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Multifractality in domain wall dynamics of a ferromagnetic film
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We investigate the multifractal properties in the dynamics of domain walls of a ferromagnetic film. We apply
the Multifractal Detrended Fluctuation Analysis method in experimental Barkhausen noise time series measured
in a 1000-nm-thick Permalloy film under different driving magnetic field frequencies, and calculate the fluctuation
function Fq (s), generalized Hurst exponent h(q), multifractal scaling exponent τ (q), and the multifractal spectrum
f (α). Based on this procedure, we provide experimental evidence of multifractality in the dynamics of domain
walls in ferromagnetic films and identify a rich and strong multifractal behavior, revealed by the changes of the
scaling properties of over the entire Barkhausen noise signal, independently of the driving magnetic field rate
employed in the experiment.
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I. INTRODUCTION

Since the discovery of the effect [1], Barkhausen noise
(BN) has been employed as a tool to investigate ferromagnetic
materials [2–4]. Due to its stochastic character, BN is analyzed
using statistical treatments on the experimental time series.
Traditionally, the BN times series statistical analysis considers
the distribution of amplitudes, distributions of jump sizes
and jump durations, power spectrum, and average size of
an avalanche as a function of its duration [3,4]. All of these
statistical functions are, in general, well described by cutoff-
limited power-laws, which are understood as the fingerprint of
a critical dynamics [5]. BN can be understood as a result of
the complex microscopic magnetization process and irregular
motion of domain walls in ferromagnetic materials and, for this
reason, recently, it has attracted growing interest as an example
of response of a disordered system exhibiting crackling noise,
becoming an excellent candidate for investigating scaling
phenomena [4–7]. From this new point of view, the study
of BN becomes valuable since several systems in many
situations, remarkably, present response signals, or time series,
that usually share common characteristic features. It is the
case of BN in ferromagnetic materials, the seismic activity
in earthquakes, the dynamics of vortices in supercondutors,
the fluctuations in the stock market, the acoustic emission in
microfractures processes, and the shear response of a granular
media [4]. In all these systems, the dynamics and the signal
statistical properties seem to be independent of the microscopic
and macroscopic details of the samples, being, however,
controlled just by a few general properties, such as the system
dimensionality and the range of the relevant interactions [8].

Many of the time series from these systems exhibit self-
similarity, which is the signature of a fractal nature in the
system [9]. In this case, the definition of fractal is associated
to the ability of a system to present similar features with a
change of scale, reflected in the response signal which has
similar and reproducible statistical features.
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Particularly, monofractal systems are homogeneous, in
the sense their time series have the same scaling properties
throughout the entire signal and can be indexed by a single
global exponent, called Hurst exponent H [10].

On the other hand, multifractal systems can be understood
in a complementary concept, as a composition of interlaced
fractals, each one with its own fractal dimension. In this sense,
a multifractal system is a generalization of a fractal system, in
which a single exponent is not enough to describe its dynamics,
but a continuous spectrum of exponents is required [11].

Multifractal time series are characterized by a hierarchy
of exponents that describe the scale behavior of various
subsets of the respective studied time series [9]. There are
several methods to analyze multifractality in time series, such
as the partition function formalism [9,12], and the Wavelet
Transform Modulus Maxima (WTMM) [13–15] method, that
provide good outcomes for nonstationary time series affected
by trends. In another approach, an important alternative for
multifractal analysis corresponds to the implementation of
the Multifractal Detrended Fluctuation Analysis (MF-DFA)
method [16,17].

In recent decades, multifractal analysis has been widely
performed in time series originated by several natural complex
systems, including heartbeat dynamics [18], earthquakes [19],
electrostatic plasma turbulence in tokamak [15], dynamics of
turbulent flows [20], geophysical time series [21], turbulence
in fluids [22], fluctuations in financial markets [23], and
complex networks [24]. In all of them, theory or simulations
and experimental results seem to agree well and the analysis
evidences the existence of multifractality in all these signals.

