
PHYSICAL REVIEW E 86, 066202 (2012)

Consistency and complexity in coupled semiconductor lasers with time-delayed optical feedback
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Consistency of response in a system driven repeatedly by a complex signal has been observed in many nonlinear
dynamical systems. We investigate the consistency of unidirectionally coupled semiconductor lasers with optical
feedback and measure the complexity of the entire laser system by using the Lyapunov spectrum. The complexity
strongly depends on the degree of consistency. It is found that the complexity of the coupled laser system can
be classified into three regions. When the system shows consistency, the complexity of the entire laser system
corresponds to that of the solitary drive laser. In the inconsistency region, the complexity of the entire laser
system corresponds to the sum of the complexity of the uncoupled drive and response lasers. The complexity
increases more than the sum of the two solitary lasers near the boundary of the consistency region, where new
dynamical fluctuations appear due to the optical carrier interaction between the two lasers.
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I. INTRODUCTION

Many nonlinear dynamical systems have an ability to
generate consistent outputs when driven by a repeated external
signal, and this phenomenon is referred to as reliability [1–3]
or consistency [4–6]. Consistency can be defined as the ability
of a dynamical system to produce an identical response output
after some transient period, when the system is driven by
a repeated drive signal. We consider a situation where a
nonlinear dynamical system (called a response system) is
driven by a repeated complex signal such as a chaotic or
noise signal. The response system may not produce similar
temporal outputs because of different initial conditions for
different trials of the drive input. However, if the response
system has consistency, an identical complex temporal wave
form of the response system can be obtained at each repetition
of the drive input.

Consistency of response has been experimentally observed
in many nonlinear dynamical systems [1–6]. Consistent
response subject to a common drive signal has been reported
in the context of generalized synchronization [7–11] and
common-noise-induced synchronization [12–20]. The concept
of consistency could be applied for an implementation of
physical one-way function [21], where an output signal can
be easily produced from an input signal through a complex
function, whereas the input signal cannot be estimated from
the output signal. The physical implementation of one-way
function has been reported with a token with complex speckle
scattering patterns of light [21]. Instead of using spatial
complex patterns, temporal dynamics may be useful when
a dynamical system has consistent response. The use of
consistency may lead to a new technique of the implementation
of physical one-way function, which could be a key technique
for hardware-oriented information security systems [22].

The concept of consistency can be also applied for in-
formation processing. Recently, reservoir computing with a
time-delayed nonlinear dynamical system has been proposed
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and demonstrated for speech recognition [23,24]. Consistent
response output with respect to a drive signal is required for
the application of reservoir computing.

One of the important characteristics for the applications
of physical one-way function and reservoir computing is the
complexity of the functional system. The complexity has
been analyzed in many nonlinear dynamical systems with
different techniques, such as statistical complexity [25,26],
permutation entropy [27–29], nontriviality measure [30],
Karhunen-Loève decomposition [31], correlation dimension
[32], and Kolmogorov-Sinai (KS) entropy [33,34]. Most
techniques are based on statistical measurement of time
series analysis using observed data that includes undesirable
noise. On the contrary, KS entropy, which is a measure of
complexity based on Lyapunov spectrum analysis, could be
more reliable since the complexity can be obtained from
integration of linearized equations of a numerical model.
KS entropy indicates the divergence of tiny errors on a
chaotic trajectory in a multidimensional phase space, and it is
estimated from the sum of positive Lyapunov exponents. KS
entropy is also a measure of unpredictability of the nonlinear
dynamical system. Another important measure obtained from
Lyapunov spectrum analysis is Kaplan-Yorke (KY) dimension,
which indicates the minimum degree of freedom to describe
the dynamics of the system. KY dimension can be obtained
from a number of Lyapunov exponents as well. Some works
on the calculation of KS entropy and KY dimension have been
reported in time-delayed nonlinear dynamical systems [33,34].

