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Length scale of a chaotic element in Rayleigh-Bénard convection
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We describe an approach to quantify the length scale of a chaotic element of a Rayleigh-Bénard convection
layer exhibiting spatiotemporal chaos. The length scale of a chaotic element is determined by simultaneously
evolving the dynamics of two convection layers with a unidirectional coupling that involves only the time-varying
values of the fluid velocity and temperature on the lateral boundaries of the domain. In our results we numerically
simulate the full Boussinesq equations for the precise conditions of experiment. By varying the size of the
boundary used for the coupling we identify a length scale that describes the size of a chaotic element. The length
scale of the chaotic element is of the same order of magnitude, and exhibits similar trends, as the natural chaotic
length scale that is based upon the fractal dimension.
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I. INTRODUCTION

Despite intense theoretical and experimental investigation
many open questions remain in our understanding of the
dynamics of spatially extended systems that are driven far from
equilibrium [1]. Important examples include the dynamics of
the atmosphere, oceans, and climate; fluid turbulence; and the
dynamics of reacting-diffusing-advecting systems. A common
feature of these systems is spatiotemporal chaos where the
dynamics are aperiodic in space and time. Significant progress
has been made in understanding chaos in time using dynamical
systems theory and chaotic time series analysis. However,
a similar depth of understanding of spatiotemporal chaos is
lacking. A question of particular interest is the identification
of appropriate length scales that describe and provide insight
into spatiotemporal chaos [2–7].

We explore these questions using the canonical pattern
forming system of Rayleigh-Bénard convection that results
when a shallow layer of fluid is heated uniformly from below
in a gravitational field [1]. For experimentally accessible
continuous systems, such as fluid convection, the dimension
of the attractor describing the dynamics is expected to be very
large [8–10]. Using modern algorithms and supercomputing
resources it is now possible to compute the fractal dimension
of such systems for the precise conditions of experiment
(cf. [10]). This has led to a number of new insights yet many
important questions remain. For example, given knowledge
of the fractal dimension one can estimate a time average of
the size of a chaotic degree of freedom or chaotic element
[11]. For typical conditions of the spiral defect chaos state
in Rayleigh-Bénard convection [12] this length scale is of
the order of the wavelength of the pattern [8–10] which is
also consistent with the approximate size of the defects in the
pattern. However, it has been very difficult to find a quantitative
link between the chaotic length scale and a diagnostic based
upon the dynamics of the pattern such as the time variation of
the fluid velocity or temperature field [3,5,8,10].

Insights into the underlying length scales that describe
spatiotemporal chaos have been gained by studying the

synchronization of systems exhibiting spatiotemporal chaos
[13–16]. Relevant to our work is the fluid study on the
synchronization of coupled rotating baroclinic annuli which
is important for understanding long-range connections in
atmospheric dynamics [17]. In this paper we appeal to ideas
from synchronization to gain new insights into the fundamental
composition of high-dimensional spatiotemporal chaos. We
quantify the spatial extent required to support nearly identical
dynamics between the two convection layers and explore how
this length scale relates to the chaotic length scale determined
from the fractal dimension.

II. APPROACH

The nondimensional Boussinesq equations that govern
Rayleigh-Bénard convection are

∂tu + (u · ∇) u = −∇p + σRT ẑ + σ∇2u, (1)

∂tT + (u · ∇) T = ∇2T , (2)

∇ · u = 0, (3)

where u is the fluid velocity, T is the temperature, p is the
pressure, and ẑ is a unit vector opposing gravity. We have
used the standard convention where the layer depth d is
the length scale, the constant temperature difference between
the top and bottom plates is the temperature scale, and
the vertical diffusion time for heat is the time scale. The
nondimensional parameters are the Rayleigh number R, the
Prandtl number σ , and the aspect ratio � = L/d where L is
the side length of the square domain.