In this paper, we report an experimental evidence for
multifractality in the domain wall dynamics of ferromagnetic
films, by analysis Barkhausen noise time series. We investi-
gate the multifractal properties in ferromagnetic systems by
using the algorithm called Multifractal Detrended Fluctuation
Analysis [16] and, for experimental time series, we calculate
the fluctuation function Fq(s), generalized Hurst exponent
h(q), multifractal scaling exponent τ (q), and the multifractal
spectrum f (α) [11]. We apply the multifractal analysis to
Barkhausen noise and identify the multifractal behavior in the
time series, revealed by the changes of the scaling properties
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of over the entire Barkhausen signal. Moreover, we show that
multifractality in the dynamics of ferromagnetic domain walls
is rich and strong, independently of the driving magnetic field
rate employed in the experiment.

The paper is organized as follows. In Sec. II we present
the Barkhausen noise experiment and discuss the traditional
statistical analysis obtained for the studied sample. In Sec. III
we consider the multifractal concept and describe the MF-DFA
method employed in this work. In Sec. IV, we present the
results of the multifractal analysis and discuss the multifractal
characteristics in Barkhausen noise and in domain wall
dynamics of a ferromagnetic film. Finally, the last section is
devoted to conclusions and discussion of open problems.

II. EXPERIMENT

The experimental results analyzed in this work consist
of experimental Barkhausen noise time series measured in
a ferromagnetic film under different driving magnetic field
frequencies.

The Barkhausen noise in ferromagnetic materials corre-
sponds to the time series of voltage pulses detected by a sensing
coil wound around a ferromagnetic material submitted to a
variable magnetic field [1–4]. The noise is produced by sudden
and irreversible changes of magnetization, mainly due to the
irregular motion of the domain walls (DW) in a disordered
magnetic material, a result of the interactions between the DWs
and pinning centers, such as defects, impurities, dislocations,
and grain boundaries [2,3,25–27].

For this study, we perform Barkhausen noise measurements
in a ferromagnetic film with nominal composition Ni81Fe19

(Permalloy) and thickness of 1000 nm, produced by magnetron
sputtering. X-ray diffraction results verify the polycrytalline
structural character of the film, as well as quasistatic magne-
tization curves indicate isotropic in-plane magnetic properties
with an out-of-plane anisotropy contribution. Detailed infor-
mation on the film production and structural and magnetic
characterization of the sample employed in this work can be
found in Ref. [28].

We record Barkhausen noise time series using the tra-
ditional inductive technique in an open magnetic circuit.
The studied sample has dimensions 10 mm × 4 mm ×
1000 nm. Sample and pickup coils are inserted in a long
solenoid with compensation for border effects, to ensure
an homogeneous applied magnetic field on the sample. The
sample is driven by a triangular magnetic field, applied along
the main axis, with an amplitude high enough to saturate
magnetically the film. The driving field frequency is varied
in the range 0.03–0.4 Hz. BN is detected by a sensing
coil (400 turns, 3.5 mm long, 4.5 mm wide, 1.25 MHz
resonance frequency) wound around the central part of the
sample. A second pickup coil, with the same cross section and
number of turns, is adapted to compensate the signal induced
by the magnetizing field. The Barkhausen signal is then
amplified and filtered using a 100 kHz low-pass preamplifier
filter, and finally digitalized by an analog-to-digital converter
board (PCI-DAS4020/12 board—Measurement Computing)
with sampling rate of 4 × 106 sample per second. BN
measurements for all driving field frequencies are performed
under similar experimental conditions. The time series are

acquired just around the central part of the hysteresis loop,
near the coercive field, where the domain wall motion is
the main magnetization mechanism [2,27,29] and the noise
achieves the condition of stationarity [30]. In particular, for
each driving field frequency, the statistical scaling properties
are obtained from 150 experimental Barkhausen noise time
series.

