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Semiclassical approach to the quantum Loschmidt echo in deep quantum regions:
From validity to breakdown
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Semiclassical results are usually expected to be valid in the semiclassical regime. An interesting question is,
in models in which appropriate effective Planck constants can be introduced, to what extent will a semiclassical
prediction stay valid when the effective Planck constant is increased? In this paper, we numerically study this
problem, focusing on semiclassical predictions for the decay of the quantum Loschmidt echo in deep quantum
regions. Our numerical simulations, carried out in the chaotic regime in the sawtooth model and in the kicked
rotator model and also in the critical region of a one-dimensional Ising chain in transverse field, show that the
semiclassical predictions may work even in deep quantum regions, particularly for perturbation strength in the
so-called Fermi-Golden-Rule regime.
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I. INTRODUCTION

The semiclassical theory is powerful in dealing with many
problems in various fields of physics [1,2]. It is usually
expected to work in the semiclassical regime, in which the
(effective) Planck constant is sufficiently small in a certain
relative sense. An interesting question is, how deep in the
quantum regime could the semiclassical predictions remain
valid? Obviously, the answer should depend on the physical
quantity of interest.

In this paper, we study a quantity for which the semiclassical
approach has recently been found to be quite successful in the
semiclassical regime. It is the so-called quantum Loschmidt
echo (LE) [3–5], which is given by the overlap of the time
evolution of the same initial state under two slightly different
Hamiltonians,

M(t) = |m(t)|2
with m(t) = 〈�0| exp(iH1t/h̄) exp(−iH0t/h̄)|�0〉, (1)

where H1 = H0 + εV , with ε a small quantity and V a generic
perturbation. The quantity m(t) is usually called the amplitude
of the LE. The LE gives a measure to the stability of quantum
motion under small perturbation.

The LE has quite rich behaviors, depending on the nature
of the dynamics of the underlying classical system, as well as
on the perturbation strength. Usually, the LE has a quadratic
decay within a certain initial time interval, as predicted by
the first-order perturbation theory [6]. Beyond the initial
time interval, in a chaotic system, loosely speaking, the
LE has a Gaussian decay [5,7–10] below a perturbative
border and has an exponential decay in the so-called Fermi-
Golden-Rule (FGR) regime above the perturbative border
with intermediate perturbation strength [9–15]. With further
increase of the perturbation strength, in the so-called Lyapunov
regime with relatively strong perturbation, the LE usually has
a perturbation-independent decay [12,15–20]; but, in certain
cases, a perturbation-dependent oscillation in the decay rate
may also appear [15,19–22].
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On the other hand, in regular systems, in the case of one
degree of freedom, the LE has a Gaussian decay [11], followed
by a power-law decay [23,24]. Meanwhile, in the case of many
degrees of freedom, the LE may have an exponential decay for
times much shorter than the recurrence time of the LE [25].

The above-discussed semiclassical predictions for the LE
decay have been tested numerically in the deep semiclassical
regime in some models, in which effective Planck constants
can be suitably introduced. In this regime, the effective
Planck constants are sufficiently small, such that the stationary
phase approximation is applicable in the derivation of the
semiclassical propagator from Feynman’s path integral theory.
Here, we are interested in the extent to which the predictions
may remain valid in the opposite deep-quantum regime. In
this regime, the effective Planck constants are not very small,
such that the validity of the above-mentioned stationary phase
approximation becomes questionable. To study this problem,
it is necessary to rely mainly on numerical simulations
in concrete models. Our numerical results obtained in the
sawtooth model and in the kicked rotor model show that
the semiclassical predictions may work well even in the deep
quantum regime.

