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Complexity of quantum states in the two-dimensional pairing model
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It is known that many-fermion systems, such as complex atoms and nuclei, reveal (at some level of excitation
energy) local signatures of quantum chaos similar to the predictions of random matrix theory. Here, we study the
gradual development of such signatures in a model system of up to 16 fermions interacting through short-range
pairing-type forces in a two-dimensional harmonic trap. We proceed from the simplest characteristics of the
level spacing distribution to the complexity of eigenstates, strength, and correlation functions. For increasing
pairing strength, at first, chaotic signatures gradually appear. However, when the pairing force dominates the
Hamiltonian, we see a regression towards regularity. We introduce a “phase correlator” that allows us to distinguish
the complexity of a quantum state that originates from its collective nature, from the complexity originating from
quantum chaos.
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I. INTRODUCTION

The harmonic oscillator potential confining a number of
quantum particles has for many decades served as a paradigm
to study many-body effects in finite quantum systems, ranging
from atomic nuclei to quantum dots.

A new perspective has more recently opened up with
ultracold bosonic or fermionic atoms in magneto-optical
traps. The experimental possibilities to design the quantum
confinement, together with tunable interactions between the
atoms, nowadays allow unprecedented access to study the few-
and many-body physics of complex quantum systems (see, for
example, Ref. [1] for a review). While initially the focus was on
Bose-Einstein condensation with millions of confined atoms,
now also fermion confinement in the few-body limit has come
into experimental reach [2]. A few theoretical works [3–6] (see
also the recent review in Ref. [7]) have addressed this limit for
an isolated harmonic trap, calculating ground-state energies,
spectra, odd-even mass differences, and examined the role of
angular momentum in two- and three-dimensional systems for
various interactions.

The main aim of the present work is to examine the
quantum properties of interacting fermions confined in a two-
dimensional harmonic oscillator through the lens of quantum
chaos. The fermions are assumed to interact through attractive
and short-range pairing-type forces, analogously to what has
been studied earlier in the context of nuclear physics [8–11]. At
first, the nuclear theory was developed along lines similar to the
BCS theory of superconductivity that is essentially exact only
in the macroscopic limit (see Bohr, Mottelson, and Pines [8]).
Methods to treat small numbers of particles were subsequently
developed; see, for example, Refs. [12,13].

Short-ranged attractive forces account well for the effective
interactions in the fermionic cold-atom systems mentioned
above. Here, we examine how the complexity of the quantum
states changes as the interaction strength is varied.

For particles in time-conjugate orbits, the overlap of the
single-particle wave functions is maximum. For short-ranged
interactions, we thus may expect the pairing model to describe
the main physical observables well. Importantly, at comparable
correlation strength, the pairing Hamiltonian allows one to
extend the number of confined particles beyond what is
possible for a direct numerical diagonalization of the full
Hamiltonian.

The relationship between many-body physics and quantum
chaos has been well studied in atomic [14] and nuclear physics
[15–19], as well as in condensed-matter physics where it is
sometimes formulated as a problem of many-body localization
[20]. While a rigorous definition of quantum chaos in many-
body systems remains elusive, it is an almost universal feature
of interacting many-body systems that, at sufficiently large in-
teraction strength, the eigenstates become exceedingly compli-
cated superpositions of single-particle excitations with spectral
statistics close to the random matrix limit [15,17–19,21–23].
We shall, however, see that the coherent structure of the pairing
force may partly suppress such onset of complexity.

The standard signatures of chaos are usually recognized
from the generic spectral statistics [21]. We also consider other
measures of less pronounced, but perhaps not less significant,
milestones on the road to chaos. It is a unique feature of the
pairing force that it creates largely mixed states in the low-
energy region. Even if gradual, there appear generic changes in
the structure of individual many-body wave functions, strength
functions, and related observables along the path to stronger
interactions or higher excitations. These quantities probe the
mixing of basis states and the systematically increasing com-
plexity (determined through indicators such as informational
entropies and inverse participation ratios), and the spreading
widths of simple modes of excitations (determined through
the strength function). For some of these quantities, one can
compare our results with those for a random interaction, where
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the matrix elements follow the Gaussian orthogonal ensemble
(GOE). The latter is the appropriate ensemble for systems with
time-reversal symmetry; see, e.g., Refs. [19,21]. We show that
there are precursors of quantum chaos that are generated by
the pairing interaction. For sufficiently large pairing strength,
the chaotic properties are reduced, and we see the revival of
regularity that is reflected in the spectral statistics.

II. METHOD

In distinction to the BCS-type variational approaches, the
pairing model used in the following is known as “exact
pairing.” It is described in detail in Refs. [12,13]. The method
is briefly summarized below, adapted to the specific problem
at hand.