The universality class of the Barkhausen noise in a sample
is identified by measuring the distributions of avalanche
sizes and durations, the power spectrum, and the average
size vs. duration, usually described by cutoff-limited power-
laws and related to the critical exponents τ , α, ϑ , and
1/σνz, respectively [3]. Through this traditional BN statistical
analysis, for the ferromagnetic film employed in this work,
two of us have previously measured values τ ∼ 1.5, α ∼ 2.0,
and ϑ ∼ 1/σνz ∼ 2.0 for the exponents, a result obtained
for the smallest magnetic field rate. Besides, we verified
rate-dependent τ and α, while 1/σνz and ϑ are constant critical
exponents. Thus, by considering this wide statistical analysis,
the agreement between experimental results and well-known
predictions for bulk polycrystalline magnets [3,4,31] indicates
that Barkhausen noise measured in our sample and dynamics
of domain walls are described by mean-field theory [28,29,31],
since this film presents a typical three-dimensional magnetic
behavior, with predominant strong long-range dipolar interac-
tions governing the domain wall dynamics.

III. MULTIFRACTAL ANALYSIS

In this work, the multifractal analysis is based on the
Multifractal Detrended Fluctuation Analysis method [16,17].

MF-DFA basically consists of five steps. First of all, we
assume that xk is an experimental Barkhausen noise time
series, of length N . Thus, in the first step, the accumulated
profile from a time series, so-called random walk like time
series [17], is determined by the following equation:

Y (i) ≡
i∑

k=1

[xk − 〈x〉], i = 1, . . . ,N, (1)

where 〈x〉 denotes the mean of the time series xk .
In step two, for a given time scale s, the accumulated profile

from Eq. (1) is divided into Ns ≡ int(N/s) integer disjoint
segments of equal length s. In step three, for each one of the
Ns segments, the local trend is determined by a polynomial
fitting of the data, and then the variance for each segment
ν = 1, . . . ,Ns is estimated through

F 2(ν,s) ≡ 1

s

s∑
i=1

{Y [(ν − 1) + i] − yν(i)}2, (2)

where yν(i) is the polynomial fitting for the segment ν.
In step four, the average of the variances over all segments

is computed to obtain the qth-order fluctuation function Fq(s).
In this case, for q �= 0, the fluctuation function is given by

Fq(s) ≡
{

1

Ns

Ns∑
ν=1

[F 2(ν,s)]q/2

}1/q

, (3)
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while for q = 0,

F0(s) ≡ exp

{
1

Ns

Ns∑
ν=1

ln[F 2(ν,s)]

}
. (4)

Here, we are concerned with how q dependent fluctuation
function Fq(s) depends on the time scale s, for some values
of q. For this purpose, steps two to four must be repeated for
different values of time scale s. According to Ref. [16], for very
large scales s � N/4, the employed procedure becomes statis-
tically unreliable, due to the fact that the number of segments
Ns averaging in Eqs. (3) and (4) is very small. Thus, we take
for our Barkhausen signal analysis the maximum scale value
of N/10 and the minimum scale value with nearly 200 points.

Finally, in the last step, the scaling behavior of the fluctu-
ation functions Fq(s) is determined by estimating the slope of
the plot of log10[Fq(s)] vs. log10[s], for a range of q values.
In particular, we use q between −10 to 10. Thus, if the ex-
perimental Barkhausen noise time series present a long-range
power-law correlation, then Fq(s) increases for sufficiently
large values of s, following the power-law scaling given by

Fq(s) ≈ sh(q), (5)

where h(q) is the so-called generalized Hurst exponent.
To estimate the h(q) values for distinct values of q, we

regress h(q) on Fq(s), Eq. (5). Thereby strengthening this
idea, for monofractal time series, the h(q) is independent of
q, since the behavior of the scale of the variances F 2(ν,s) is
identical for all segments ν, resulting in h(q) = H . So, it will
be observed any considerable dependence of h(q) over q, just
in case of small and large fluctuations differ, characterizing a
multifractal behavior evidenced in the time series.

From this point, the multifractal scaling exponent τ (q) can
be determined from h(q) by the relation

τ (q) = qh(q) − 1. (6)

In this case, if there is a linear dependence of the spectrum τ (q)
with q, the time series is considered monofractal, otherwise it
is multifractal.