Semiconductor lasers with time-delayed optical feedback
are good candidates for implementing physical one-way func-
tion and reservoir computing, which requires high-frequency
generation of chaotic complex signals in a consistent way with
respect to a complex drive signal. For semiconductor lasers, KS
entropy and KY dimension for a single semiconductor laser
with time-delayed optical feedback has been reported [34].
However, the complexity of optically coupled semiconductor
lasers has not been reported. Moreover, the relationship
between consistency and complexity in coupled laser systems
has not been investigated yet. It is an important question
how the complexity of a coupled nonlinear dynamical system
changes when the state of consistency is varied.
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In this study we investigate consistency of response in
unidirectionally coupled semiconductor lasers with time-
delayed optical feedback and measure the complexity of the
coupled laser system by using Lyapunov spectrum analysis.
We quantitatively evaluate the complexity of the coupled
entire laser system by using KS entropy and KY dimension,
estimated from Lyapunov exponents. We clarify the conditions
how the complexity changes for different states of consistency
in the coupled laser system.

II. MODEL FOR NUMERICAL SIMULATIONS

We numerically investigate the conditions to obtain con-
sistency in unidirectionally coupled semiconductor lasers
with time-delayed optical feedback. A model consisting of
two semiconductor lasers (called drive and response lasers)
is shown in Fig. 1. Each laser has an external mirror
for generating chaos due to time-delayed optical feedback.
The drive signal is injected into the response laser to observe
consistency. We repeated numerical simulation twice with the
same parameter values but different initial conditions for the
response laser that are subject to an identical chaotic temporal
wave form from the drive laser. The outputs of the response
laser for the two repeated trials are referred to as response
1 and response 2 outputs, respectively. Consistency can be
observed when the correlation between the response 1 and 2
outputs is large, even though the correlation between the drive
and response is relatively low.

The model shown in Fig. 1 can be described by a set of
coupled rate equations for semiconductor lasers, known as
the Lang-Kobayashi equations [6,34–36]. The unidirectionally
coupled Lang-Kobayashi equations are described as follows.

Drive laser:

dEd (t)

dt
= 1 + iα

2

{
GN [Nd (t) − N0] − 1

τp

}
Ed (t)

+ κdEd (t − τd ) exp(−iωdτd ) (1)

dNd (t)

dt
= Jd − Nd (t)

τs

− GN [Nd (t) − N0]|Ed (t)|2 (2)

Response laser:

dEr (t)

dt
= 1 + iα

2

{
GN [Nr (t) − N0] − 1

τp

}
Er (t)

+ κrEr (t − τr ) exp{−i(ωd − �ω)τr}
+ κinjEd (t − τinj) exp{i(�ωt − ωdτinj)} (3)

dNr (t)

dt
= Jr − Nr (t)

τs

− GN [Nr (t) − N0]|Er (t)|2, (4)

where E is the complex electric field (a complex variable)
and N is the carrier density (a real variable). The subscripts
d and r represent the drive and response lasers, respectively.

Drive

Mirror

Response

Mirror
inj

FIG. 1. (Color online) Model for unidirectionally coupled two
semiconductor lasers with optical feedback. κinj: injection strength
from the drive to response lasers.

GN is the gain coefficient, α is the line-width enhancement
factor, N0 is the carrier density at transparency, τs is the
carrier lifetime, τp is the photon lifetime, τd,r = 2Ld,r/c is the
round-trip delay time in the external cavity for the drive and
response lasers, and τinj = Linj/c is the propagation time of the
injection light from the drive to response lasers. The feedback
coefficient κd and κr are given by κd = (1 − r2

2 )r3,d/(r2τin)
and κr = (1 − r2

2 )r3,r/(r2τin), where τin is the round-trip time
in the internal laser cavity. r2, r3,d , and r3,r represent intensity
reflectivities of the laser facet and the external mirrors for
the drive and response lasers. ωd = 2πc/λd and ωr = 2πc/λr

are the angular optical frequency of the solitary drive and
response lasers, where λd and λr are the optical wavelengths
of the solitary drive and response lasers. The injection strength
from the drive to response lasers is given by the injection
coefficient κinj. �ω = ωd − ωr is the initial optical angular-
frequency detuning between the solitary (uncoupled) drive
and response lasers, and �f = �ω/2π represents the initial
optical-frequency detuning between the solitary drive and
response lasers.