We also study the LE decay in the vicinity of the quantum
phase transition (QPT) in a one-dimensional (1D) Ising chain
in transverse field. At a QPT, at which the ground level
has level crossing with other level(s), the ground state has
drastic change(s) in its fundamental properties [26]. Quantities
borrowed from the quantum information field have been found
useful in characterizing QPT, e.g., the fidelity as the overlap
of ground states [27–29] and the LE [30–33]. As shown in
Ref. [25], in the neighborhood of the critical point of the
Ising chain, an effective Planck constant can be introduced and
the semiclassical theory is useful in predicting the decaying
behavior of the survival probability, which is a special case
of the LE. In this paper, we study the validity of the
semiclassical prediction when the effective Planck constant is
increased.

The paper has the following structure. In Sec. II, we recall
the semiclassical approach to the LE decay. In Sec. III, we
study the LE decay in the deep-quantum region in the sawtooth
model and in the kicked rotator model. Section IV is devoted
to a study of the LE decay in the vicinity of the QPT of the
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1D Ising chain in a transverse field. Finally, conclusions and
discussions are given in Sec. V.

II. SEMICLASSICAL APPROACH TO THE LE

Before presenting our results, let us first recall semiclassical
predictions for the decay of LE. As is well known, the
quantum transition amplitude from a point r0 to a point r in a
d-dimensional configuration space within a time period t can
be expressed in terms of Feynman’s path integral [34,35]. In the
semiclassical limit, one may use the stationary phase approx-
imation to approximately compute the transition amplitude.
Contributions from paths close to classical trajectories give
the following well-known semiclassical evolution, in terms of
Van Vleck–Gutzwiller propagator Ksc(r; r0; t):

�sc(r; t) =
∫

dr0Ksc(r; r0; t)�0(r0), (2)

where Ksc(r; r0; t) = ∑
s Ks(r; r0; t) and

Ks(r; r0; t) = C
1/2
s

(2πih̄)d/2
exp

[
i

h̄
Ss(r; r0; t) − iπ

2
μs

]
. (3)

Here, the subscript s indicates classical trajectories, C
1/2
s =

| det(∂2Ss/∂ri0∂rj )|, μs is the Maslov index counting conju-
gate points, and Ss(r; r0; t) is the action, i.e., the time integral
of the Lagrangian along the trajectory s, Ss(r; r0; t) = ∫ t

0 dt ′L.
Let us consider an initial narrow Gaussian wave packet,

�0(r0) =
( 1

πξ 2

)d/4
exp

[
i

h̄
p̃0 · r0 − (r0 − r̃0)2

2ξ 2

]
, (4)

where (r̃0,p̃0) indicates the packet center and ξ is the disper-
sion. Semiclassically, the LE is written as Msc(t) = |msc(t)|2,
where

msc(t) =
∫

dr
[
�H1

sc (r; t)
]∗

�H0
sc (r; t). (5)

As shown in Refs. [16,36], the amplitude msc(t) has the
following explicit expression:

msc(t) �
(

ξ 2

πh̄2

) d
2
∫

dp0 exp

[
i

h̄
�S(p0,r̃0; t) − (p0 − p̃0)2

(h̄/ξ )2

]
,

(6)

where �S(p0,r̃0; t) is the action difference along two nearby
trajectories in two systems H1 and H0. In the first-order
classical perturbation theory, with the difference between the
two trajectories neglected, one has

�S(p0,r̃0; t) � ε

∫ t

0
dt ′V [p0(t ′)]. (7)

The LE amplitude in Eq. (6) can be written as an integration
over �S. As a result, the LE is written as

M(t) =
∣∣∣∣
∫

d�Sei�S/h̄P (�S)

∣∣∣∣
2

, (8)

where P (�S) is the distribution of the action difference defined
by

P (�S) �
(

ξ 2

πh̄2

) d
2
∫

dp0δ[�S − �S(p0,r̃0; t)]

× exp

[
− (p0 − p̃0)2

(h̄/ξ )2

]
. (9)

Let us first discuss the LE decay in chaotic systems. In
such a system, with an average performed over initial states,
the distribution P (�S) is usually not far from a Gaussian
distribution. When the perturbation is not strong, in the
so-called FGR regime, deviation of P (�S) from the Gaussian
distribution can be neglected. In this case, the semiclassical
theory predicts the following FGR decay for the LE [9]:

