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Optically injected lasers: The transition from class B to class A lasers
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We investigate changes in several features of the stability diagram of an optically injected single mode laser
as the ratio of the photon lifetime to the carrier lifetime is progressively increased from very low values to very
high values. In particular we consider the creation of a region of phase-locked bistability, changes in the nature
of codimension-2 bifurcation points, and the presence or otherwise of chaos in the system. We show that many
of the features associated with high values of the aforementioned ratio also emerge for very low pump currents
regardless of the ratio of the lifetimes.
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I. INTRODUCTION

For many laser applications where phase control over the
light is desirable, optical injection is an important process.
A useful figure in studies of optically injected lasers is the
stability diagram where the behavior of the slave laser is
mapped using the injection rate and the detuning frequency
(the frequency of the master minus that of the slave) as control
parameters. While this diagram can be extremely complicated
and can contain a multitude of bifurcations (see [1] and
references therein), there are two in particular that control
the gross features of the system. One is a saddle-node (SN)
bifurcation, and one is a Hopf bifurcation. In Ref. [2] a detailed
experimental study of this mapping was undertaken, and these
results were shown to agree extremely well with the predictions
of a rate equation model.

In Ref. [3] the authors introduced a naming convention
for lasers based on the ratios of the relaxation times of the
polarization, electric field, and carrier density. A class C laser is
one in which one needs equations for all three, a class B laser is
one in which the polarization may be adiabatically eliminated,
and a class A laser is one in which only the electric field
needs to be considered. Conventional semiconductor lasers
are class B lasers [3], meaning they can be described by a two-
dimensional rate equation model for the intensity of the electric
field and the carrier density. Class B semiconductor lasers
have an intrinsic dynamic known as the relaxation oscillations
(ROs) of the laser describing the damped oscillations arising
after perturbations from equilibrium. Class A lasers [3], on
the other hand, are one-dimensional, and perturbations decay
exponentially. When a class B laser is subject to optical
injection, an equation for the phase of the electric field
is also needed, and the system becomes three-dimensional.
Similarly, one needs to include the phase in the optically
injected class A rate equation model, and this becomes
two-dimensional.

The two main factors determining the RO characteristics
are the ratio of the photon lifetime to the carrier lifetime
and the pumping current. For typical values of the pumping
current it is this lifetime ratio that determines the behavior,
and in conventional semiconductor lasers, this ratio is very
small. A consequence of this is that the ROs are weakly
damped. Because of the prevalence of semiconductor lasers
in modern technology, these devices (and, consequently, the

weakly damped system) have been the focus of most studies.
Studies of intermediate damping levels do not seem to have
been undertaken, and from a practical point of view it is
easy to understand why: conventional semiconductor lasers
do not have such damping values. This has changed, however,
with the advent of quantum dash and dot lasers, providing
a practical motivation for an investigation of intermediate
damping levels. In Refs. [4,5] a four-dimensional rate equation
model specific to quantum dot material was considered, taking
into account the influence of the wetting layer and Pauli
blocking. Microscopic models of quantum dot systems have
also been investigated in Ref. [6] and under the influence of
optical injection in Ref. [7]. The behavior of optically injected
quantum dash lasers has been considered in Refs. [8,9]. In
Ref. [8] the standard semiconductor laser rate equation model
was used with the addition of an effective gain compression
parameter to model the material dynamics.

Several unique features lead to the high damping in
quantum dot devices, most significantly the occupation prob-
ability of the dots. For dots with an InAs active region the
steady state occupation probability is close to 1, and this
prevents prolonged relaxation oscillations via Pauli blocking,
as shown in the rate equation modeling in Refs. [10,11]. Using
parameters appropriate for InAs based quantum dot lasers, it
was shown in Refs. [4,5] that the predictions of the model
agreed well with experiment. Both yielded locking diagrams
qualitatively very similar to that of a class A laser as considered
in Ref. [12], with the performance of the optically injected
quantum dot laser being significantly more stable than that
of quantum well based devices but nonetheless displaying
some regions of chaotic operation [5]. The presence of chaos
means that the system is certainly not fully class A, where
deterministic chaos cannot arise due to the low dimensionality.
Thus it is of interest to consider the case where the standard
rate equations are used but with the RO damping increased to
consider when and how the class A features arise.