The complex variable E is transformed to real and
imaginary parts (i.e., E = ER + iEI ) for the convenience of
numerical calculations to avoid divergence of integration for
small E [6]. We numerically solve the real and imaginary
equations by using the fourth-order Runge-Kutta method.
The parameter values used in the numerical simulations are
shown in Table I. We set the different parameter values for
the reflectivities and the injection current between the drive
and response lasers (i.e., r3,d = 0.015, r3,r = 0.03) (These
reflectivities result in the feedback strengths of κd = 2.33 ns−1

and κr = 4.66 ns−1.), Jd/Jth = 1.11, and Jr/Jth = 1.36. We
used much larger injection strength κinj = 31.1 ns−1 than
the feedback strengths, because large optical injection is
necessary to achieve injection locking of the optical carrier
frequencies between the drive and response lasers. The initial
optical-frequency detuning is also introduced (i.e., �f = −4.0
GHz). The other parameter values are set to be identical
between the drive and response lasers, as shown in Table I.

III. CONSISTENCY IN COUPLED SEMICONDUCTOR
LASERS

Figures 2(a) and 2(b) show the temporal waveforms of the
drive, response 1, and response 2 outputs and the correspond-
ing correlation plot between the response 1 and 2 outputs
without optical injection from the drive laser (κinj = 0.0 ns−1).
It is found that the outputs of the response 1 and 2 show
different temporal behaviors, and the response laser does not
show consistency. Next the output of the drive laser is injected
into the response laser. Figures 2(c) and 2(d) show the temporal
wave forms of the drive, response 1, and response 2 outputs
and the corresponding correlation plot between the response 1
and 2 outputs at the injection strength of κinj = 31.1 ns−1. Note
that the temporal waveform of the drive output is time-shifted
by the propagation time τinj in Figs. 2(a) and 2(c). The temporal
wave forms of the response 1 and 2 are identical, even though
they differ from the temporal wave form of the drive laser, as
shown in Fig. 2(c). The correlation plot shown in Fig. 2(d)
is a straight line at 45 degree, indicating the achievement of
consistency of the response laser.
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TABLE I. Parameter values used in numerical simulations.

Symbol Parameter Value

GN Gain coefficient 8.40 × 10−13 m3s−1

N0 Carrier density at transparency 1.40 × 1024 m−3

τp Photon lifetime 1.927 × 10−12 s
τs Carrier lifetime 2.04 × 10−9 s
τin Round-trip time in internal cavity 8.0 × 10−12 s
r2 Reflectivity of laser facet 0.556
α Line-width enhancement factor 3.0
λd Optical wavelength of the drive laser 1.55 × 10−6 m
c Speed of light 2.998 × 108 ms−1

Nth Carrier density at threshold 2.018 × 1024 m−3

Jth Injection current at threshold 9.892 × 1032 m−3s−1

ωd Optical angular frequency of the drive laser 1.215 × 1015 s−1

r3,d Reflectivity of external mirror of drive laser 0.015
r3,r Reflectivity of external mirror of response laser 0.03
κd Feedback strength of drive laser 2.33 × 10−9s−1

κr Feedback strength of response laser 4.66 × 10−9s−1

κinj Injection strength from the drive to response lasers 3.11 × 10−8s−1

Jd/Jth Normalized injection current of the drive laser 1.11
Jr/Jth Normalized injection current of the response laser 1.36
Ld,r External cavity length of the drive laser (one-way) 0.6 m
Linj Distance from the drive to response lasers 1.2 m
τd,r Round-trip time of light in external cavity (feedback delay time) for the drive or response laser 4.003 × 10−9 s
τinj Propagation time of light from the drive to response lasers 4.003 × 10−9 s
�f Initial optical-frequency detuning between the drive and response lasers −4.0 × 109Hz
�ω Initial optical-angular frequency detuning between the drive and response lasers −2.513 × 1010 s−1

It is found that the temporal wave forms of the time-delayed
drive and the response lasers are weakly correlated since some
peaks appear simultaneously. Phase synchronization may be
observed between the drive and response wave forms [8].
These weakly correlated wave forms result from strong optical

FIG. 2. (a), (c) Temporal wave forms of the time-delayed drive,
response 1, and response 2 outputs, and (b), (d) correlation plots
between the response 1 and 2 outputs. The injection strengths are (a),
(b) κinj = 0.0, and (c), (d) κinj = 31.1 ns−1.

injection, and may not be desirable for the applications to
physical one-way function [21] because it may be easy to
predict the response signal only from the drive signal. A
constant-amplitude and random-phase (CARP) signal [37]
could be used as a drive signal for this type of application,
instead of a chaotic drive signal, to avoid the correlation
between the drive and response wave forms.