Our basic approach for determining the length scale of a
chaotic element is illustrated in Fig. 1. This approach has been
used to study the length scales of a two-dimensional array of
coupled map lattices [18]. Consider a large principal domain
with a box geometry and aspect ratio �p where the system
parameters yield chaotic convection. Now consider a second
convection layer with a smaller aspect ratio �t which we refer
to as the target domain. The target domain receives its time-
dependent lateral sidewall boundary conditions for the fluid
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FIG. 1. (Color online) A principal domain with an aspect ratio
�p = 32 (left) and a target domain with an aspect ratio �t = 10
(right). The subdomain is within the principal domain and is indicated
by the dashed box. Color contours are of the temperature field at the
horizontal midplane where red (light gray) is hot rising fluid and
blue (dark gray) is cool falling fluid. The time-dependent values of
the velocity and temperature fields on the lateral boundary of the
subdomain are used as boundary conditions on the target domain
and are indicated by the arrow. The principal and target domains
begin from different random initial conditions. For the case shown
(ε = 2.51, σ = 1) the dynamics are not similar since �t > ξc.

velocity and temperature from the dashed boundary illustrated
within the principal domain which we call the subdomain.

It is useful to highlight an important distinction between the
subdomain and the target domain. The subdomain is embedded
within the principal domain. The target domain, on the other
hand, is not embedded within a larger domain and only
receives time-dependent boundary conditions for the velocity
and temperature from the subdomain. For incompressible
fluid dynamics the pressure is not an independent dynamical
variable and is determined implicitly to satisfy the conservation
of mass for the entire domain. In light of this, the fluid pressure
at the boundary is not passed from the subdomain to the target
domain. The pressure in the target domain, including the values
of the pressure at the lateral boundaries, is determined at every
time step when enforcing the incompressibility of the fluid.
The pressure in the subdomain is determined when enforcing
incompressibility for the entire principal domain. As a result,
the pressure field for the subdomain and the target domain will
be different even when the fluid patterns of the subdomain and
target domain appear to be similar.

Overall, there is a unidirectional flow of information from
the subdomain to the target domain. We emphasize that the
entire sidewall boundary is used whereas Fig. 1 only shows
the midplane slice. The principal and target domains start from
different random initial conditions in the temperature field.
Both convection layers are integrated simultaneously and the
dynamics of the subdomain and target domain are compared.

The similarity of the dynamics depends upon the aspect
ratio of the target domain and therefore the subdomain since
�t = �sd in all of our results where �sd is the aspect ratio of
the subdomain. For �t � 1 it is expected that the dynamics
of the two convection layers will become identical. Similarly,
for �t � 1 the dynamics of the two chaotic layers should be
uncorrelated. We are interested in finding the largest value of

�t that will support dynamics that are nearly identical. We call
the side length of the largest target domain the chaotic element
length scale ξc. Furthermore, we want to quantify how this
length scale varies with the Rayleigh number and how its
magnitude compares with the chaotic length scale determined
from the fractal dimension.

III. RESULTS AND DISCUSSION

For our calculations we have numerically integrated two
copies of Eqs. (1)–(3) (one copy for each convection layer)
that include the unidirectional coupling from the subdomain
to the target domain using the approach described by Chiam
et al. [19] (see also [20]). We have used a uniform spatial
resolution of � = 1/8 and a time step of �t = 0.001. We
have performed numerous tests including spatial and temporal
resolution tests as well as running simulations from numerous
random initial conditions to ensure the validity and generality
of our calculations.

We have found that a good diagnostic for the determination
of ξc is to use the difference in the Nusselt number between the
two convection layers �N = Nsd − Nt where Nsd and Nt are
the Nusselt numbers for the subdomain and target domain,
respectively. Significant advantages of using the Nusselt
number are its experimental accessibility and the fact that a
single number can be used to compare the three-dimensional
states of two convection layers at any time. Although the
Nusselt number is a global measure of the heat transport
through the fluid layer, its variation in time directly reflects
the pattern dynamics (cf. [10,21]). The presence of a defect
hinders the heat transport through the layer causing a dip in the
Nusselt number, the annihilation of a defect improves the heat
transport resulting in a spike in the Nusselt number, and glide
and climb dynamics result in a meandering of N (t). The defect
events can be very rapid, t � 1, and can result in sharp features
of the time variation of the Nusselt number. We have also
computed ξc using the difference between the complete states
of the two convection layers and have found the same trends.

