∂η
=
(

1 − 1

Q

1∑
m=−1

α2
1m

)

− 1

2NQ

∑
l=2

∑
m

(
η(β ′)
Q

+ β ′

2
λlm

)−1

, (6)

where η = η(β ′) is taken to be the value of the saddle point.
We need three more conditions to determine the three

amplitudes α1m and the saddle point η(β ′) > 0. They are
provided by the following equations of state representing the
variational principle for free energy in stable states:

0 = ∂F

∂α1m

= −
(

2η(β ′)
Q

+ β ′

2

)
α1m. (7)

Thus, a coupled system of four algebraic equations (6) and (7)
determines four unknowns in terms of the given relative
enstrophy Q > 0 and the scaled inverse temperature β ′. The
equations of state for α1m implies that for m = −1,0,1 either

α1m = 0 or

(
2η(β ′)

Q
+ β ′

2

)
= 0.

Since the saddle point is on the line with real part a > 0,

we deduce η(β ′) > 0, and with relative enstrophy Q > 0, we
obtain

β ′ = −4η

Q
< 0

when α1m > 0 for at least one value of m. This proves that
in order to have positive energy in the super-rotating modes,
the system’s kinetic energy must be sufficiently high to make
T ′ not only negative but numerically small (and the inverse
temperature β ′ < 0 and numerically large). Thus, we conclude
that the critical temperature T

′
c < 0.

In addition, the Gaussian conditions (5) imply that for l >

1,

β ′

2l(l + 1)
+ η(β ′)

Q
> 0,

which implies that the large-N limit in the right-hand side
(RHS) of the saddle point condition is well defined and finite:

(
1 − 1

Q

1∑
m=−1

α2
1m

)

= lim
N→∞

1

2NQ

∑
l=2

∑
m

(
η(β ′)
Q

+ β ′

2l(l + 1)

)−1

. (8)

When either T ′ > 0 or T ′ < 0 and numerically large, there
is no energy in the super-rotating modes, that is,(

1 − 1

Q

1∑
m=−1

α2
1m

)
= 1.

But for sufficiently high energy or hot enough negative
temperatures, given by the threshold T ′

c < T ′ < 0, the energy
in the super-rotating modes increases until they contain all of
the fixed enstrophy Q at absolute zero T ′ = 0−:(

1 − 1

Q

1∑
m=−1

α2
1m

)
↘ 0.

So to calculate T ′
c (Q) < 0 we need to find the most negative

value of the inverse temperature, denoted by β ′
c, for which

1 = lim
N→∞

1

2NQ

√
N∑

l=2

l∑
m=−l

(
η(β ′)
Q

+ β ′

2l(l + 1)

)−1

, (9)

and after which, for values of β ′ < β ′
c < 0,

limN→∞ 1
2NQ

∑√
N

l=2

∑l
m=−l(

η(β ′)
Q

+ β ′
2l(l+1) )

−1 < 1.

Inserting η = − β ′Q
4 into the RHS of (8), we calculate β ′

c to
be given by

−∞ < β ′
c(Q) = lim

N→∞
1

QN

√
N∑

l=2

l∑
m=−l

(
λlm − 1

2

)−1

< 0,

and check that for β ′ < β ′
c(Q) < 0,

lim
N→∞

1

β ′NQ

∑
l=2

∑
m

(
−1

2
+ λlm

)−1

< 1.

We note the significance of the critical temperature’s linear
dependence on the given relative enstrophy Q of he flow.

In other words, the extreme saddle point

η∗ = −β ′Q
4

is no longer adequate to solve (9) for β ′ < β ′
c(Q) < 0, which

is the so-called sticking of the saddle pointat the critical point
β ′

c.
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Moreover, the saddle point equation gives us a way to
compute the equilibrium amplitudes of the super-rotating
modes for temperatures hotter than the negative critical
temperature Tc. For temperatures T such that Tc < T < 0,

1∑
m=−1

α2
1,m(T ) = Q

(
1 − T

Tc

)
. (10)

VI. CONCLUSION

In conclusion, the above exact solution by the saddle point
method of the spherical model for barotropic energy-enstrophy
theory shows that, for a nonrotating planet, there cannot be
any energy in the solid-body rotating atmospheric modes at
positive temperatures or low energy levels. Only at very high
energy levels or negative temperatures smaller in numerical
value than a critical threshold can there be the self-organization
of barotropic energy into domain-scale coherent flows in
the form of symmetry-breaking super-rotating atmospheric
modes. These extremely high-energy modes carry a nonzero
angular momentum that can be directed along an arbitrary
axis since this problem is formulated in the inertial frame with
planetary spin � = 0. Moreover, it is clear from the analysis
in this paper that only in the zero-spin case is the subsequent
transition truly symmetry breaking in the Goldstone sense.
We computed the threefold degeneracy in the super-rotation
corresponding to precisely the first three spherical harmonics
(those with azimuthal wave number equal to 1 and the only
ones with nonzero angular momentum) that comprise a basis
for the realized super-rotational axis [32].

In a future presentation we will extend this exact solution
and spherical model to the harder and more interesting case
of planetary spin � > 0 where we expect to predict that the
enigmatic phenomenon of subrotation not only occurs for
sufficiently low energy levels but can only occur provided
the planetary spin is fast enough relative to the atmospheric
enstrophy.

A. Future work: Rotating planets

A previous dynamical or variational theory reported by
this author in [27] suggests that a statistical mechanics theory
for sub- and super-rotation should take into account both
(1) the planets’ spin rate and (2) the amount of atmospheric
kinetic energy for fixed enstrophy. However, the former effect
is complicated by a bifurcation where the subrotation state

changes from a stable global energy minimizer to a saddle
point when the planet’s spin drops below a critical value that
is proportional to the square root of the fixed enstrophy.

Additional complications in the rotating planet case arise in
the fact that now we expect a positive critical temperature as
well as the negative critical temperature already found in the
nonrotating case. At the positive critical temperature which
should exist provided planetary spin is large enough relative
to the fixed enstrophy, the transition is from unordered flows
to the extremely low-energy state of subrotation.

To summarize the expected theory for rotating planets, its
main physical conclusion will be that a necessary and sufficient
condition for subrotation in barotropic solid-body flows is
that the planetary spin must be large enough relative to the
atmospheric enstrophy and kinetic energy.

B. Other experimental considerations

Previous experimental and numerical results [3,6], in
particular those concerning planar vortex flows in a box,
have shown that domain-scale coherent vortices that spin up
spontaneously from the small eddies are robust. This author
would like to suggest an experiment where the box is fixed
to a free and initially nonrotating turntable, to better observe
the principle of angular momentum conservation which would
cause the box and turntable to counter-rotate whenever a large
vortex spins up in the flow. This experiment when performed
would be the classical counterpart to the Einstein-Haas effect
for electron spins in a ferromagnetic bar and the planar
geometry analog of the spherical flow on the nonspinning
planet in this paper.
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