We quantitatively evaluate the degree of consistency by
using the cross correlation between the response 1 and 2
outputs as follows,

Cr1,r2 = 〈[Ir1(t) − Īr1][Ir2(t) − Īr2]〉
σr1σr2

, (5)

where I (t) is the intensity of the response laser, Ī is the mean
value of the laser intensity, σ is the standard deviation of the
laser intensity, and <> is the time averaging. The subscripts r1
and r2 represent the response 1 and 2 outputs, respectively. We
also calculated the cross correlation between the time-delayed
drive and response 1 outputs as,

Cd,r1 = 〈[Id (t − τinj) − Īd ][Ir1(t) − Īr1]〉
σdσr1

, (6)

where the subscripts d and r1 represent the drive and response
1 outputs, respectively.

In optically coupled semiconductor lasers, injection locking
is crucial for chaos synchronization, where the optical fre-
quency of the response laser is matched to that of the drive laser
[6]. An important question arises whether injection locking
occurs when consistency is achieved. We thus calculated the
optical frequency detuning with optical injection from the drive
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FIG. 3. Cross correlations between the response 1 and 2 outputs
Cr1,r2 (solid curve) and between the time-delayed drive and response 1
outputs Cd,r1 (dashed curve) as a function of the injection strength κinj.
The optical frequency detuning with optical injection �finj (dotted
curve) is also plotted.

to response lasers �finj [6,38].

�finj = �f + 1

2π

[
dφd (t)

dt
− dφr (t)

dt

]
, (7)

where φd (t) and φr (t) are the phase of electric field for
the drive and response lasers, and calculated from φ(t) =
tan−1 [EI (t)/ER(t)]. �f is the initial optical-frequency de-
tuning between the drive and response lasers without optical
injection. Even for �f �= 0, the optical frequency detuning
�finj can be close to zero with optical injection by injection
locking.

The cross correlation Cr1,r2 and Cd,r1 are plotted as a
function of the injection strength κinj, as shown in Fig. 3.
The solid and dashed curves represent Cr1,r2, and Cd,r1

respectively. In the region of κinj > 24.0ns−1, Cr1,r2 is close to
1, indicating consistency. Within this region, Cd,r1 is changed
from 0.4 to 0.8, indicating that the response output differs from
the drive output.

The optical frequency detuning �finj with optical injection
is also plotted as the dotted curve in Fig. 3. Without optical
injection (κinj = 0ns−1), �finj is close to the initial optical-
frequency detuning �f = −4.0 GHz. As κinj is increased,
�finj changes and becomes |�finj| < 0.1 GHz at κinj >

29.5ns−1. When κinj is increased further, �finj converges to
∼ 0 GHz, indicating injection locking. Compared �finj with
Cr1,r2 (the solid curve), consistency is observed (Cr1,r2 ≈
1.0) when injection locking is achieved (�finj ≈ 0 GHz).
Therefore, consistency is achieved under the condition of
injection locking.

IV. LYAPUNOV SPECTRUM ANALYSIS

A. Entropy and dimensionality

To obtain the complexity of the coupled laser system,
we calculated KS entropy and KY dimension, which can be
estimated from Lyapunov exponents. We derived linearized
equations for small deviations from the original trajectory

obtained from the original rate equations of Eqs. (1)–(4) [6].
We numerically solved the linearized equations, and calculated
a norm of the linearized variables. For time-delayed nonlin-
ear dynamical systems, all the linearized variables that are
included in the delay time need to be regarded as independent
variables for the calculation of the norm [6,33,34,39]. The
maximum Lyapunov exponent can be calculated from the time
average of the logarithm of the norm.