Theoretical and numerical investigations of the stability
diagram typically amount to a bifurcation analysis of a rate
equation model. The principal bifurcations in the stability
diagram are Hopf and SN bifurcations. Together, these form
the principal boundaries between phase-locked behavior and
unlocked behavior. Of course, there are many other bifurca-
tions that can be found in the system, and many of these have
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been investigated in detail. These lead to many complicated
dynamical features, such as excitability, multistability, and
chaos. In this work we are concerned only with the main
SN and Hopf bifurcations. We consider the transition from
weakly damped to strongly damped class B behavior and
finally to full class A behavior and describe the evolution of the
gross features of the stability diagram. These features include
the generation of a phase-locked bistability, the creation and
annihilation of codimension-2 points in the system, and the
presence of chaos. Finally, we show that for very low pump
currents, the class A locking structure is generic. To begin
with we compare a weakly damped class B laser with a class
A laser.

II. COMPARISON OF CLASS A AND CLASS B
STABILITY DIAGRAMS

The rate equation model for a class B semiconductor laser
is

Ṙ = NR + K cosφ, (1)

φ̇ = −� + αN − K

R
sinφ, (2)

Ṅ = γ [P − N − (1 + 2N )R2], (3)

where R is the slave field amplitude, K is the injection rate, φ is
the phase of the slave minus that of the master, � is the detuning
(the frequency of the master minus that of the slave), α is the
linewidth enhancement factor, N is the carrier density of the
slave, γ is the ratio of the photon lifetime to the carrier lifetime,
and P is the pumping current above threshold [13,14]. Time is
expressed in units of the photon lifetime in these
equations.

For quantum well and bulk lasers, the constant γ � 1. The
class A limit is found by taking the opposite limit, namely,
γ � 1. This allows an adiabatic elimination of the carrier
equation, and the rate equations become

Ṙ = N (R)R + K cosφ, (4)

φ̇ = −� + αN (R) − K

R
sinφ, (5)

where

N (R) = P − R2

1 + 2R2
. (6)

Typically, class A lasers such as gas lasers have low or even
zero α. We retain the class A name but note that we will also
consider nonzero α factors as in Ref. [7].

A typical stability diagram for a conventional class B
semiconductor laser is shown in Fig. 1(a). Only the SN and
Hopf bifurcations are shown (see [1] for further bifurcation
details). A stability diagram for the class A system is shown in
Fig. 1(b) (see [7] for further details). For the weakly damped
system the Hopf bifurcation H prevents stable phase locking
for a large portion of the area bounded by the SN bifurcation.
The shaded (gray) area is that where the phase locking to the

FIG. 1. (Color online) Two stability diagrams. H marks the Hopf
bifurcation [red (light gray)] in each case, while the other curve is
the SN bifurcation [blue (dark gray)]. (a) Weakly damped class B
laser with γ = 0.002 and α = 2. (b) Class A laser with α = 2. In
(a) the gray shaded region is that of unstable locking. In (b) the
black shaded region is a region of bistability where two phase-
locked solutions of different intensity coexist. Dashed lines represent
unstable bifurcations. Solid lines represent stable bifurcations. The
open red circles are codimension-2 FH points, and the solid red circles
are codimension-2 BT points.

master is unstable. Stable phase locking at zero detuning is
not even possible for some injection strengths. In contrast, this
is always a stable detuning for class A lasers. The linewidth
enhancement factor α also plays a large role in this instability
[1]. In the class A diagram, the dark shaded area (black) is
a region of phase-locked bistability. This region is one of
the major differences between the systems, and we examine
how it arises below. A second major difference between the
systems is the nature of the codimension-2 intersections of
the SN and Hopf bifurcations. In the weakly damped class
B system these points are of fold-Hopf (FH) form, while
in the class A system they are of Bogdanov-Takens (BT)
form.

In this work we will consider only two values of α: α = 0
and α = 2. These are sufficient to display our essential points.
While our main interest is in semiconductor laser systems,
many of the results take especially simple forms in the α = 0
case. This is also of interest for laser systems where low values
of α are expected such as for gas lasers.
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FIG. 2. (Color online) Two stability diagrams. H marks the Hopf
bifurcation [red (light gray)] in each case, while the other curve is
the SN bifurcation [blue (dark gray)]. In (a) α = 0 and γ = 0.005.
In (b) α = 2 and γ = 0.005. The open red circles are codimension-2
FH points. Again, dashed lines are unstable bifurcations; solid lines
are stable bifurcations.