Even for two chaotic convection layers exhibiting dynamics
that are indistinguishable to the eye there is some variation
between the target and subdomain states and, as a result, they
are not identical or synchronized. These small variations occur
spatially near the regions of rapid birth and annihilation of
defect structures. This variation is captured in �N (t) near
the sharp features of the Nusselt number and results in large
rapid spikes in the time series of �N . We anticipate that these
deviations are due to the nonlocal dynamics of a weak mean
flow that is present (cf. [1,22–24]). The mean flow is a long-
range flow due to wave number gradients, amplitude gradients,
and roll curvature that acts over length scales larger than the
roll wavelength and is well known to affect the stability of
convection rolls. Due to the nonlocal nature of the mean flow
it will be different for the subdomain and target domain since
the target domain is only passed the boundary information
and the subdomain dynamics are affected by the mean flow
generated by the surrounding convection pattern. We have not
explored this aspect in detail and emphasize that the deviations
observed are quite small.

In order to not include these rapid and sharp features of �N

in our criterion for ξc we first low-pass filter N (t) to remove
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FIG. 2. (Color online) The chaotic element length scale ξc for a
range of reduced Rayleigh numbers ε for a principal domain with
�p = 32. The color contours are of the temperature field. The black
box inside the principal domain has a side length of ξc. (a) ε = 2.51,
ξc = 3.4; (b) ε = 3.1, ξc = 2.9; (c) ε = 3.68, ξc = 2.1; and (d) ε =
4.27, ξc = 1.9.

dynamics from �N that occur at frequencies f0 � 3.3 before
checking the dynamics. This corresponds to dynamics for t �
0.3 whereas the time scale describing the overall dynamics
of the convection rolls is t ≈ 1. The value of ξc is nearly
independent (less than one percent deviation) of the particular
choice of f0 over the wide range 2.5 � f0 � 5.

We have chosen to explore parameters that yield the state
of spiral defect chaos in large convection layers [12] which
is anticipated to be extensively chaotic [8,9]. To achieve this
we have used a box geometry with �p = 32 and a fluid with
a Prandtl number of σ = 1. We anticipate that our results are
independent of �p as long as the system size is large enough
to be extensive. Flow field images are shown in Fig. 2 as
temperature contours at the horizontal midplane. The different
panels are for different values of the reduced Rayleigh number
ε where ε = (R − Rc)/Rc and Rc � 1708 is the critical value.
The value of ε is increasing from (a) to (d) and the small
black box in the center of each domain has a side length of ξc.
We have determined the precise value of ξc by running many
numerical simulations for different values of �t . It is clear
from the Fig. 2 that ξc decreases with increasing ε.

Figure 3 illustrates the time variation of the Nusselt number
difference between the target and subdomain for the chaotic
dynamics shown in Fig. 2(a) where ξc = 3.4. In panel (a) the
aspect ratio of the target domain is �t = 2 and the dynamics
are nearly identical where |�N | � 5 × 10−3 for the duration
of the simulation (3000 time units are shown). Panel (b) shows
results for �t = 10 that yields chaotic dynamics that are not
similar where |�N | � 0.1.

Figure 4 illustrates the variation of the maximum value
of |�N | over a range of target domain sizes 2 � �t � 8
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FIG. 3. The time variation of |�N | for chaotic dynamics for
�p = 32, ε = 2.51, and σ = 1. (a) �t = 2 yields nearly identical
dynamics. (b) �t = 10 does not yield similar dynamics.

for ε = 2.51 and σ = 1. The circles are results for �p = 32
which yields chaotic dynamics. The line is included to guide
the eye and the dashed horizontal line at |�N | = 0.01 is
our threshold for determining ξc. The magnitude of |�N |
decreases rapidly with decreasing target domain sizes. Using
our approach the two convection layers are nearly identical for
�t � 3.4 and therefore ξc = 3.4. We point out that for �t < ξc

the magnitude of |�N | does not change significantly. Similar
trends were observed for our numerical results at different
values of ε. The squares in Fig. 4 are for a smaller sized
principal domain where �p = 16 with ε = 2.51 and σ = 1
which yielded time-periodic dynamics of the flow field. In this
case, the dynamics of the target domain was nearly identical
to that of the subdomain for all sizes of the target domain.