For multidimensional nonlinear dynamical systems, a
number of Lyapunov exponents exist, which are called the Lya-
punov spectrum. For time-delayed systems, many Lyapunov
exponents exist due to the time-delay effect. It is necessary to
use a number of sets of the linearized equations to calculate
the Lyapunov spectrum for time-delayed dynamical systems,
where the number of the sets of the equations corresponds
to the number of the Lyapunov exponents obtained in the
calculation. The linearized variables can be regarded as
components of norm vectors, and orthogonalization is applied
to the norm vectors [6,34]. Lyapunov spectrum can be obtained
by calculating the time average of logarithm of the norm of
the orthogonal vectors.

KS entropy hKS can be calculated from the sum of positive
Lyapunov exponents [6,34],

hKS =
∑
i|λ>0

λi. (8)

KS entropy indicates a loss rate of information. A large value of
KS entropy indicates that the system has large unpredictability.

KY dimension DKY (also known as Lyapunov dimension)
can be calculated as follows [6,34],

DKY = j +
∑j

i=1 λi

|λj+1| , (9)

where j satisfies the following relationship:

j∑
i=1

λi > 0 >

j+1∑
i=1

λi, (10)

where λi > λk (i < k) is satisfied. KY dimension indicates
the number of variables to represent dynamical systems. A
large number of KY dimension corresponds to more complex
dynamics of the systems.

B. Dependence of complexity on injection strength

We measured KS entropy and KY dimension for the cou-
pled entire laser system (both the drive and response lasers),
where six variables with time delay exist. For comparison,
we also measured KS entropy and KY dimension for the
solitary (uncoupled) drive or response laser system. Figure 4
shows KS entropy (solid curve) and KY dimension (dashed
curve) of the entire laser system as a function of the injection
strength κinj. The cross-correlation curves of Fig. 3 can be
compared with Fig. 4. For the solid curve in Fig. 4, KS entropy
is 2.03 ns−1 without optical injection (κinj = 0 ns−1). This
value equals the sum of the KS entropy for the solitary drive
and response lasers without coupling. With increase of κinj,
KS entropy increases and becomes maximum (3.43 ns−1)
at κinj = 10.6 ns−1. For larger κinj, KS entropy decreases
and saturates when consistency is achieved in the region of
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FIG. 4. KS entropy hKS (solid curve) and KY dimension DKY

(dashed curve) as a function of the injection strength κinj.

κinj > 26.1 ns−1. The value of KS entropy in the consistency
region is 0.85 ns−1, which corresponds to that of the solitary
drive laser. Therefore, the complexity of the entire laser system
under consistency becomes the minimum value.

For the dashed curve of Fig. 4, KY dimension is obtained
as DKY = 44.1 without coupling and equals to the sum of
KY dimension for the solitary drive and response lasers
without coupling, as in the case of KS entropy. However,
unlike KS entropy, only a slight increase of KY dimension
is observed (DKY = 46.7 at maximum) as κinj is increased. In
the consistency region, KY dimension becomes the minimum
value (DKY = 16.3), which equals that of the solitary drive
laser.

To interpret these results, we made comparison among
the Lyapunov spectra for the entire laser system, the solitary
drive laser, and the solitary response laser. Figure 5(a) shows
the Lyapunov spectrum for the entire laser system when the
injection strength κinj is varied. For comparison, Figs. 5(b)
and 5(c) show Lyapunov spectra for the solitary drive laser
and the solitary response laser, respectively. It is found that
the overlap of Figs. 5(b) and 5(c) corresponds to Fig. 5(a).
All the Lyapunov exponents for the drive laser [Fig. 5(b)]
are constant because the unidirectional injection strength from
the drive to response lasers is changed. For the solitary
response laser [Fig. 5(c)], all the Lyapunov exponents becomes
negative when consistency is achieved. This phenomenon is
interpreted that the dynamics of the response laser is totally
governed by the drive signal, even though different temporal
waveforms of the drive and response lasers are observed. The
complexity of the entire laser system is thus dominated by that
of the solitary drive laser under consistency (κinj > 26.1 ns−1),
as shown in Figs. 5(a) and 5(b). Therefore, KS entropy and
KY dimension of the entire laser system under consistency is
equivalent to that of the solitary drive laser.