The general Hamiltonian for N fermions of mass m

confined by a two-dimensional harmonic trap (with oscillator
frequency ω) and interacting through a contact interaction is

H =
N∑
i

(
− h̄2

2m
∇2

i + 1

2
mω2r2

i

)
+ g′ ∑

i �=j

δ(2)(ri − rj ), (1)

where the coupling constant g′ has a dimension of energy
times area. The dimensionless coupling constant, g, is the
ratio of the coupling strength g′ to the characteristic energy and
squared length scale of the trapped system, g = g′/(h̄ω�2) and
� = (h̄/mω)1/2. We consider the case of attractive interaction,
g < 0. In this case, the Hamiltonian can be approximated by
that of the pairing model,

Hp =
∑
nmσ

εna
†
nmσ anmσ

+ 1

4
g

∑
nn′

Gnn′
∑

mm′σσ ′
a†

nmσ ã†
nmσ ãn′m′σ ′an′m′σ ′ , (2)

where εn are single-particle energies in the harmonic trap and
the tilde indicates time reversal. The first term thus describes
the (one-body) confinement part and the second term the
(two-body) pairing interaction. The oscillator frequency, h̄ω,
controls the strength of the one-body part, and the parameter
g controls the interaction part (the interaction matrix elements
Gnn′ are defined below). We use here the (one-body) basis
where each orbital |nmσ 〉 is characterized by three quantum
numbers, where n is the main (radial) oscillator shell number
(starting at 0), m is the orbital angular momentum projection,
and σ is the spin projection. The time-reversal operation is
defined as

ã†
nmσ = (−1)n+1/2−m−σ a

†
n−m−σ . (3)

The main quantum number, n, is not normally related to
time-reversal symmetry; however, in this case it is equal to the
maximum value of m for a given shell. In two dimensions, n

and |m| have the same parity so we can simplify the expression
further,

ã†
nmσ = (−1)1/2−σ a

†
n−m−σ . (4)

The pairing matrix elements are calculated using the
“quasispin” formalism applied separately to each n shell.
The pair creation and annihilation operators are represented

as the “quasispin” generators of the SU(2) group,

L−
n = 1

2

∑
mσ

(−1)1/2−σ an−m−σ anmσ ,

(5)

L+
n = (L−

n )† = 1

2

∑
mσ

(−1)1/2−σ a†
nmσ a

†
n−m−σ ,

and the “z component” of quasispin is

L0
n = 1

2 Nn − 1
4 �n, (6)

where Nn is the number of particles in the nth shell, and �n

is the degeneracy of this shell. The pairing Hamiltonian of
Eq. (2) then can be rewritten as

Hp = 1

2

∑
n

εn�n + 2
∑

n

εnL
0
n + g

∑
nn′

Gnn′L+
n L−

n′ . (7)

This Hamiltonian preserves the set of conserved partial
quasispins Ln or, equivalently, the partial “seniority” quantum
numbers vn = 2(�n/4 − Ln) that measure the deviation of the
quasispin Ln from its maximum value (�n/4) and essentially
coincide with the number of unpaired particles in the nth
shell. We shall often refer to the total seniority, or the total
number of unpaired particles in the system, v = ∑

vn. If
all pairing matrix elements are the same, Gnn′ = const, the
Hamiltonian Hp has been shown to be integrable [24].

The conservation of seniorities allows us to write the matrix
elements in a simple form in terms of the number of particles
in a given oscillator shell, its degeneracy, and seniority. The
diagonal matrix elements are

〈{Nn},{vn}|Hp|{Nn},{vn}〉

=
∑

n

[
εnNn + g

Gnn

4
(Nn − vn)(�n − vn − Nn + 2)

]
,

(8)

where |{Nn},{vn}〉 are many-body basis states. The unpaired
particles do not interact in this model. However, they influence
the dynamics indirectly by Pauli-blocking certain final states
available for the pairs. The off-diagonal matrix elements
correspond to the pair transfer, changing the occupancies of
two orbits but keeping seniorities unchanged and the total
particle number N = ∑

n Nn fixed,

〈. . . ,Ni + 2, . . . ,Ni ′ − 2, . . . ;

{vn}|Hp| . . . ,Ni, . . . ,Ni ′ , . . . ; {vn}〉
= g

Gii ′

4
[(Ni ′ − vi ′ )(�i ′ − vi ′ − Ni ′ + 2)

× (�i − vi − Ni)(Ni − vi + 2)]1/2. (9)

It remains to specify the interaction matrix elements
denoted by Gii ′ in the above expressions. In Eq. (1), we
indicated that we had used a contact interaction. The δ-function
potential has its problems in spatial dimensions larger than 1.
This problem is well known in the literature; see, for example,
Refs. [25–29]. A remedy often is a cutoff that effectively
renormalizes the interaction strength (as extensively discussed
in Ref. [30]). Here we followed this approach and performed
the calculations in a model space of nmax = 6 oscillator
shells for particle numbers up to N = 9, as was done in
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Ref. [6], where the pairing calculation was compared to exact
diagonalization of the full Hamiltonian, H . For systems with
up to N = 16, we include nmax = 9 oscillator shells. Regarding
the interaction, the theory requires a degenerate multiplet for
the pairs, which is broken by the δ function form of the
two-body interaction. Thus, we must average the interaction
within a given oscillator shell. In the actual calculations, the
interaction parameters, Gii ′ , are equal to

Gii ′ = 1√
�i�i ′

∑
mm′

〈i ′m′,i ′ − m′|δ(2)(r − r′)|im,i − m〉.

(10)

The Schrödinger equation for the pairing Hamiltonian,

Hp|α〉 = Eα|α〉, (11)

is finally solved by numerical diagonalization of submatri-
ces corresponding to the good quantum numbers discussed
above.

III. RESULTS

The Hamiltonian, Eq. (2), was diagonalized for particle
numbers N from N = 2 to N = 16. The energy spectra for
N < 9 were reported in Refs. [6,31], where the pairing results
for low-lying states were compared with results from exact
diagonalization performed on the same Hamiltonian, Eq. (1),
with sums over all two-body pairs rather than just those in
time-reversed orbits, Eq. (2). Here, we discuss the complexity
of eigenstates in the full model space when the effective
interaction strength g grows in magnitude from the smallest
values near zero, to g = −10, where the pairing interaction
dominates.