Msc(t) � e−2σ 2R(E)t , (10)

where σ = ε/h̄ and R(E) is the classical action diffusion
constant,

R(E) =
∫ ∞

0
dt〈{V [r(t)] − 〈V 〉}{V [r(0)] − 〈V 〉}〉, (11)

with 〈·〉 indicating the average over the primitive periodic orbits
of a very long period. Consistently, similar results for the FGR
decay can also be obtained in the approach of random matrix
theory [7,37,38].

With increasing perturbation strength, deviation of the dis-
tribution P (�S) from the Gaussian form cannot be neglected,
and one enters into the so-called Lyapunov regime. In this
regime, due to the quadratic dependence of the FGR rate on
the perturbation strength, the part of the LE having the FGR
decay decreases quite fast; beyond a time scale at which this
part of the LE reduces to a negligible value [39], the LE will
be dominated by the contribution from the above-mentioned
deviation of the distribution P (�S) from the Gaussian form
[15]. It has been found that the latter contribution is mainly
given by �S close to its stationary points with respect to initial
momentum, and the stationary phase approximation predicts
the following perturbation-independent decay [19,20]:

Msc(t) ∝ exp [−
1(t)t] , (12)

where


1(t) = −1

t
lim

δx(0)→0
ln

∣∣∣∣ δx(t)

δx(0)

∣∣∣∣
−1

, (13)

with the average taken over initial states. One should note that

1(t) is usually not equal to the Lyapunov exponent λL,

λL = lim
t→∞

1

t
lim

δx(0)→0
ln

∣∣∣∣ δx(t)

δx(0)

∣∣∣∣, (14)

due to local fluctuations. When the time t is sufficiently long
such that 
1(t) becomes close to its long-time limit, the LE has
a decay determined by the long-time limit of 
1(t) discussed
in Ref. [17]. In a system with a homogeneous phase space, i.e.,
with a constant local Lyapunov exponent, 
1(t) is given by the
Lyapunov exponent and the LE has the Lyapunov decay [16].

Next, we discuss the integrable case. In a 1D regular system
with periodic classical motion, the LE has the following
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semiclassical expression up to a second-order perturbation
contribution [24]:

Msc(t) � c0(1 + ξ 2t2)−1/2e−�t2/(1+ξ 2t2), (15)

where c0 ∼ 1 and

� = 1

2

(
εwp

h̄

∂U

∂p0

)2

, ξ =
∣∣∣∣∣
εw2

p

2h̄

∂2U

∂p2
0

∣∣∣∣∣ , (16)

with the derivatives evaluated at the center of the initial Gaus-
sian wave packet. Here, wp is the width of the initial Gaussian

wave packet in the momentum space, U = 1
Tp

∫ Tp

0 V dt , and Tp

is the period of the classical motion. Equation (15) shows that
the LE has an initial Gaussian decay predicted in Refs. [10,11]
and a long-time power-law decay 1/t .

In the opposite case of a regular system with many degrees
of freedom and many different frequencies, when the time is
not long such that the classical motion does not show any sign
of quasiperiodicity, the classical motion looks like a chaotic
one. In this case, the LE also has an initial Gaussian decay
[10,11], but it is followed by a FGR-type decay in Eq. (10) [25],
with

R(E) = 1

2t

(〈[ ∫ t

0
V (t ′)dt ′

]2〉
−

〈 ∫ t

0
V (t ′)dt ′

〉2)
. (17)

Finally, we note that Eq. (8) is a general expression, not
restricted to the case of the semiclassical limit. To show this
point, one may use Feynman’s path-integral formulation. For
brevity, let us write Feynman’s propagator as