It is insightful to compare quantitatively the chaotic element
length scale and other important length scales in the problem.
Figure 5 illustrates the variation of the pattern wavelength
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FIG. 4. Variation of the maximum value of |�N | over a range of
target domain aspect ratios �t for σ = 1 and ε = 2.51. Squares are for
�p = 16 which yields time-periodic dynamics where dynamics of the
target domain and subdomain were nearly identical for all �t . Circles
are for �p = 32 which yields chaotic dynamics (pattern images are
shown in Fig. 2). The threshold of |�N | � 0.01 is indicated by the
dashed line. The chaotic element length scale for the chaotic dynamics
is ξc = 3.4. The solid lines are included to guide the eye.
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FIG. 5. Variation of the chaotic element length scale ξc (circles),
the natural chaotic length scale ξδ (triangles), and the pattern
wavelength ξL (squares) with the reduced Rayleigh number ε for
a principal domain with an aspect ratio of �p = 32. The dashed line
is ξL = 2.6ε0.33, the solid line is ξc = 8.1ε−1, and the dash-dotted line
is ξδ = 17.0ε−2. Error bars are included for ξc and ξδ .

ξL, the chaotic length scale ξδ , and ξc over a range of reduced
Rayleigh numbers 1 � ε � 4.5. Squares are the time-averaged
value of the pattern wavelength determined using the structure
factor [1]. Over the range shown the pattern wavelength
increases slightly and the dashed line is a curve fit through the
data of the form ξL = 2.6ε0.33. Circles are ξc which decreases
with increasing ε and the solid line is a power-law curve fit of
the form ξc = 8.1ε−1. The error bars shown for ξc reflect the
precision in terms of the discretization used in determining the
largest �t yielding ξc. This could be improved by performing
more simulations for different values of �t .

The natural chaotic length scale ξδ is computed from the
fractal dimension Dλ. To compute Dλ we have simultane-
ously integrated many copies of the tangent space equations
(cf. [8,10]) and used the standard approach of frequent Gram-
Schmidt reorthonormalizations to compute the spectrum of
Lyapunov exponents. For these computations we used a highly
efficient, parallel, and spectral element solver that is discussed
in detail elsewhere [10,22]. Given the spectrum of Lyapunov
exponents the fractal dimension is Dλ = K + SK/|λK+1|
where K is the largest n for which Sn = ∑n

i=1 λi > 0 [1].
A volume of size ξ

ds

δ contains a single chaotic degree of
freedom on average [11] where ξδ = (Dλ/�ds )−1/ds and ds

is the number of spatially extended dimensions (where ds = 2
for large shallow convection layers) [1]. In order to compute
Dλ, and therefore ξδ , one must compute enough Lyapunov
exponents such that their linearly interpolated sum equals zero.
For chaotic Rayleigh-Bénard convection in large domains this
is a large number requiring significant computing resources
[10]. The expense of these calculations has limited the range
in ε for which we present values of ξδ . For our calculations,
Dλ ≈ 11 for ε = 1.34 and Dλ ≈ 61 for ε = 2.22. Our results
for ξδ are shown as triangles in Fig. 5 where the dash-dotted
line is the power-law curve fit ξδ = 17ε−2. We have included
error bars on ξδ that reflect its standard deviation in time.

Although the pattern wavelength is increasing with increas-
ing ε, both ξc and ξδ exhibit similar trends and are of the same
order of magnitude. Therefore the length scale of a chaotic
element is on the order of the chaotic length scale determined
from the fractal dimension. These results support the idea that
it may be possible to decompose a spatiotemporally chaotic
flow field into spatial elements that contain a single chaotic
degree of freedom on average.

IV. CONCLUSION

In conclusion, we have quantified the length scale of a
chaotic element by coupling the dynamics of two convection
layers using only information passed unidirectionally to the
boundary of the target domain. We have used this to show
that ξc is of the same order of magnitude and exhibits similar
trends as the computationally intensive chaotic length scale ξδ .
Although the connection between the two is not rigorous our
results suggest that there is a length scale associated with the
pattern dynamics that can be linked with the chaotic length
scale. This provides an avenue of investigation that does not
require the expensive computation of the Lyapunov spectra.
It may be possible to investigate experimentally these ideas
using time-dependent boundary conditions and it would be
interesting to explore the robustness of our results in situations
accessible to experiment.
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