III. PHASE-LOCKED BISTABILITY

Bistability in general is a common feature in optically in-
jected lasers. In some cases it results from an intrinsic property
of the system, such as in semiconductor ring lasers, where
there are two possible directions of propagation [15], vertical
cavity surface emitting lasers, where there are two possible
polarization states for the light [16–18], and two-mode lasers,
where there are two possible emission wavelengths [19].
Despite the lack of such an intrinsic property to exploit, a
phase-locked bistability in optically injected, single mode
edge-emitting semiconductor lasers can also be obtained. Such
a bistability has been observed for quantum dot lasers [4,5]
at pumping currents well above threshold. It has also been
studied for quantum well based lasers [20,21], but in these
cases, observation of the bistability required a pump current
only slightly above threshold. We return to such a limit later.

First, let us consider the simple α = 0 case. Let us also
fix P = 0.5. For low values of the damping there are two
codimension-2 points, both of FH form, as shown in Fig. 2(a).
One effect of increasing the value of α is that the diagram
becomes asymmetric. Another is that the FH points migrate
along the SN line and eventually pass the cusp, as shown in
Fig. 2(b) (as also described in Ref. [1]). A result of this

FIG. 3. (Color online) Two stability diagrams. In each H marks
the Hopf bifurcation [red (light gray)], while the other curve is
the SN bifurcation [blue (dark gray)]. (a) A portion of a stability
diagram with a (shaded) region of bistability for α = 0 and γ = 0.5.
(b) The diagram for α = 2 and γ = 0.2. The open red circles
are codimension-2 FH points. Dashed lines represent unstable
bifurcations. Solid lines represent stable bifurcations.

migration is that another phase-locked solution can gain
stability, thereby creating a region of phase-locked bistability
between the SN line and the Hopf line. However, this region
is either extremely small or vanishing for low values of γ .

Keeping α = 0 but increasing γ instead, we find a similar
migration of the FH point, again resulting in a bistable region.
Such a region of bistability is shown in Fig. 3(a) for α = 0
and γ = 0.5. Since this special case is symmetric, there are
regions of bistability for both positive and negative detunings.
As α is increased, the symmetry is eventually lost, but by
continuity one must expect a positively detuned bistable
region for some nonzero values of α. We do not pursue this
topic further here as, experimentally, semiconductor lasers
with such low values of α are not currently obtained, and we
content ourselves with the prediction that one would expect
two bistable regions for a sufficiently low α. As for the case of
low damping this region is very small. Thus, while regions of
bistability are possible for very low γ or very low α, they are
extremely small. We now consider the effect of a moderate α

and the effect of increasing γ .
As just described, the migration of the FH point resulting

from an increase in γ can yield a region of phase-locked
bistability, albeit initially an extremely small region. As γ

is further increased, the FH point moves ever farther along
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the SN curve, and the bistable region grows correspondingly.
Figure 3(b) shows the stability diagram for α = 2 and γ = 0.2,
where a clear bistable region exists for negative detuning.
(Figure 5 shows two further stability diagrams for yet higher
values of γ with large bistable regions.) This does not continue
indefinitely, however, and we see in the next section that,
eventually, the bistable region will begin to contract in size as
γ is increased. Nonetheless, it is quite striking that a general
feature of the class A locking structure already exists even for
relatively low values of γ .

Bistable behavior arising in this manner has been demon-
strated for quantum dot lasers undergoing optical injection
both experimentally and theoretically in Ref. [4], where the
similarity to class A behavior was noted. We see now that this
feature also arises from the conventional rate equations even
for moderate damping values.

IV. CODIMENSION-2 POINTS: CREATION, COLLISION,
AND ANNIHILATION

As already mentioned, for a weakly damped conventional
class B semiconductor laser undergoing optical injection, the
codimension-2 points formed by the intersection of the SN and
Hopf bifurcations are of FH form. The existence of such points
in the optically injected system was first identified in Ref. [22],
and an analytic expression for the locations of the points was
obtained. From the point of view of dynamics these points
are extremely important organizing centers in the system and
hence have been studied in great detail, with most studies
focusing on the positively detuned point. In Ref. [23] the
effect of the point on organizing the flows and dynamics in
the system was studied in great detail. This point has also
been the subject of several careful and detailed studies by
Zimmermann and coworkers, such as in Ref. [24], where
they examined the structure of resonance tongues near the
FH point (for a fixed value of the relaxation times), and in
Ref. [25], where homoclinic and heteroclinic bifurcations were
investigated both numerically and theoretically. These studies
provide many details regarding the deep bifurcation structure
of the system near the FH point and of the orbits and flows in
the phase space of the system. Our goal in this work is more
modest: we aim to investigate only the gross codimension-2
structure and how the FH points disappear and the BT points
appear as the ratio of the relaxation times is progressively
increased.