KF (r,r0; t) = N
∑

α

exp {iSα(r,r0; t)/h̄} , (18)

where α indicates possible paths going from r0 to r within a
time interval t , and N is the normalization coefficient. Using
this propagator, the exact time evolution of the wave function
�(r,t) can be written in a form similar to that in Eq. (2),
with Ksc replaced by KF . Then, substituting the expression
obtained into the definition of m(t) in Eq. (1), one obtains

m(t) = NN ′
∫

dr0r′
0

∑
αα′

exp(i�Se/h̄)�0(r0)�∗
0 (r′

0), (19)

where �Se = SH0
α − S

H1
α′ . It is seen that the LE amplitude

m(t) can always be written as an integration over the exact
action difference �Se, with the distribution P (�S) defined
accordingly. As a result, the LE can always be written in the
form of Eq. (8).

III. LE DECAY IN THE DEEP QUANTUM REGION
OF TWO KICKED SYSTEMS

In studying the validity of semiclassical predictions in the
deep quantum region, it would be convenient to employ models
in which effective Planck constants can be suitably introduced.
In such a model, the value of the effective Planck constant gives
a natural measure to the quantum “deepness.”

A. Two kicked models

We employ the sawtooth model and the kicked rotator
model, whose Hamiltonians have the following form:

H = 1

2
p2 + V (r)

∞∑
n=0

δ(t − nT ), (20)

where V (r) = −k(r − π )2/2 for the sawtooth model and
V (r) = k cos r for the kicked rotator model. Here, for simplic-
ity in the discussion, we consider their dimensionless form.
Hereafter, we take the unit Planck constant, h̄ = 1.

The classical dynamics in the kicked rotator model gener-
ates the standard map,

p̃n+1 = p̃n + K sin(rn) (mod 2π ),
(21)

rn+1 = rn + p̃n+1 (mod 2π ),

where p̃n = Tpn, K = kT .
The classical motion is regular for sufficiently small K and

is almost chaotic for K larger than 6 or so. In the sawtooth
model, one has the following classical mapping:

p̃n+1 = p̃n + K(rn − π ) (mod 2π ),
(22)

rn+1 = rn + p̃n+1 (mod 2π ).

Equation (22) can be written in the matrix form(
p̃n+1

rn+1 − π

)
=

(
1 K

1 K + 1

) (
p̃n

rn − π

)
. (23)

The constant matrix in the above equation possesses two
eigenvalues 1 + (K ±

√
(K)2 + 4K)/2. The motion of the

classical sawtooth model is chaotic for K > 0, with the
Lyapunov exponent

λL = ln ({2 + K + [(2 + K)2 − 4]1/2}/2), (24)

given by the larger eigenvalue of the constant matrix.
We utilize the method of quantization on a torus to get the

quantum versions of the above two classical systems, with pe-
riodic boundary conditions for the coordinate and momentum
variables, 0 � r < rm, 0 � p < pm [1,40–42]. For a Hilbert
space with dimension N , an effective Planck constant can
be introduced, denoted by heff , with heff = rmpm/N . In the
specific choice of rm = pm = 2π , which will be taken in what
follows, one has heff = (2π )2/N , hence h̄eff = 2π/N . The
value of h̄eff gives a measure to the “deepness” in the quantum
region. The evolution operator for one period of time T , with
T = 2π/N = h̄eff , is written as

U = exp

[
− i

2h̄eff
p̃2

]
exp

[
− i

h̄eff
Ṽ (r)

]
, (25)

where Ṽ (r) = T V (r).
In the two kicked models discussed above, the quantity

R(E) appearing in the FGR decay in Eq. (10) has the following
expression [43,44]:

R(E) = 1

2
C(0) +

∞∑
l=1

C(l), (26)

where C(l) = 〈{V [r(l)] − 〈V 〉}{V [r(0)] − 〈V 〉}〉. In the saw-
tooth model with an integer K , C(0) = π4/45 and C(l) = 0
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FIG. 1. (Color online) LE decay in the FGR regime in the
sawtooth model, for different values N of the dimension of the Hilbert
space. Parameters: K = 2.0 and σ = 0.5. The LE (averaged over
initial states) has two stages of decay. In the first stage, it follows the
semiclassically predicted FGR decay (solid straight lines), namely
e−σ 2π4t/45 in Eq. (27); in the second stage, it decays with slower rates.

for l �= 0, hence

Msc(t) � e−π4σ 2t/45. (27)

Meanwhile, in the kicked rotator model, R(E) is a function
of the parameter K and does not have an explicit analytical
expression.