Furthermore, it is possible to characterize the multifractality
of time series by considering the multifractal spectrum f (α),
where α is the Hölder exponent.1 The multifractal spectrum
f (α) is related to τ (q) via a Legendre transform [9,32]

α = τ ′(q), (7)

and

f (α) = qα − τ (q). (8)

The magnitude of multifractality in time series can be
determined by the width of the spectrum �α = αmax − αmin.

1To avoid a misunderstanding with the used notation, it is important
to keep in mind that, in the traditional statistical analysis performed
for Barkhausen noise measurements [28,31], we assume τ and α as
the critical exponents measured from the distributions of jump sizes
and jump durations, respectively. On the other hand, in the context
of the multifractal analysis, the similar symbols τ (q) and α present
distinct meanings, corresponding to the multifractal scaling exponent
and Hölder exponent, respectively.

Thus, intuitively, the wider is the multifractal spectrum, the
richer and stronger is the multifractality of the time series.

IV. RESULTS AND DISCUSSION

By applying the MF-DFA method described in the last
section, we analyze the multifractal properties in experimental
Barkhausen noise time series measured in a 1000-nm-thick
Permalloy film under different driving magnetic field frequen-
cies.

Figure 1 shows one of our Barkhausen noise times series
and the associated random walk like time series, obtained by
using Eq. (1). As can be seen, experimental Barkhausen noise
is composed of a series of intermittent voltage pulses, due to
avalanches in the magnetization, combined with background
instrumental noise. Since we employ the traditional inductive
technique to measure the BN in films, the corresponding
voltage signal is weaker than the usually obtained for fer-
romagnetic bulk samples [31].

By considering the BN time series, at a first glance,
it is possible to obtain some interesting information. First
of all, an important point resides in the fact that the time
series presents local fluctuations with both large and small
magnitudes, a feature related to a possible known fractal
and possible multifractal behavior. Previous reports have
indicated self-similarity properties in the Barkhausen noise, at
sufficiently low domain wall velocity, as well as have suggested
the critical exponent obtained for the distribution of avalanche
sizes as an indirect measurement of the fractal dimension of
the pinning field [33].

Another point that can be considered here is the self-
similarity reflected in the random walk like time series. In
this case, it is easy to verify that by zooming over different
scales results in similar behavior, indicating fractal properties
as well.

Besides, as a third point, the shape of the associated random
walk reveals some persistent structure of the BN time series.
Thus, in order to verify that the measured accumulated profile
presented in Fig. 1 is strictly related to the magnetic signal from
the sample, we also analyze a background instrumental noise
time series, measuring the instrumental response without the
sample. It must be pointed out that the background noise has a
behavior similar to the one verified to a white-noise-like time
series, as reported in Ref. [17]. In this case, the result given
by Eq. (1) corresponds to an accumulated profile with absence
of tendencies or persistent structures, maintaining the profile
close to the average, in a normal distribution, with features
completely different from that observed to multifractal time
series [17] and to our BN signal.

The multifractal character of the Barkhausen noise can be
initially identified from the plot of the fluctuation function with
respect to the time scale. Figure 2 presents log-log plot of the
fluctuation function Fq(s), given by Eq. (3), with respect to
the time scale s, for selected q values, for an experimental BN
time series and for the background instrumental noise.

In Fig. 2(a), for the BN signal, it is verified that the slopes
of Fq(s) are q dependent. In this case, for small segment
sizes (small scales), it is possible to note a considerable
difference in Fq(s = small) results for distinct q values. The
small segments are able to distinguish between local periods
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FIG. 1. (Color online) Experimental Barkhausen noise time series measured in our 1000-nm-thick Permalloy film (solid black line) and the
random walk like time series (dashed red line). BN is converted to random walk by using Eq. (1). The inset shows a zoom over a small scale,
evidencing the intermittent pulses combined with background instrumental noise, as well as self-similarity properties.

with large and small fluctuations in the BN time series. On the
other side, large segment sizes (large scales) cross diverse
local periods of the analyzed time series with small and
large fluctuations and will average out their differences in
magnitude [16,17], leading to a close result of Fq(s = large)
for distinct q values. These characteristics infer that the exper-
imental Barkhausen noise signal has a multifractal temporal
structure.