C. Dependence of complexity on initial
optical-frequency detuning

Next we investigate the relationship between consistency
and complexity when the initial optical-frequency detuning is
varied between the drive and response lasers. Figure 6(a) shows

FIG. 5. Lyapunov spectra for (a) the entire laser system (both
drive and response), (b) the solitary drive system, and (c) the solitary
response system as a function of the injection strength κinj. 20 largest
Lyapunov exponents are shown.

the cross correlation between the response 1 and 2 outputs
and between the drive and response 1 outputs as a function
of the initial optical-frequency detuning �f at the fixed
injection strength κinj = 31.1 ns−1. It is found that consistency
is achieved within the range of −6.0 GHz < �f < 0.0 GHz
as shown in the solid curve of Fig. 6(a). In this region, �finj

is almost zero and injection locking is achieved. The optical
frequency detuning plays an important role for the achievement
of consistency.
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FIG. 6. (a) Cross correlation between the response 1 and 2 outputs
Cr1,r2 (solid curve), between the drive and response 1 outputs Cd,r1

(dashed curve), and the optical frequency detuning with injection
�finj (dotted curve), (b) KS entropy hKS (solid curve) and KY
dimension DKY (dashed curve), and (c) Lyapunov spectrum λi , as
a function the initial optical-frequency detuning �f .

Figure 6(b) shows KS entropy and KY dimension estimated
from the Lyapunov spectrum. KS entropy has the largest value
at �f ≈ −9 GHz. From the result of KS entropy shown in
Fig. 6(b), the regions of the complexity can be categorized
into three regions. First, KS entropy has the lowest value in the
region of −6.0 GHz < �f < 0.0 GHz, and almost equals to
that of the drive laser, where consistency is achieved. Secondly,
for large absolute values of the initial optical frequency

detuning (�f < −15.0 GHz or �f > 10.0 GHz), KS entropy
equals to the sum of that of the solitary drive and response
lasers. In the third region at �f ≈ −9 GHz, KS entropy
increases, whose value is larger than the sum of the solitary
drive and response lasers, at negative detunings outside the
consistency region. These characteristics can be seen for KY
dimension, although no significant increase of KY dimension
is found for negative detunings.

Figure 6(c) shows the Lyapunov spectrum of the entire laser
system for different initial optical-frequency detunings. The
maximum Lyapunov exponent λ1 increases when the initial
optical-frequency detuning is set to be a negative value in the
region of −15.0 GHz < �f < −6.0 GHz. In other region,
the maximum Lyapunov exponent is almost constant. The
Lyapunov spectrum of Fig. 6(c) consists of the Lyapunov
exponents for the solitary drive and response lasers. All the
Lyapunov exponents corresponding to the response laser are
negative in the region of −6.0 GHz < �f < 0.0 GHz under
the condition of consistency.

V. TWO-DIMENSIONAL MAP OF CONSISTENCY
AND COMPLEXITY

Next we systematically investigate the relationship between
consistency and complexity when the injection strength κinj

and the initial optical-frequency detuning �f are changed
simultaneously. Figure 7(a) shows the two-dimensional map
of the cross-correlation value Cr1,r2 as functions of κinj and �f .
The degree of consistency is represented by using grayscale,
and the black region corresponds to high consistency (Cr1,r2 ≈
1). It is found that consistency is obtained in the region of
large injection strengths κinj and slightly negative detunings
�f . Figure 7(b) shows the optical frequency detuning �finj

with optical injection as functions of κinj and �f . The
consistency region in Fig. 7(a) corresponds to the injection
locking range, indicated as the black region in Fig. 7(b),
where the optical wavelengths are almost matched between
the drive and response lasers by optical injection (�finj <