An example of the spectrum for a system with N = 7
and N = 8 at g = −5 is shown in Fig. 1. The difference
between even- and odd-numbered systems is clear, with the
gaps between the different seniorities being indicative of the
size of the pairing effect.

In Fig. 2 the lowest-seniority v = 0 energy levels are shown
for a system of 16 particles for different interaction strengths.
For the lowest strengths, the confinement potential dominates
and typical jumps of 2h̄ω can be seen, corresponding to pair
excitations from one oscillator shell to another. This oscillatory
behavior is more or less smeared out when g = −3. With
even larger interaction strength, the spectrum becomes more
and more dominated by the pairing part. In all cases, the
density of (all) states for a given seniority has a generic
Gaussian shape [21], as was found originally in the two-body
random ensemble [32], in contrast to the semicircle shape in
the full Gaussian orthogonal ensemble, explained in detail in
Ref. [21] and confirmed in large-scale nuclear shell-model
diagonalization [15].

The off-diagonal interaction broadens the distribution but
does not change it qualitatively: Figure 3 shows the density of
v = 0 states for a system of 16 particles in nine oscillator
shells. In this case, there are 8095 states with this good
quantum number. Naturally, only the lower part of the spectrum

FIG. 1. (Color online) Spectra of low-lying states for seven and
eight particles for g = −5. The red solid lines are the lowest-seniority
states, v = 0 for eight particles and v = 1 for seven particles. The
dotted blue lines are the states with one broken pair, which clearly
show the pairing gap. The energies (in units of h̄ω) are measured
relative to the ground state of the eight-particle system.

is physically relevant. But, as is often done when quantum
complexity is investigated [15,19], the whole set of eigenstates
in the restricted model space is considered in the analysis.
Notice that v = 0 requires vn = 0 for all n. The lowest v = 0
state corresponds to the total ground state of the system, and
the excited states are constructed by redistribution of unbroken
fermion pairs. States where these excitations are coherent
or collective are usually called pairing vibrations [11,33],
which we shall come back to later. The pairing interaction
consistently pushes the states to lower energies (Fig. 3).
Lower-lying states thus are expected to be considerably more
“mixed” than states in the upper end of the spectrum. This
differs from how a “generic” (or random) interaction mixes
the states, shifting energies to lower and higher energies in a
symmetric fashion.

In the following, in Sec. III A we investigate the signatures
of chaos in terms of spectral statistics. The complexity and

FIG. 2. (Color online) Energies relative to the ground state (in
units of h̄ω) of the 40 lowest v = 0 states for the 16-particle
system. The curves correspond to the pairing interaction strength
g = −0.3,−1,−3,−5, and −10 (from below).
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FIG. 3. (Color online) Density of seniority zero states as a
function of energy for a system of 16 particles interacting with
the pairing interaction strength g = −0.3 (solid line) and g = −5
(dashed line). In each case, 8095 states are included, corresponding
to nmax = 9 oscillator shells.

localization of the eigenstates are studied in Sec. III B. Strength
functions and their relation to the average interaction strength
are studied in Secs. III C and III D introduces a tool to
investigate phase correlations between the components of a
wave function.

A. Spectral statistics

The simplest measure of quantum chaos is usually the
nearest-neighbor spacing distribution (NNSD), P (s), where
s = (Eα+1 − Eα)/D(α)

n is the energy distance to the nearest
neighbor in the units of the local mean distance, D(α)

n .
Each state in the considered energy spectrum has the same
set of good quantum numbers, {vn}. For states of different
symmetry properties, or in weakly interacting systems with
many degeneracies, levels can come arbitrarily close to one
another, resulting in a Poisson distribution of level spacings.
In the case of stronger interactions, the levels of the same
symmetry repel each other, and P (s) generically evolves to the
Wigner distribution, which is very close to what is obtained
in the GOE. The conjecture [34] that relates signatures of
quantum chaos (through spectral statistics, e.g., NNSD) to
classical chaos is valid for one-body systems. We apply it
here for the many-body system, and, following the usual
terminology, we phrase GOE properties in the many-body
system as “quantum chaos.”

The mean level spacing was defined as D(α)
n = (Eα+n −

Eα−n)/(2n), where we used n = 2,3,5, which did not cause
dramatic changes to P (s). For the strongly interacting cases,
the changes were very small. At weaker interaction, the larger
values of n would push the high-lying fluctuations to even
higher values of s and increase the magnitude of the peak at
s = 0, but otherwise had little effect. In order to avoid edge
effects of the considered spectrum, only the central 50% of the
states are included in the analysis. The NNSD distributions are
commonly fit with the Brody parametrization [35],

P (s) = (1 + α)sα exp(−Ks1+α),
(12)

K = [	((2 + α)/(1 + α))]1+α,

FIG. 4. (Color online) Nearest-neighbor spacing distribution for
eight particles, with Brody fit (solid line). (Upper panel) g = −1.0
and v = 0. D(α)

n is calculated with n = 3. The bin width is 0.2 units of
s. The Brody parameter extracted from the fit is α = 0. (Lower panel)
g = −5.0 and v = 0. The extracted Brody parameter is α = 0.20. The
dashed line shows the Poisson limit that coincides with the Brody fit
for the case g = −1.

where α is the single fit parameter that is also called the Brody
parameter. A value α = 0 corresponds to the Poisson case
(regular), and α = 1 corresponds to the Wigner case (chaos).
The value of α thus can give a rough hint about the character
of the spectrum in the regions between regularity and chaos.