In contrast to the BN signal, in Fig. 2(b), for the background
instrumental noise, periods with small and large fluctuations
are not observed and, for this reason, it is verified the same
difference between the Fq(s) results for distinct q values,
independently of the segment sizes, indicating that background
instrumental noise has none multifractal features, leading to
the result h(q) = H .

Remarkable points of the multifractal behavior in the
dynamics of ferromagnetic domain walls can be also verified
through the generalized Hurst exponent h(q), multifractal
scaling exponent τ (q), and multifractal spectrum f (α), re-
spectively obtained through Eqs. (5), (6), and (8). Since the
non-multi-fractal behavior for a white-noise-like time series
is well known, its analysis can be used for comparison to
the results obtained for our experimental times series. Thus,
Fig. 3 shows h(q), τ (q), and f (α) for an experimental BN time
series, a background instrumental signal and for a simulated
white noise times series.

From Fig. 3, for the background instrumental signal, as well
as for the simulated white noise, approximately constant h(q)
values are observed for all the q interval, between −10 and 10.
This relation of h(q) with q leads to a linear dependence of
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FIG. 2. (Color online) (a) Log-log plot of the fluctuation function Fq (s), given by Eq. (3), with respect to the time scale s for selected q

values, obtained for a selected experimental Barkhausen noise time series measured with driving magnetic field frequency of 0.08 Hz (symbols),
together with the corresponding regression slopes (dashed lines). (b) Similar plot for a background instrumental noise time series.
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FIG. 3. (Color online) (a) Generalized Hurst exponent h(q) for the same selected Barkhausen noise-noise time series measured with driving
magnetic field frequency of 0.08 Hz (blue circles) of Fig. 2, background instrumental signal (red asterisks), and for a simulated white noise
signal (solid black line). (b) Similar plot for the multifractal scaling exponent τ (q). (c) Multifractal spectrum f (α) for the very same signals.
Here, h(q), τ (q), and f (α) are obtained, respectively, through Eqs. (5), (6), and (8), and �α corresponds to the width of the multifractal
spectrum.

τ (q) with q for both signals. Moreover, the linear dependence
gives rise to a multifractal spectrum f (α) given by a small arc,
with small width.

The absolute value for the width of the multifractal
spectrum �α, that corresponds to the difference between
the maximum and minimum α, as well as the shape of the
multifractal spectrum, are related to the temporal variation of
the generalized Hurst exponent h(q) [17]. In this sense, the
wider �α is, the richer and stronger the multifractality of
the analyzed time series is. For the considered white noise

and background instrumental noise, we find �α equals to
0.07 and 0.18, respectively. Thus, from these results, the
h(q) and τ (q) behaviors and the obtained �α values can
be understood as evidences of non-multifractality for both
signals.

On the other hand, when the experimental Barkhausen noise
time series is considered, the results are completely distinct.
Here, h(q) presents a decrease as the q value is increased,
leading to a nonlinear τ (q) dependence with q. Consequently,
the resulting multifractal spectrum f (α) is a wide arc, or a
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FIG. 4. (Color online) Mean behavior of the (a) generalized Hurst exponent h(q), (b) multifractal scaling exponent τ (q), and (c) multifractal
spectrum f (α) for Barkhausen noise time series measured with selected driving magnetic field frequencies, varied in the range 0.03−0.4 Hz.
Here, the mean behavior is obtained from the multifractal analysis of 150 BN acquisitions measured for each frequency.
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FIG. 5. (a) Mean value for the width of the multifractal spectrum, and (b) mean value for the position of the multifractal spectrum peak as
a function of the driving field magnetic frequency. The error bars corresponds to the estimated standard deviation of the mean.

wide inverted parabola. In this considered case, the multifractal
spectrum width is found to be �α = 1.03.