B. Numerical results in the sawtooth model

In this subsection, we discuss our numerical simulations
obtained in the sawtooth model, with Gaussian wave packets
as the initial states. In the FGR regime, when N is not large,
it was found that, beyond some initial times, the LE has two
stages of decay (see Fig. 1): In the first stage, the LE follows
the semiclassically predicted FGR decay, while, in the second
stage, it is somewhat slower than the FGR decay. After these
two stages of decay, the LE oscillates around its saturation
value, which is on average approximately equal to 1/N [11].
Interestingly, the first-stage decay of the LE exists even for
small dimension N of the Hilbert space, in other words, for
values of the effective Planck constant not much smaller than
its upper border h̄ub

eff = 2π . Hence, it exists in the deep quantum
regime.

Let us use td to indicate the transition time of the above-
discussed two stages of decay of the LE, i.e., the time at which
an obvious deviation from the FGR decay appears. As seen in
Fig. 2, td increases with increasing N . In addition, we observe
that, when N is increased, the second-stage decay of the LE
approaches the FGR decay, that is, the difference between the
decay rates of the two stages decreases.

To get a further understanding in the above-discussed first
and second stages of decay of the LE, let us reconsider the
expression of the LE in Eq. (8). As discussed previously, Eq. (8)
is not just a semiclassical expression, but is an exact expression,
if the distribution P (�S) is appropriately defined in terms of
contributions from Feynman paths. The distribution P (�S)
always has some deviation from its Gaussian approximation,

FIG. 2. Variation of td (empty squares) with N in the sawtooth
model, where td is the time at which the second-stage decay of the LE
in the FGR regime appears (see Fig. 1). For comparison, we also plot
tn (solid circles), the time at which the FGR decay is expected to reach
the saturation value 1/N , i.e., tn = [45 ln(N )]/(σ 2π 4). Parameters:
K = 2.0, σ = 0.2.

which we denote by PG, with G standing for Gaussian, that is,

P (�S) = PG + �P. (28)

The above-discussed numerical results imply that the deviation
�P is not sufficiently large for times shorter than td (beyond
some initial times). As a result, the LE still follows the FGR
decay.

However, for times beyond td , the deviation cannot be
neglected. In fact, the deviation �P has mainly two sources:
One comes from contributions not included in the stationary
phase approximation, which has been used when deriving
the semiclassical propagator from Feynman’s path integral
formulation. The other is related to the fact that the right-hand
side of Eq. (9) for classical trajectories does not have an
exact Gaussian form. The second-stage non-FGR decay of
the LE appears for quite small values of the dimension N ,
which correspond to values of the effective Planck constant not
much smaller than the upper border h̄ub

eff . This implies that its
deviation from the FGR decay might have a nonsemiclassical
origin, i.e., the above-mentioned first factor might play the
major role here.

Next, we discuss the Lyapunov regime in the sawtooth
model. In this regime, we did not observe a two-stage decay
similar to that discussed above in the FGR regime. For large N ,
as shown in previous work [15], the LE has approximately the
semiclassically predicted Lyapunov decay, with the decaying
rate given by the Lyapunov exponent. (The sawtooth model has
a homogeneous phase space.) With decreasing N , as shown
in Fig. 3, the decay of the LE gradually deviates from the
Lyapunov decay.