Upper and lower parts of Fig. 4 show P (s) for eight
particles with v = 0 in the cases of weak and strong interaction,
respectively. Only 49 levels, constituting the central 50% of
the spectra, are considered. This limits the accuracy of the
analysis. For weak interactions, we see indications of a Poisson
distribution (α = 0).

For the strongly interacting case, the distribution maximum
moves to a higher value of s. It is not a Wigner distribution
but it indicates a situation between regularity and chaos, and
the Brody analysis gives α = 0.20. Similar results (with more
levels and, thus, better statistics) are obtained for v = 2 states
not shown here.

Compared to the eight-particle system, the analysis of
the spectrum properties for the 16-particle model system is
more accurate as the statistics is improved significantly due
to the considerably larger energy stretch of 4050 levels for
v = 0 (central part of the spectrum). In Fig. 5 we show
the NNSD for 16 interacting particles with pairing strengths
g = −0.3,−1,−3, and −10. The complexity of the spectrum
gradually increases, with a completely regular spectrum for
the weakest interaction and then reaching a maximal degree
of chaos for g = −3 (or slightly above) with α = 0.29. The
complexity of the spectrum then decreases as the pairing
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FIG. 5. (Color online) Nearest-neighbor spacing distributions for
16 particles and seniority v = 0, for different interaction strengths g.
The Brody fit is shown by a red solid line, and the Poisson limit is
shown by a dashed line. The bin width is 0.1s and D(α)

n is calculated
with n = 5. From top to bottom, for g = −0.3, the Brody parameter
fit gives α = 0; for g = −1, α = 0.07; for g = −3, α = 0.29; and
for g = −10, the Brody fit gives α = 0.19.

FIG. 6. (Color online) Brody mixing parameter versus pairing
strength for systems with 16 (solid line) and 10 particles (dashed
line).

strength is growing further, and, at the very large strength,
g = −10, the Brody parameter falls to α = 0.19. In Fig. 6
the fitted Brody parameter is shown as a function of pairing
strength for systems with 16 and 10 particles revealing the
common pattern. The general trend seen in Fig. 5 was found
to be quite robust, with respect to changes in the model space
size, changes in D(α)

n , and changes in the selection of energy
states. For example, very similar results are obtained if the
lowest 10% of the states (excluding the two lowest states) are
used in the analysis instead of the central 50%.

The observed behavior of the complexity of the system
with increasing pairing strength, regular to chaos (or rather
mixed) and back to regular, may be understood in the following
way. At small strength, the Hamiltonian is dominated by the
(regular) harmonic oscillator part, and at very large strength it
is dominated by the pure pairing Hamiltonian. For moderate
interaction strengths, the effects of the two parts of the
Hamiltonian are of similar size, and the mixing causes the
irregular behavior. The transition from the harmonic oscillator
to the pairing dominance was also seen from the analysis of
the energy spectra in Fig. 2.

B. Complexity and localization of the eigenstates

The eigenstates |α〉 are written as a linear combination in
the many-body basis set |k〉 ≡ |{Nn}{vn}〉 of noninteracting
particles,

|α〉 =
N∑
k

C
(α)
k |k〉, (13)

whereN is the number of basis states. The statistical properties
of the amplitudes C

(α)
k reflect the degree of correlation in

the specific eigenstate |α〉 with respect to the chosen basis.
The complexity (or, in other words, the mixing of the basis
states) is caused by the two-body interaction. A convenient
characteristic measure for quantum-chaotic behavior is given
by the informational, or Shannon, entropy calculated for each
individual eigenstate |α〉,

S(α) = −
N∑
k

∣∣C(α)
k

∣∣2
ln

∣∣C(α)
k

∣∣2
. (14)
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FIG. 7. (Color online) Informational entropies calculated for
eight particles; states with v = 0 and g = −1 (green points) and
interaction strength g = −5 (red crosses). The exponent of the
entropy (localization length) is plotted against the eigenstate number,
where the eigenstates are placed in order of increasing energy. There
are 98 v = 0 states giving lGOE

S = 47.

This quantity is basis dependent, revealing the relative com-
plexity of the states |α〉 with respect to the basis states.
In the eigenbasis, it vanishes, and in a completely mixed,
“microcanonical” state, when |C(α)

k | = 1/
√
N for all α, it takes

the maximum value of lnN . We have to note that this entropy is
insensitive to the relative phases of the components of the wave
functions and, therefore, cannot distinguish between chaotic
mixing and coherent collectivization, a collective mode that
has coherent contributions from many states.

The exponent of the entropy, that corresponds to a “local-
ization length” in Hilbert space,

l
(α)
S = exp S(α), (15)

is a measure of the number of significant basis components
contained in the eigenstate |α〉. The mean value of such a
length in the random matrix limit of the GOE is lGOE

S ≈ 0.48N
[15,36]. Deviations from this limit indicate the incomplete
mixing of the basis states.

Figures 7 and 8 show the localization length of individual
eigenstates calculated for eight particles, g = −1 and g = −5,
and seniority values v = 0 and v = 2, respectively. There are
typically a few low-lying states with a large amount of mixing,
usually of collective (vibrational) nature. The single pairing
vibration mode with the same quantum numbers as the ground
state is expected above the pairing gap. This is observed in the
case of g = −5.0, where we find 98 states with seniority v = 0:
the presence of low-lying, highly mixed states (including a few
that approach the GOE limit of lGOE

S ≈ 47). Other v = 0 states
are noncollective (energetically nonfavorable redistribution of
the pairs over the levels).