That the codimension-2 points arising from the intersec-
tions of the SN and the Hopf bifurcations in the class A
system cannot be of FH form but rather must be of BT form
can be demonstrated using a simple counting argument. The
characteristic equation is quadratic, and so there are only two
eigenvalues per point. If one of these is zero, corresponding
to the SN bifurcation, then there cannot simultaneously be
a conventional Hopf bifurcation as there is only one other
eigenvalue. Rather, the Hopf must meet the SN in a singularity
with both eigenvalues equal to zero, that is, in a BT point.
The question of how this transformation occurs is the basis
of our next investigation. To investigate this we need to
find the characteristic equation for the system by linearizing

Eqs. (1)–(3), yielding,

λ3 + A1λ
2 + A2λ + A3 = 0, (7)

where the coefficients Ai are given by

A1 = −2N + γ

(
1 + 2P

1 + 2N

)
,

A2 = −2Nγ

(
1 + 2P

1 + 2N

)
+ N2 + 2γ (P − N ) + (� − αN )2,

A3 = −2γ (P − N ) [N − α (� − αN)]

+ γ

(
1 + 2P

1 + 2N

) [
N2 + (� − αN)2

]
, (8)

as also shown in Ref. [13].
We first consider again the simplified α = 0 system. The

α = 0 simplification allows us to find some simple analytic
results and will aid understanding for the more general case.
In Fig. 2(a) a stability diagram for α = 0 and weak damping
is shown. There are two FH points satisfying A1 = 0, A3 = 0
(corresponding to one zero eigenvalue). As γ is increased,
the minimum of the Hopf bifurcation moves to ever higher
injection strengths and eventually touches the SN bifurcation
at a third codimension-2 point, as shown in Fig. 4(a). This
third codimension-2 point is of BT form and by symmetry
it must occur at � = 0. We can find a simple expression for
γc1, the critical value for this third codimension-2 point. The
conditions for a BT point are A2 = 0,A3 = 0, and these yield

0 = 4N2 + (3 − 2P )N − 2P, (9)

γc1 = N2

2

[
N

(
1 + 2P

1 + 2N

)
− P + N

]−1

. (10)

Equation (9) defines the position of the SN line and is, of
course, independent of γ . It allows us to find N for a given P .
Equation (10) then allows us to find γc1. For P = 0.5 we find
γc1 = 0.25.

At this value of γ there are three codimension-2 points:
two FH points and the newly created BT point, as shown
in Fig. 4(a). By increasing the value of γ still further the
BT point splits into two separate BT points, giving four
codimension-2 points. Further increasing γ , the FH points
migrate along the SN line towards the BT points and vice
versa. The collisions of these different codimension-2 points
take place in codimension-3 points, where A1 = 0, A2 = 0,
and A3 = 0. The values of γ for these points can be found
from the coupled equations

γc2 = 4N2 + 2N

1 + 2P
(11)

and

12N3 + (12 − 4P ) N2 + (5 − 8P ) N − 3P = 0, (12)

and these are found at γc2 ≈ 0.4108 and at � ≈ ±0.1545.
From this point on, the codimension-2 points associated with
stable locking are of BT form. Continuing to increase γ ,
we find that the codimension-2 points continue to migrate.
Eventually, the two FH points meet and mutually annihilate,
after which there are only BT points. This annihilation occurs
at γc3 = 0.5 and � = 0, as shown in Fig. 4(b), where only the
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FIG. 4. (Color online) Two stability diagrams for α = 0. H marks
the Hopf bifurcation [red (light gray)] in each case, while the
other curve is the SN bifurcation [blue (dark gray)]. (a) shows the
emergence of the (degenerate) BT point (solid red circle) coexisting
with two FH points (open red circles) at γ = 0.25. (b) is for γ = 0.5,
where the FH points have mutually annihilated and only BT points
remain. Dashed lines are unstable, and solid lines are stable. The
unstable part of the Hopf is not shown in (b) as it almost coincides
with the SN line.

stable part of the Hopf is shown. (Note that it is a coincidence
that γc3 = P here; this is not true for other values of P .)