To quantitatively characterize the above-discussed devia-
tion of the exact LE decay from the semiclassical prediction in
the Lyapunov regime, we have studied the standard deviation
of xn ≡ | ln Me(t = n) − ln Msc(t = n)|, where Me(t) denotes
the exact numerical result. That is, we have studied the
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FIG. 3. (Color online) Similar to Fig. 1, but for σ = 3.0 in the
Lyapunov regime of the sawtooth model. The LE has a decay close
to the semiclassically predicted Lyapunov decay, namely e−λLt (solid
lines), for N � 26.

quantity D,

D ≡
√√√√ 1

M

M∑
n=1

(xn − x)2, (29)

where x = 1
M

∑M
n=1 xn is the average value of xn. Our

numerical simulations show that the value of D remains small
for large N and becomes not small when N is below some
value, which we denote by Nc (see Fig. 4). That is, the
semiclassical prediction for the LE decay works well for N

above Nc, but not well for N below Nc.
The value of Nc was found to be dependent on the parameter

σ , as shown in Fig. 5. On average, Nc increases with increasing
σ . This dependence may be related to a requirement used in the
derivation of the above-mentioned semiclassical predictions
for the LE decay, namely ε being small. Indeed, due to the

FIG. 4. Variation of the deviation D in Eq. (29) with N in the
Lyapunov regime of the sawtooth model, with parameters K = 2.0
and σ = 3.0. The value of D remains small for N � Nc = 64 and
becomes large when N is smaller than Nc.

FIG. 5. Variation of Nc with σ in the Lyapunov regime of the
sawtooth model with parameter K = 1.0.

relation ε = σh̄eff = 2πσ/N , to keep ε at a fixed small value,
N should be proportional to σ .

C. Numerical results in the kicked rotator model

In the kicked rotator model, numerically we found the
behaviors of the LE to be more or less similar to those in
the sawtooth model discussed in the previous subsection, also
with Gaussian wave packets as the initial states. Specifically,
in the FGR regime, when N is not large, we also observed a
two-stage decay of the LE. But, in this model, the second-stage
decay is faster than the first-stage FGR decay. See Fig. 6 for
some examples, where the value of R(E) in the FGR decay
was computed numerically, making use of Eq. (26).

The kicked rotator does not have a homogeneous phase
space. Hence in the Lyapunov regime, the semiclassical
prediction for the LE decay is not given by the Lyapunov
exponent of the underlying classical dynamics, but is given by
Eq. (12). As expected, only for large N did we numerically find
agreement between the prediction of Eq. (12) and the exact LE

FIG. 6. (Color online) Same as in Fig. 1 for the kicked rotator
model with parameters K = 11.0, σ = 0.3 in the FGR regime. The
semiclassical prediction of the FGR decay, e−2σ 2R(E)t with R(E) =
0.375, is indicated by a solid line.
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FIG. 7. (Color online) Similar to Fig. 6, but for the Lyapunov
regime with parameters K = 15.0 and σ = 20.5 in the kicked rotator
model. The semiclassical prediction, given by Eq. (12), is indicated
by solid lines.

decay beyond some initial time. Some examples are given in
Fig. 7, where it is seen that the agreement is good for N = 213

with t ∈ [4,8] while the agreement is not good for N � 29. In
fact, for N = 29, the LE approaches its saturation value before
the semiclassically predicted decay in Eq. (12) can be seen.

IV. LE DECAY IN THE VICINITY OF A QUANTUM
PHASE TRANSITION

In this section, we discuss the LE decay in the vicinity of
a critical point of a 1D Ising chain in a transverse field, with
Np spins. As shown in Ref. [25], the semiclassical theory is
useful in predicting the LE decay in the close neighborhood of
those QPTs whose ground levels are infinitely degenerate at
the critical points. The closer the controlling parameter λ is to
the critical point λc, the better the semiclassical theory might
work. For this Ising chain, the semiclassical theory predicts an
exponential decay for relatively long times.