For seniority v = 2 states there are fewer pairs, but
there are more ways to arrange the particles. Due to the
special nature of the pairing interaction, there exist separate
“families” lying in the spectrum. For v = 2, there are several
configurations that do not mix with each other by a pure
pairing interaction, for example, in terms of partial seniorities,
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FIG. 8. (Color online) Same as described in the caption to Fig. 7
but with v = 2. There are 829 v = 2 states.

|{vn}〉 = |1,1,0,0,0,0〉,|0,2,0,0,0,0〉,|1,0,1,0,0,0〉, and so on.
Each of these configurations gives rise to their own separate
family visible at weak interaction. They are seen as the
20 vertical sequences of states in Fig. 8 for the case of
g = −1. These distributions become overlapping at stronger
interaction. The entropies are considerably lower for the
higher-seniority states: they have a smaller number of basis
states, since pair transfers are strongly blocked. In the case
of weaker interactions, there is much less mixing, which
noticeably occurs mainly in the higher-seniority states.

Figure 9 shows the localization length of individual
seniority v = 0 eigenstates calculated for 16 particles with
g = −5. There are 8095 basis states, implying a GOE limit,
lGOE
S ≈ 3847. Several low-lying states are strongly mixed, as

seen from the large localization length approaching the GOE
limit. It is striking how the low-energy states consistently have
the largest amount of mixing. That the pairing interaction has
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FIG. 9. (Color online) Same as in Fig. 8 but for 16 particles with
g = −5.0 and seniority v = 0. The calculation is performed with
nmax = 9 oscillator shells, giving 8095 v = 0 states, implying the
GOE limit lGOE

S = 3847.
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FIG. 10. (Color online) Same as in Fig. 9 but nondiagonal matrix
elements of the Hamiltonian have been given random signs.

the strongest effect on the energy of low-lying states was also
seen in Fig. 3.

The localization length of individual eigenstates in the
case of the pairing interaction largely deviates from the more
general picture of other types of interactions, as, e.g., the
corresponding results from a nuclear shell-model calculation
in Ref. [22]. The Shannon entropy then shows a broad,
inverted U shape, with the maximum in the middle of the
spectrum. The entropy in average is diminished towards the
ends, revealing the weaker mixing because of the lower level
density. The decrease at higher energies trivially appears due
to the truncated model space.

The special nature of the pairing interaction implies strong
coherence of nondiagonal matrix elements reflected in largely
the same sign of the matrix elements. If these non-diagonal
matrix elements are given random signs while the size of the
matrix elements is kept unchanged, the coherent nature of the
Hamiltonian is lost, and the Shannon entropy indeed shows
the “generic” U-shaped behavior; see Fig. 10.

It is interesting to note that also the fluctuations of the
information entropy are considerably larger than what is
obtained with a generic Hamiltonian, such as the random-
sign case discussed above or the nuclear shell model [22],
where neighboring states show a similar amount of mixing.
The pairing Hamiltonian implies strongly nonergodic wave
functions. In Fig. 9 we note extreme cases where one state
has a localization length lS ≈ 200 and a close-lying state has
lS ≈ 2800.

For an odd-numbered particle system (not shown here)
the results are similar, the main difference being the much
greater number of states in the odd system (e.g., for seven
particles there are 2479 total seniority v = 1 and seniority
v = 3 states, whereas for eight particles there are 948 total
seniority v = 0 and v = 2 states). Also, the low-seniority
distribution now is more complicated since it contains multiple
seniority distributions over the shells. This differs for systems
with an even particle number where seniority v = 0 has only
one configuration with all partial seniorities equal to zero.

Another quantity related to the complexity of an eigenstate
is the number of principal components (NP ), or the inverse
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FIG. 11. (Color online) Number of principal components (NP )
calculated for eight particles with g = −1.0,−3.0,−5.0, and v = 0.
The NP is plotted against the eigenstate number, where the eigenstates
have been placed in order of increasing energy. The dotted line
represents the GOE limit of 32.67.

participation ratio, defined as

N
(α)
P =

[ N∑
k

∣∣C(α)
k

∣∣4

]−1

. (16)

The average over the GOE limit here is N /3, that is, 32 in
the case of v = 0 states for eight particles.

The complexity of wave functions at different excitation
energies measured by the NP is similar to what is seen
from the information entropy. The numerical results for eight
particles are shown in Fig. 11 as a function of eigenstate
number, α. One state approaches the GOE value, while the
others strongly fluctuate (for the strongest interaction with
g = −5), until the very end of the spectrum, where the NP

diminishes as in the case of the entropy. The g = −3 case
seems to be similar to the entropy calculations: a highly mixed
state followed by states with fewer components until some
minimum in a number of components is reached, and then
the cycle repeats. In the case of the weakest interaction (with
g = −1), on average, the states contain between one or two
components, so any further structure is lost on this scale; still,
with a closer look, one can see a pattern similar to what is seen
for g = −3.

In models with more rich interactions, the two measures
of complexity, information entropy and NP , are essentially
equivalent and are smooth functions of the excitation energy.
They relate to the thermodynamic variables in the understand-
ing of the thermalization process due to chaos, cf. Sec. IV B.
We shall see that for the pairing interaction the two measures
differ. The information entropy is especially sensitive to
small components due to the logarithm, and there are many
fluctuations still in this low-dimension regime.