Of course, real semiconductor lasers have a nonzero α.
While the details are different, we find that the qualitative
picture developed above holds. Specifically, the diagram is,
of course, asymmetric, but the creation of the BT points and
the annihilation of the FH points still occur. For α = 2 the
first BT point is born at γ ≈ 0.2408 and at � ≈ 0.6311.
This first (degenerate) BT point splits into two separate BT
points, which then migrate and collide with their respective
FH points in codimension-3 bifurcations. For nonzero α these
occur at different values of γ . At γ ≈ 0.3774 we have the
codimension-3 collision of the more positively detuned FH
point at � ≈ 0.5416. At γ ≈ 0.5946 and � ≈ 0.2654 we have
the codimension-3 collision of the more negatively detuned FH
point and a BT point. Up to this point the range of injection
strengths over which the system has a phase-locked bistability
grows with increasing γ . From this point, however, this region
starts to shrink again since from here on this BT point moves to
higher and higher injection strengths. The FH points are even-
tually mutually annihilated at γ ≈ 0.6409 and � ≈ 0.5097.

FIG. 5. (Color online) Two stability diagrams for α = 2. H marks
the Hopf bifurcation [red (light gray)] in each case, while the other
curve is the SN bifurcation [blue (dark gray)]. In (a) four codimension-
2 points coexist: two FH (open red circles) and two BT (solid red
circles) at γ = 0.5. In (b) only the BT points for γ = 0.65 remain. The
dashed (solid) lines are unstable (stable) bifurcations. The unstable
part of the Hopf bifurcation is not shown in the second case. It is
always close to the SN line.

Figure 5 shows two stability diagrams, one with four
codimension-2 points and another where there are only BT
points. Qualitatively, Fig. 5(b) is the same as the class A
diagram shown in Fig. 1(b). Note that the size of the bistable
region in this class B case is greater than that of the class A
system.

0.3 0.4 0.5 0.6 0.7
−0.5

0

0.5

γ

Δ

BT

FH

FH

FIG. 6. (Color online) The evolution of the codimension-2 points
with γ for α = 2. The codimension-3 collisions of the BT and FH
points are those points where solid lines become dashed and vice
versa. The black dots mark the positions of the creation of the BT
points (on the left) and the annihilation of the FH points (on the right).
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Figure 6 shows the evolution of the FH and BT points as γ is
increased. The creation of the BT points and the annihilation of
the FH points are marked with black dots. The codimension-3
points where FH and BT points corresponding to the same
steady states coincide are the points where solid lines become
dashed and vice versa.

Even at the highest of these values of γ , the free-running
laser is still an underdamped system. In fact, for P = 0.5 the
system is underdamped for all γ < 1. For γ > 1 the system
is overdamped, but even then it is far from the class A limit.
Thus, another of the features typically associated with the
class A system, the presence of BT points rather than FH
points, is shown to arise at moderate damping levels in the
class B system and, in particular, much earlier than the class
A limit. Despite the similarities between even a moderately
damped class B system and the class A system, some distinct
differences remain. In particular, deterministic chaos cannot
occur in the class A system as it is two-dimensional. However,
it can and does arise in the class B system, even after the class
A characteristic features have arisen, as we now show.

V. CHAOS

The focus of our analysis so far has been on the locking
region and the determination of stable and unstable boundaries.
We consider some of the unlocked behavior in this section. It
is well known that chaos is encountered for weakly damped
conventional semiconductor lasers undergoing injection [1,3].
(In fact, the generation of chaos was part of the motivation
for introducing injection in Ref. [3].) As mentioned above, for
the class A system deterministic chaos is impossible: there are
only two dimensions. Nonetheless, even when many of the
features of the class A diagram have been generated for the
class B system, one may still encounter regions of chaotic
behavior. We demonstrate this by explicitly simulating a
chaotic time series for γ = 0.38. There is an appreciable region
of bistability at this level, and BT points have already been
generated. In fact, one of the codimension-3 collisions of an
FH point and a BT point has already occurred, and so the more
positively detuned codimension-2 point associated with stable
locking is already of BT form. Despite this, chaotic regions can
remain in the system. In Fig. 7 we show an intensity time series
and a phase plot demonstrating chaotic behavior. Qualitatively,
this is just like the case for optically injected quantum dot
lasers where the Hopf and SN structure is reminiscent of class
A lasers but chaotic regions are nonetheless observed [4,5]. As
γ is further increased, the regions of chaos grow ever smaller.