The Ising chain undergoes a QPT at the critical point in the
thermodynamic limit Np → ∞. As will be discussed below, an
effective Planck constant can be introduced in the low-energy
region in this model, which is inversely proportional to Np.
We will be studying the extent to which the above-mentioned
semiclassical prediction for an exponential decay of the LE
may remain valid when the value of Np is decreased.

The dimensionless Hamiltonian of the 1D Ising chain is
written as

H (λ) = −
Np∑
i=1

(
σ z

i σ z
i+1 + λσx

i

)
. (30)

The spin-spin interaction intends to force the spins to polarize
along the z direction, while the transverse field intends to
polarize them along the x direction. Competition between the
two interactions results in two critical points, λc = ±1, with
the ferromagnetic phase for −1 < λ < 1 and the paramagnetic
phase for |λ| > 1. Without a loss of generality, we consider
the critical point λc = 1.

The above Ising Hamiltonian can be diagonalized by
utilizing the Jordan-Wigner and Bogoliubov transformations,

giving [26,45,46]

H (λ) =
∑

k

ek(b†kbk − 1/2), (31)

where b
†
k and bk are fermionic creation and annihilation

operators, ek is the corresponding single quasiparticle energy,

ek = 2
√

1 + λ2 − 2λ cos(ka), (32)

and k = 2πm/aNp, with m = −M, − M + 1, . . . ,M . Here,
a is the lattice spacing and M = (Np − 1)/2.

As discussed in Ref. [25], in the very neighborhood of the
critical point with λ sufficiently close to λc and for sufficiently
large Np, the low-lying states have single-particle energies
ek ≈ (4π |m|)/Np and can be mapped to bosonic modes by the
method of bosonization [26]. A bosonic mode, labeled by α,
has a single-particle energy eb

α ≈ nαδE, where nα = 1,2, . . .

and δE = 4π/Np. This expression of the single-particle
energy eb

α suggests that an effective Planck constant h̄eff may
be introduced,

h̄eff = δE = 4π/Np, (33)

which gives eb
α = h̄effωα , with ωα ≈ nα . In the case in which

the frequencies ωα are sufficiently incommensurable, the
classical counterpart has a motion like a chaotic one when the
time is not long. Then, as discussed in Sec. II, the semiclassical
theory predicts the exponential decay in Eq. (10) with R(E)
given by Eq. (17).

In computing the LE, H0 in its definition in Eq. (1) is
taken as H (λ0) and H1 as H (λ). The initial state |�0〉 is
chosen as the ground state of H (λ0); in this case, the LE is in
fact a survival probability. Numerically, the LE was found to
have an initial Gaussian decay, as predicted in Ref. [30]. For
large values of Np, the semiclassically predicted exponential
decay was also observed for relatively long times, i.e., beyond
the initial Gaussian decay and before the revival time [25].
However, when Np is decreased to some value, denoted by
Nd , an obvious deviation from the exponential decay has been
observed (see Fig. 8).

Figure 8 shows that for large Np, the LE has a good scaling
behavior, ln M(t) ∼ Np. To understand this phenomenon, we
note that here the perturbation εV in the definition of the LE
takes the form of ε = (λ0 − λ) and

V =
Np∑
i=1

σx
i . (34)

Then, according to Eq. (17), the quantity R(E) is given by the
square of the summation of Np terms with mean zero, each
of which is a time integration of ε(σx

i − σx
i ). As discussed

above, the classical counterpart has a motion like a chaotic
one, hence the time integrations mentioned above can usually
be regarded as being uncorrelated. As a result, for large Np,
the quantity R(E) is approximately proportional to Np, hence
ln M(t) ∼ Np.