0.1 GHz).
Figure 8(a) shows the two-dimensional map of KS entropy

hKS for the entire laser system as functions of κinj and �f .
Black regions correspond to large KS entropy. It is found that
the complexity of the entire system can be classified into three
regions. First, KS entropy becomes low [the white region in
Fig. 8(a)], which corresponds to the consistency region [the
black region of Fig. 7(a)]. It is worth noting that KS entropy
in this region corresponds to KS entropy of the solitary drive
laser (hKS = 0.86 ns−1). Secondly, when the response laser
does not show consistency outside the injection locking range,
KS entropy becomes larger [the gray region of Fig. 8(a)]. KS
entropy in this region corresponds to the sum of KS entropy
of the solitary drive and response lasers (hKS = 2.03 ns−1).
For the third region, KS entropy becomes the maximum
value in the region near the boundary of the consistency
region [the black region of Fig. 8(a)]. The maximum value
of KS entropy is hKS = 4.37 ns−1, which is roughly twice
larger than the sum of KS entropy of the solitary drive and
response lasers. The region of large KS entropy appears near
the boundary of the injection locking range. The asymmetry
of the regions for large KS entropy in terms of �f results
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FIG. 7. Two-dimensional maps of (a) the cross correlation Cr1,r2

between the response 1 and 2 outputs and (b) the optical frequency
detuning with optical injection �finj as functions of the injection
strength κinj and the initial optical-frequency detuning �f . (a) Black
region corresponds to high consistency. (b) Black region corresponds
to the injection locking range (�finj < 0.1 GHz).

from the line-width enhancement factor α in semiconductor
lasers [6,36].

Figure 8(b) shows the two-dimensional map of KY di-
mension DKY for the entire laser system as functions of
κinj and �f . Small KY dimension is obtained in the white
region of Fig. 8(b), corresponding to the consistency region
[the black region of Fig. 7(a)]. In this region, KY dimension
corresponds to that for the solitary drive laser (DKY = 16.3).
In the inconsistency region, KY dimension becomes larger [the
dark gray region of Fig. 8(b)], and KY dimension corresponds
to the sum of KY dimension for the solitary drive and response
lasers (DKY = 44.0). However, unlike KS entropy of Fig. 8(a),
KY dimension is increased slightly in the boundary of the
consistency region (DKY = 49.2).

To clarify the mechanism of the entropy enhancement in
Fig. 8(a), we investigate the temporal dynamics of the response
laser subject to constant optical injection from a stable drive
laser. In this situation, both of the drive and response lasers
do not have optical feedback, and they are unidirectionally
coupled to each other. Figure 9 shows the two-dimensional
map of the dynamics of the response laser when κinj and �f are
changed simultaneously. Stable laser output is observed in the
injection locking range, indicated by “S” in Fig. 9. A period-1

FIG. 8. Two-dimensional maps of (a) KS entropy hKS and (b) KY
dimension DKY of the entire laser system as functions of the injection
strength κinj and the initial optical-frequency detuning �f .

(P1) oscillation can be observed in wide regions outside
the injection locking range. The frequency of this periodic
oscillation roughly corresponds to the initial optical-frequency
detuning �f between the solitary drive and response lasers.
Higher-order periodic oscillations and chaotic oscillations oc-
cur near the boundary of the injection locking range, indicated
by “P2” and “C” in Fig. 9. This complex dynamics has
been reported in unidirectionally coupled semiconductor lasers
without optical feedback [40–42] and it is considered that
the complex dynamics result from the nonlinear interaction
between the two optical-carrier frequencies. These parameter
regions of P2 and C correspond to the regions where high KS
entropy can be obtained in Fig. 8(a). It is worth noting that
nonlinear frequency mixing between the two optical-carrier
frequencies is responsible for the increase of the complexity in
the coupled semiconductor lasers. This phenomenon is unique
characteristics for coupled lasers that carry two dominant
frequency dynamics (i.e., fast optical-carrier oscillation and
slow chaotic envelope oscillation [6]). This significant increase
of the complexity by unidirectional coupling has not been
observed in other nonlinear dynamical systems such as the
Rössler model and the Mackey-Glass model with time-delayed
feedback [43].
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FIG. 9. Two-dimensional map of temporal dynamics for the
response laser with optical injection from the stable drive laser as
functions of the injection strength κinj and the initial optical frequency
detuning �f . Both the drive and response lasers do not have optical
feedback. S: stable (white region), P1: period-1 oscillation (gray
region), P2: period-2 or high-periodic oscillation (dark gray region),
C: chaotic oscillation (black region).