VI. LOWER PUMP CURRENTS

A possible objection to the relevance of the analysis thus
far is that the most interesting range of values for γ is
0.2 � γ � 0.6. Although these are much less than the values
needed to justify a full class A approximation, they are still
significantly higher than the values obtained for conventional
semiconductor lasers. A notable exception, of course, is the
aforementioned quantum dot lasers.

An important point is that we have so far considered
only one particular choice of the pump current, namely,
P = 0.5. The RO properties of the system depend greatly

FIG. 7. (Color online) (a) Chaotic time series of the intensity and
(b) the corresponding phase plot of the electric field. The parameters
are � = 0.435, K = 0.099, γ = 0.38, P = 0.5, and α = 2.

on this particular parameter, and so one should consider more
carefully how the system changes as it is varied. In Refs. [20]
and [21] a low pump current was used to demonstrate a
phase-locked bistability, and in Ref. [26] the existence of BT
points at low pump currents was intimated. Let us look at
this process a bit more closely. By examining the expressions
for the RO parameters we can see why one might expect to
find high damping phenomena at low current values. The RO

frequency has the form �RO =
√

2Pγ − γ 2( 1+2P
2 )2, while

the RO damping has the form �RO = γ ( 1+2P
2 ). Decreasing

P towards γ /8, we have �RO → 0, while the damping

10 15 20 25 30 35
−0.05

0

0.05

0.1

1/P

Δ

FH

FH

BT

FIG. 8. (Color online) The evolution of the codimension-2 points
with P for α = 2. The codimension-3 collisions of the BT and FH
points are those points where solid lines become dashed and vice
versa. The black dots mark the positions of the creation of the BT
points (on the left) and the annihilation of the FH points (on the right).
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FIG. 9. (Color online) Stability diagram for the system with a
low value of P . (a) shows the full extent of the SN bifurcation, while
(b) shows a zoom of the low injection region. The similarity with
the class A stability diagram is clear. The Hopf bifurcation curves
[red (light gray)] are denoted with H, and the other curve is the SN
bifurcation [blue (dark gray)]. Solid lines denote stable bifurcations,
and dashed lines denote unstable bifurcations. Only the stable parts
of the Hopf bifurcation are shown. The red dots show the positions
of the codimension-2 BT points.

remains finite with �RO → γ /2(1 + γ /4). This suggests that
for P ∼ O(γ ) even a conventional semiconductor laser may
have some class A like characteristics. As P is decreased,
the onset of BT points and bistability phenomena arise at
correspondingly lower values of γ . For example, at P = 0.1
the BT points first arise at γ = 0.0567, while at P = 0.05 they
arise at γ = 0.0292. By fixing γ and allowing P to decrease,
one can mirror the sequence of behavior found when P was
fixed and γ was increased. In Fig. 8 we fix γ = 0.05 and show
the evolution of the codimension-2 points as P is decreased.
The observed pattern is qualitatively the same as in Fig. 6. For
high P values there are only FH points. At some critical P a
pair of degenerate BT points is born. These points subsequently
separate and migrate as P is decreased still further. As before,
we have codimension-3 collisions of the BT and FH points,
and eventually, the two FH points collide and are annihilated,
after which there are only BT points.

We show a stability diagram with γ = 0.05 and P = 0.03
in Fig. 9. The codimension-2 points are of BT form, and there
is a large region of bistability between two phase-locked states.
The qualitative similarity to the conventional class A stability
diagram is clear.

VII. CONCLUSIONS

In summary, we have considered the evolution of the
stability diagram for optically injected semiconductor lasers
as the RO damping is varied. Even for moderate values of
γ the qualitative features of the class A locking diagram
emerge. As the damping is increased we find the creation
of codimension-2 BT points coexisting with codimension-2
FH points. As the damping is increased further, there are
codimension-3 collisions of the FH and BT points and,
eventually, the collision and mutual annihilation of the FH
points, after which only the BT points remain. Large regions of
phase-locked bistability also emerge. Nonetheless, we showed
that even with the appearance of the general characteristics
of the class A locking region, regions of chaotic behavior
outside the locking region persist. These disappear in the class
A limit. The presence of chaos outside a class A like locking
region is qualitatively similar to experimental observations
with optically injected quantum dot lasers. We also showed
that for sufficiently low pump currents, a class A structure
arises regardless of the value of γ . Of course, stochastic effects
become very important for these low pump currents, and so an
analysis of the effect of noise terms should be performed.
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