By constructing the ratio

r (α) = l
(α)
S

/
N

(α)
P , (17)

066204-7
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FIG. 12. (Color online) The ratio of the exponent of the entropy
and the NP , r (α), calculated for eight particles as a function of |g|. We
plot the average ratio for all v = 0 states (AVG, dashed line) and the
ratio for the ground state (GS). The dotted line represents the GOE
limit of 1.44.

the dependence on the dimension N is eliminated, and
we get r (α) = (0.48N )/(N /3) ≈ 1.44 in the GOE limit. In
Fig. 12 we show r (α) for eight particles as a function of
interaction strength, comparing the ground-state value to the
value averaged over all states. Both r (α) values cross the
GOE limit at smaller values of |g|. This is readily understood
because, in the noninteracting limit, the ratio r (α) is equal to 1
(l(α)

S = NP = 1). We see that the ground-state ratios are slower
than the average to come above the GOE line, but eventually
they surpass the average ratio. They finally fall below the
average ratio again at larger values of |g| (but are still above
the GOE limit). As mentioned above, the entropy l

(α)
S is more

sensitive to the fluctuations, especially for the highly mixed
ground state, which allows the ground state to overtake the
average ratio at the interaction strength, where strong mixing
begins. As expected, in a system with eight particles the NP

increases as a function of |g|, from 1.37 to 6.93 to 13.74 for
g = −1,−3, and −5. The average value of r (α), however,
does not quite follow that trend, changing from 1.45 for
g = −1 to 1.77 for g = −3, while then falling slightly to 1.73
for g = −5.

C. Strength function

The strength function, often called the “local density of
states,”

Fk(E) =
∑

α

∣∣C(α)
k

∣∣2
δ[E − (Eα − Ek)], (18)

shows how a given basis state |k〉 is spread over the eigenstates
|α〉 of the system along the energy scale. By subtracting the
energy of the basis state, Ek , from the eigenenergies, Eα ,
the strength function Fk becomes centered around E = 0 for
each k.

One can look at the strength function of an individual basis
state, Fk(E), or make an average of several functions in order
to get an average strength function averaged over all N states.

Since the maximum of each individual strength function,
Fk(E), is centered around the energy of the basis state, Ek , the
averaged strength function, F̄ , is centered around E = 0.

Strength functions and their evolution as a function of
the interaction between the particles, from quadratic (“golden
rule”) to linear dependence on the interaction strength, are
discussed in great detail in Refs. [15,37–39]. In the nonin-
teracting system the strength function, Fk , is concentrated at
E = 0. As the interaction is increased, the strength of the state
gets fragmented among surrounding eigenstates. At this stage,
the strength is typically described [17] by a Breit-Wigner shape
with a width, 	, related to the squared average off-diagonal
matrix element,

	GR = 2πρ(E)〈V 2〉, (19)

where ρ(E) is the mean density of states connected to a
given state by the interaction matrix elements V . This “golden
rule” (GR) result is valid until 	 spreads to the regions with
significantly different level density or/and coupling matrix
elements.

The average strength function for N = 8 with interaction
strengths g = −1,−3, and −5 is shown in Fig. 13. For
the weak interaction, g = −1 case, the central peak is very
narrow, and there is very little fragmentation of the strength
function. When the interaction is increased to g = −3, we see a
broadening of the central peak and slight left-right asymmetry
that becomes more pronounced for g = −5, where the peak
is noticeably displaced to the right of zero. Including more
states when building the average strength function changes
the result only slightly. The value for the spreading width, 	s ,
is extracted from the cumulative strength function made by
adding all individual strength functions with no averaging and
displayed in Table I along with the “golden rule” widths, 	GR,
calculated after Eq. (19). Due to the sharpness of the peak
in the case of the weakest interaction, its width is essentially
uncertain. For the largest strengths the golden rule prediction

FIG. 13. (Color online) Strength function, F̄ , for seniority v = 0
states of eight particles with interaction strengths, g = −1, g = −3,
and g = −5. The maximum of F̄ reaches 0.65 (outside the scale in
the figure) in the g = −1 case. The strength is plotted with respect
to the energy difference of the eigenstate and the energy centroid
of the basis state before diagonalization. The energy is expressed in
units of h̄ω.
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TABLE I. Table of calculated widths, 	GR [Eq. (19)], and widths
extracted from strength functions, 	s . Each row is for a certain system,
specified by the particle number and g value.

N |g| 	s 	GR

6 1 0.12 0.24
6 3 2.31 2.24
6 5 4.66 6.54
8 1 0.14 0.29
8 3 3.31 2.69
8 5 5.98 7.79

overestimates the widths by about a factor of 1.3. That is,
the strength function is still not as wide as predicted by the
standard theory with significantly fragmented strengths.

The origin of the left-right asymmetry in the tails could
be that the eigenstates that make up the lower part of the
spectrum often have many significant components (see Fig. 3),
thus amplifying the strength going to large negative values of
E. The shift of the peak to the right, E > 0, occurs if a basis k

state has most of its strength in an eigenstate that is somewhat
higher in energy (by about 2–3 h̄ω). We believe that this effect
originates from the truncation. (For eight particles we have
used g = −5 in a model space of six harmonic oscillator
shells.)