Combining the behaviours observed for h(q) and τ (q) with
and the obtained �α value, these results correspond to clear
signatures of the existence of a multifractal behavior in the BN
times series, and multifractality in the domain wall dynamics
of ferromagnetic films, as also identified in a wide variety of
systems [15,18–24].

The most striking finding in the multifractal behavior in the
Barkhausen noise time series measured in our ferromagnetic
film resides in the fact that multifractal critical features
continue to appear even when the driving magnetic field rate
in the experiment is changed. From the multifractal analysis of
150 acquisitions recorded for each frequency, Fig. 4 presents
the mean behavior of h(q), τ (q), and f (α) for Barkhausen
noise time series measured with selected driving magnetic field
frequencies, varied in the range 0.03–0.4 Hz. In this case, it is
interesting to note that the decrease of h(q) with an increasing
q and the nonlinear behavior of τ (q) with q are observed for all
frequencies. Furthermore, the degree of multifractality is given
by the calculus of the absolute value of the spectrum width.
Here, the obtained mean width 〈�α〉 values are between 0.9
and 1.1, a signature of a rich and strong multifractal behavior,
irrespective of the measurement.

Figure 5 presents the mean value for the width of the
multifractal spectrum, and the mean value for the position of
the multifractal spectrum peak, both as a function of the driving
field magnetic frequency. Despite the small fluctuations and
within the experimental error ranges, the mean width 〈�α〉
values are close to ∼1, as well as the peak position ones are
〈α〉 ∼ 0.85, for all the time series measured with different driv-
ing field frequencies. Thus, through the systematic comparison
of our results for distinct frequencies, the multifractality in the
dynamics of domain walls of ferromagnetic films seems not
to present any clear dependence on the driving magnetic field
rate employed in the experiment.

Considering the traditional statistical analysis performed
for Barkhausen noise, it is well known that a difference may

exist among experimentally obtained critical exponents τ , α,
ϑ , and 1/σνz, due to a different magnetization reversal mecha-
nism, different domain type, or different driving magnetic field
rate [29]. As already cited, for the very same BN measurements
analyzed in this work, we found rate-dependent τ and α, while
ϑ and 1/σνz constant critical exponents [28], in concordance
with theoretical predictions for the universality class which
our film is included. However, surprisingly, with the multi-
fractal analysis, the multifractality and h(q), τ (q), and f (α)
behaviors seem to be not affected by the driving magnetic field
rate.

V. CONCLUSION

In summary, in this paper we investigate multifractal
properties in the domain wall dynamics of a ferromagnetic
film. By applying the Multifractal Detrended Fluctuation
Analysis method, we analyze the multifractality of experi-
mental Barkhausen noise time series measured in 1000-nm-
thick Permalloy film under different driving magnetic field
frequencies. In the procedure, we calculate the fluctuation
function Fq(s), generalized Hurst exponent h(q), multifractal
scaling exponent τ (q), and the multifractal spectrum f (α).
Using this approach, we compare the Barkhausen noise results
with the ones obtained for background instrumental signal and
simulated white noise time series.

Through the results obtained with the multifractal analysis,
we provide experimental evidence of multifractality in do-
main wall dynamics of ferromagnetic films. The multifractal
behavior is revealed by the changes of the scaling properties
of over the entire Barkhausen signal. The multifractality of
experimental Barkhausen noise times series enables us to
quantify the great complexity of the dynamics of domain
walls of a ferromagnetic film. Moreover, we emphasize
that all our experimental results directly confirm a rich
and strong multifractality in the BN times series, indepen-
dently of the driving magnetic field rate employed in the
experiment.
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Considering this fact, we show that the employed MF-DFA
method is sensitive to the intrinsic and general features of the
signal and of the physical process that generates it, and not
to the driving field rate employed in the experiment. Thus, an
interesting study is the application of the multifractal analysis
in BN experimental time series measured in films with distinct
thicknesses and structural character, in order to test the univer-
sality of the multifractal behavior and its relation with general
properties, such as the system dimensionality and the range of

the relevant interactions governing the domain wall dynamics.
These experiments and analyses are currently in progress.
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