VI. DISCUSSION

In this study we quantitatively evaluated the complexity
of unidirectionally coupled semiconductor lasers by using
the measures of KS entropy and KY dimension based on
Lyapunov spectrum analysis, when the state of consistency
is varied. We found that the complexity strongly depends
on the degree of consistency. The complexity of the entire
laser system corresponds to that of the solitary drive laser
when the system shows consistency. On the contrary, the
complexity of the entire system corresponds to the sum of
the complexity of the uncoupled drive and response lasers in
the case of inconsistency. More interestingly, the complexity
increases more than the sum of the two solitary lasers near
the boundary of the consistency region. This third region
where the complexity becomes maximum is considered as
a unique characteristic of coupled laser systems and has not
been observed in other nonlinear dynamical systems [43]. The
increase of complexity results from optical-carrier interaction
between the drive and response lasers outside the injection
locking range, which generates new temporal dynamics as
shown in Fig. 9. The lasers have fast optical-carrier compo-
nents at frequencies of hundreds of THz and the detuning
of the optical-carrier frequencies between the two coupled
lasers induces complex nonlinear dynamics and increases the
complexity of the system when the optical frequency locking
is incomplete. On the contrary, the two optical frequencies are
locked to each other when the strong injection is used and
the complexity is governed by the solitary drive laser in the
consistency region. This technique for increasing complexity
could be used for a physical entropy source in fast physical
random number generation [44]. In addition, these findings
could be useful for the evaluation of complexity in coupled
laser systems for the applications to physical one-way function
and reservoir computing [21–24].

The concept of consistency is related to generalized syn-
chronization [7–11]. Generalized synchronization is defined
as a functional relationship between the drive and response

temporal wave forms, whereas consistency is defined as repro-
ducibility of a nonlinear dynamical system driven by a repeated
complex signal. Generalized synchronization is considered
for coupled dynamical systems, however, consistency can be
applied for a solitary system. Generalized synchronization
can be achieved when all the Lyapunov exponents of the
response system become negative. Therefore, it may be
expected to show low complexity of the entire system under the
achievement of generalized synchronization. This speculation
is consistent with our numerical results for complexity and
consistency.

The results on ensemble averages of modulated dynamical
system have been reported [45,46]. The modulation changes
the stability of the dynamical system and this phenomenon
is similar to consistency. However, the periodic modulation
signal is simpler than the external drive signal from the
chaotic drive laser and may result in lower complexity. The
analysis of complexity in modulated dynamical systems
will be a very interesting topic. In addition, the behavior
of a neuronal network driven by a common random drive
signal shows both consistency and synchronization [3]. The
complexity analysis proposed in this study will be very useful
to distinguish between consistency and synchronization in
network dynamical systems.

It is required to achieve large complexity and consistency
for the applications to physical one-way function [21]. From
our results, the complexity becomes the lowest value when the
consistency is achieved, and the complexity of the response
laser under consistency is determined by that of the solitary
drive laser. Therefore, it is important to increase the complexity
of the solitary drive laser, but not the response laser, for
enhancing the complexity of the physical one-way function im-
plemented by unidirectionally coupled semiconductor lasers.

Coupled semiconductor lasers with time-delayed
feedback are promising for the implementation of reservoir
computing [23,24] with simple experimental apparatus. The
evaluation of the complexity and dimensionality of coupled
semiconductor lasers is quite important for this application,
because it determines information capacity embedded in
the dynamical systems. Our method for the evaluation of
complexity and dimensionality is necessary for the application
to reservoir computing.

VII. CONCLUSION

We have investigated consistency of response in unidirec-
tionally coupled semiconductor lasers with optical feedback
and measured the complexity of the coupled laser system
by using Lyapunov spectrum analysis. We have found that
the complexity of the entire laser system can be classified
into three regions. When the response of the laser system
shows consistency, the complexity of the entire (drive and
response) laser system corresponds to that of the solitary drive
laser. In the inconsistency region, the complexity of the entire
laser system corresponds to the sum of the complexity of the
solitary drive and response lasers. The complexity increases
further near the boundary of the consistency region, where new
dynamical fluctuations occur due to the nonlinear frequency
mixing between the two optical-carrier components. We found
that the complexity of the entire laser system strongly depends
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on the degree of consistency. The results could be useful for
the evaluation of complexity in coupled laser systems for
the applications to physical one-way function and reservoir
computing.
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