To see more clearly the process of the above-discussed
deviation of the LE from the semiclassically predicted
exponential decay, we have calculated the deviation D in
Eq. (29) for xt = | ln Me(t) − ln Msc(t)|/Np (see Fig. 9). In
our computation, (ln Msc)/Np was computed in the large-Np
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FIG. 8. (Color online) LE decay of the Ising chain for different
values of Np , with parameters λ0 = λc − 4 × 10−2, λ = λc − 10−2,
and λc = 1.0. For large Np and relatively long times, the LE has an
exponential decay as predicted by the semiclassical theory. (A solid
straight line is drawn to guide the eyes.) Note also that the LE has a
good scaling behavior of ln M ∝ −Npt for large Np . For relatively
small Np (Np = 25), the LE has neither the exponential decay nor
the scaling behavior.

limit. It is seen in Fig. 9 that an obvious deviation from
the semiclassically predicted exponential decay appears at
Nd ≈ 100.

Furthermore, we found that the value of Nd has a strong
dependence on δλ = λ − λc, as shown in Fig. 10. Specifically,
Nd is almost inversely proportional to δλ. Therefore, the value
of Nd can be not large for δλ not very small. However, for
quite small δλ, Nd can be very large. Since a large value of Nd

implies “deep” in the semiclassical regime, it is reasonable to
expect that this deviation from the semiclassically predicted
exponential decay may be due to the invalidity of some
approximation used in the semiclassical derivation.

FIG. 9. Variation of the deviation D with the spin number Np

in the Ising model, with parameters λ0 = λc − 4 × 10−2 and λ =
λc − 10−2. D is large for Np < Nd ≈ 100.

FIG. 10. (Color online) Variation of Nd with the distance δλ in
the Ising model, with parameters λ0 = λc − δλ and λ = λ0 − δλ. The
solid line represents Nd = 2/(5δλ).

Indeed, as shown below, the above-mentioned deviation
can be explained by approximate commensurability of the
frequencies ωα , which may invalidate the derivation for the
exponential decay. Let us go back to the single-particle energy
ek in Eq. (32) and get its approximate expression for large Np

and small |m|, with the λ dependence written explicitly,

ek � 4π

Np

|m|
√

λ + G2
λ, (35)

where

Gλ = Npδλ

2πm
. (36)

Note that for λ = λc = 1, this expression gives the approxi-
mation used previously, namely ek ≈ (4π |m|)/Np. When the
term G2

λ is small compared with 1, one can argue that the
low-lying states of the model can still be mapped to bosonic
modes. For λ close to λc, the frequencies of the bosonic modes
are written as

ωα � nα

√
1 + G2

λ. (37)

For the LE to have FGR-type exponential decay, ωα should be
sufficiently incommensurable. Hence the term G2

λ cannot be
very small, i.e., Gλ should be larger than some small quantity.
Obviously, the breakdown dimension Nd estimated in this way
is inversely proportional to δλ, in agreement with numerical
results given in Fig. 10.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have studied the change from validity to
breakdown of some semiclassical predictions for the LE decay
in several models, when the effective Planck constants are
increased and the systems move from the semiclassical region
to the deep quantum region. Our numerical results show that
some semiclassical predictions for the LE decay work well
even in the deep quantum region.

In particular, in the FGR regime with intermediate perturba-
tion strength in the two quantum chaotic systems studied, there
is always some time interval within which the LE follows the
FGR decay; the length of this time interval decreases when the
effective Planck constant is increased. Making use of an exact
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expression of the LE, which is obtained resorting to Feynman’s
path integral formulation of quantum mechanics, it is argued
that this phenomenon should be universal for quantum chaotic
systems. This is in agreement with the fact that the same
FGR decay can also be derived by other methods, namely
by the random matrix theory [7] and by a linear response
theory [10,11]. Still in the FGR regime, beyond the time
interval discussed above, deviation of the LE from the FGR
decay has been observed in the two chaotic systems in the deep
quantum region. This deviation is expected to be induced by
nonsemiclassical contributions and may also appear in other
chaotic models.

In the Lyapunov regime with relatively strong perturbation,
a different situation has been found. In particular, the semiclas-
sical prediction has been found to be invalid in a sufficiently
deep quantum region. This difference from the FGR regime
is understandable, since the mechanism for the LE decay is
different in the two regimes.
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