D. Phase correlator

The degree of mixing of states in the low-energy region was
characterized in terms of the information entropy or the NP ,
as discussed in Sec. III A. Some of the highly mixed states
may carry a large amount of coherence or collectivity, while
other states are mixed incoherently. To identify collective states
among highly mixed states, we introduce the phase correlator
of a given eigenstate,

P (α) = 1

N

N∑
kk′

C
(α)
k C

(α)∗
k′ . (20)

i.e., we take the average of all matrix elements of the density
matrix for a given eigenstate α. If there are no correlations
between the signs of the wave function components, only
diagonal terms contribute, giving P (α) ∼ 1/N . Collective
states are usually characterized by strong correlations between
the signs of components corresponding to basis functions
(obviously, the discussion of collectivity as well as chaoticity
only makes sense with respect to a certain basis set). Such
correlations are recorded by the phase correlator, giving values
larger than 1/N . For a unique correlated state where all the
amplitudes are equal and of the same sign, the extreme limit
of the phase correlator is P (α) = 1. Values close to one point
towards a collective superposition of the basis states, such as
the paired ground state. By construction, the phase correlator
is always positive. Since the average over all eigenstates value
of the phase correlator is

〈P (α)〉 = 1/N , (21)

the sum over all eigenstates always fulfills

N∑
α

P (α) = 1. (22)

This is a sum rule for the phase correlators; if one unique
correlated state with index α picks all correlation [P (α) = 1],
all other states α′ �= α must have P (α′) = 0.

In the GOE limit, the spreading (standard deviation) of the
phase correlator becomes

σ GOE
P =

√
〈(P (α))2〉 − 〈P (α)〉2 =

√
2

N . (23)

For eigenstates of the pairing Hamiltonian, σP becomes
considerably larger. For example, for the seniority zero states
in the system of 16 particles with g = −5, we find σP =
36.6 σ GOE

P . The phase correlator of individual states, and the
distribution of the phase correlator, provides important infor-
mation about the system. Although the information entropy
may approach the GOE limit, the phase correlator may show
large deviations from this limit, indicating coherent, collective
mixtures rather than incoherent, chaotic wave functions.

In Fig. 14 we plot the phase correlator of the states |α〉
against their energy Eα for eight particles and g = −5.0.
Two states have phase correlators separated from the rest
with considerably larger values. These states are the ground
state and the first excited state. The ground state is strongly
coherent with P = 0.57, which is far higher than for any
other state. The first excited state is a pairing vibrational
excitation, with P = 0.15. For the 16-particle system with
the same interaction strength, the situation looks similar (see
Fig. 15) with the ground state picking up the dominant part of
the phase correlator, with a value very close to the one above.
Seven excited states have P’s larger than 0.03. The remaining
8087 states share the remaining P of 0.2, where about half
the states have P’s smaller than 10−7. This is considerably
smaller than the GOE value (≈10−4), again emphasizing the

FIG. 14. (Color online) The phase correlator vs the eigenenergies.
This plot is for eight particles, g = −5.0, and v = 0. All 98 states are
shown.
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FIG. 15. (Color online) Same as in Fig. 14 but for 16 particles.
All 8095 states are shown.

very different nature of the pairing force as compared to a
generic force.

The phase correlation statistics thus differs markedly for
the pairing Hamiltonian as compared to the GOE case.

IV. DISCUSSION: CHAOS, THERMALIZATION,
AND SPECIFICS OF PAIRING INTERACTION

A. Onset of chaos

The coherent nature of the ground state and some man-
ifestations of chaotic properties at higher excitation energy
are properties of pairing Hamiltonians already mentioned in
the literature [13,40,41]. These features seem to make the
ground state and the first excited pair-vibrational state(s) of a
much different character than the remainder of the spectrum,
cf. Figs. 14 and 15. Chaotic features were found only at
intermediate interaction strength, between the limits of weakly
interacting particles and of strong pairing.

Estimates for the appearance of chaos in many-body
systems can be made, based on quite general considerations.
According to Ref. [42], the condition for onset of many-body
chaos based on the average interaction strength and level
spacing is given by

V � 1

π2

√
df /ρ(E), (24)

where ρ(E) = 1/D is the global average level density used
above, D is the average spacing between two neighboring
states, and df is the average energy spacing between two states
that are directly coupled by the interaction. When g = −5, V

is of order unity, and the right-hand side of Eq. (24) is about
0.05. Even for g = −1, V is greater by a factor of 4. However,
the authors of Ref. [42] comment that this condition is not
always strong enough and that, since df is usually much larger
than D, a stronger definition would be V > df .

Indeed, in Refs. [17,43], the onset of many-body chaos was
found to take place when

V � 0.5df . (25)

FIG. 16. NND for the eight-particle system (v = 0, g = −5) with
random signs for nondiagonal matrix elements. The full curve is the
Wigner limit of full chaos.

In our case, for 8 particles, V = 1.12 and df = 1.08, and,
for 6 particles, V = 1.03 and df = 1.26. According to the
second condition, at this strength of the interaction (g = −5),
we are just on the edge of chaotic behavior. For 16 particles
we find that V is clearly larger than df when −g > 3; e.g.,
for interaction strength g = −5 we have V = 1.91 and df =
0.74, and we thus would expect the system to show chaotic
features.

However, these estimates for the onset of chaos refer to
generic Hamiltonians. The pairing Hamiltonian is special
containing large amounts of correlations. In the matrix
representation this is seen as large coherence in the signs of
nondiagonal matrix elements. We found that the complexity of
the eight-particle system (v = 0 states) with g = −5 was not
so large (α = 0.20) as could be expected from the relations
above. However, if we modify the Hamiltonian matrix in
such a way that all matrix elements are fixed, but the signs
of the nondiagonal matrix elements are made random, the
above estimates become the same. Indeed, this implies that the
system becomes almost fully chaotic; see Fig. 16.

B. Thermalization

From a viewpoint of the reaction of a system to external
perturbations, it is important to understand the statistical
distribution of interacting particles over the orbitals in the
confining potential. The evolution of the shell occupancies as
the interaction is increased is seen in Fig. 17 (for 6 particles
representing a closed shell). For g = −1.0, we still have a
sharp Fermi level, with almost no occupancy leaking out
to the higher shells. The leakage increases with interaction
strength, until g = −5, the Fermi surface is smeared out,
and the occupancies decrease exponentially with the oscillator
shell number, as is seen explicitly for the examples with 8 and
16 particles (at g = −5) in Fig. 18.

This is to be expected as the increased interaction amplifies
the mixing and involves basis states with particles in the
higher shells. As it was repeatedly argued; see, for exam-
ple, Refs. [14,15,22,44], chaotic mixing by generic internal
interactions is essentially equivalent to thermalization by
the contact to a heat bath. The incoherent interactions in a
many-body system may play the role of a thermostat. It is
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FIG. 17. (Color online) Occupancies (number of particles/
degeneracy) of one-body states as a function of oscillator shell number
for six particles at three interaction strengths for the ground state.

interesting to note that also the present pairing system can
be described in terms of thermalization among the one-body
states (Figs. 17 and 18), although we are dealing with a strongly
coherent interaction, and chaos is suppressed. In fact, thermal
melting of the Fermi surface proceeds faster than chaotization.
The effective “temperature” is seen to increase with increasing
pairing strength. For small to moderate pairing strength the
thermalization is related to the initial steps of chaotic mixing.
For higher strength, the temperature continues to increase, but
the spectral properties suggest a regular many-body system.
The appearance of an increasing thermalization as the system
drives from mixed towards regularity, may be understood in
the following way. If the wave functions of this regular state
are expressed in the basis of the used basis, a very large
number of components are needed, and, thus, the mixing or
thermalization increases also when the system goes towards
regularity. For example, the coherent states are indeed very
mixed in the present basis.

On the other hand, the development of complexity with
interaction strength looks quite similar for different particle
numbers (see Fig. 6), suggesting that temperature is not a
measure of complexity for the present system. As shown

FIG. 18. (Color online) Occupancies (number of particles/
degeneracy) of one-body states in logarithmic scale as a function of
oscillator shell number for 8 particles (green crosses) and 16 particles
(red plus signs). Pairing strength is g = −5. The straight lines are
fits.

in Fig. 18, for a larger particle number the single-particle
occupancies are falling much slower with increasing shell
index, which can be considered as an indication of “higher
temperature” in the larger system.

In general, this set of questions is related to the old problem
of interrelation between the two languages of description for
the excited states of a quantum system in a region of high level
density. In a mesoscopic system we can use (i) the statistical
description (temperature, thermal entropy, heat capacity, etc.)
with averaging over the ensemble of states in a small energy
window and (ii) the description using the individual stationary
quantum states. The second approach in principle is more
informative, especially if individual states can be prepared and
studied experimentally. One can still argue that, under certain
conditions, these approaches are not mutually exclusive but,
rather, equivalent, with respect to certain type of questions. The
mechanism of equivalence is provided by quantum many-body
chaos. When the states become exceedingly complicated
superpositions of many simple configurations, their wave
functions (with the same exact quantum numbers) within
that energy window “look the same” (ergodicity) [45]. The
macroscopic observables then do not depend on the exact
phase relationships between the wave-function components,
and the description in terms of the thermal density matrix
may be applied. In the present case we see, however, quite
large differences between neighboring states (Fig. 9), and the
ergodic hypothesis is not fulfilled.

V. CONCLUSION

We have performed calculations on trapped fermionic
atoms interacting with a short-ranged pairing-type force and
examined the complexity of energies and wave functions for
different particle numbers when the interaction strength is
changed. Along with the appearance of pairing coherence
in the ground and the first excited states, we have found a
trend towards signatures of quantum chaos at intermediate
interaction strength. The systematic chaotic behavior of more
complicated systems, however, such as known in complex
atoms and nuclei, is not reached. The pairing-type interaction
applied in the present work, in addition to the generic
selection rules valid for any two-body interaction, has other
regular properties keeping intact conservation laws for partial
seniorities and (two-dimensional) angular momentum. It is
instructive that even such a regular interaction may lead to
stochastic properties of the many-body system. If the coherent
nature of the Hamiltonian is relaxed (as, for example, by using
random signs of nondiagonal matrix elements), the system
may become fully chaotic.

It is interesting to note that a system of contact-interacting
atoms is the quantum analog of the gas of rigid spheres. This
is one of the few many-body systems that have been strictly
proven to be classically chaotic [46]. It was shown in Ref. [44]
that, in the quantum gas of hard spheres, a random initial
wave function evolves to a thermodynamical equilibrium
momentum distribution corresponding to the specific statistics
of the atoms, which is essentially quantum chaos. We have a
very similar system but with attractive interactions. We found
that in this case the road to chaos is long, at least in the case of

066204-11
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small particle numbers. Moreover, the path is reversed when
the interaction is getting too strong and effectively leads to the
regular degenerate pairing model. It would be interesting to go
even further and see an analog of the BCS to BEC transition,
where the chaotic features of the intermediate situation are
usually not discussed.

For further work, systems that are more experimentally
accessible should be examined. In addition to more realistic
interactions, quantities such as the correlational entropy

(see, for example, Ref. [47]) to look for possible phase transi-
tions could be very interesting and testable experimentally.
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