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Effect of network structure on phase transitions in queuing networks
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Recently, De Martino et al. [J. Stat. Mech. (2009) P08023; Phys. Rev. E 79, 015101 (2009)] have presented a
general framework for the study of transportation phenomena on random networks with annealed disorder. One
of their most significant achievements was a deeper understanding of the phase transition from the uncongested
to the congested phase at a critical traffic load on uncorrelated networks. In this paper, we also study phase
transition in transportation networks using a discrete time random walk model. Our aim is to establish a direct
connection between the structure of an uncorrelated random graph with quenched disorder and the value of the
critical traffic load. We show that if the network is dense, the quenched and annealed formulas for the critical
loading probability coincide. For sparse graphs, higher-order corrections, related to the local structure of the
network, appear.
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I. INTRODUCTION

During the past few decades, the physics community has
witnessed enormous progress in the research on complex
networks [1,2]. Transport processes on networks represent
an important class of dynamical systems with a wide range
of applications, including data traffic on the Internet, vehicle
traffic on highways, virus spread between hosts, or rumor
spread in social networks, to name but a few. A simple,
general model can be used to describe these dynamical systems
quite accurately, in which particles are transported between the
nodes of a network.

In certain transport networks the particles are served by
queues, residing at the nodes of the network. One of the most
prominent examples is the Internet, where the data packets
play the role of the particles. Queuing networks exhibit several
interesting phenomena; for example, below a critical traffic
intensity, the system is in a free state and the average queue
length fluctuates around a finite value. Above a critical traffic
load, however, one or more queues become congested and the
average queue length diverges.

Various models have been developed to model Internet
traffic. Deterministic and probabilistic routing strategies were
compared in Ref. [3]. The authors of Ref. [4] studied a
shortest-path routing model where the probability of packet
transmission depended on the queue lengths. The authors
of Ref. [5] studied how traffic congestion is affected by
the capacity of the nodes in a simple shortest-path routing
model. A more elaborate routing strategy was studied in
Ref. [6], where the packets were forwarded to the neighbor
that minimized an effective distance to the packet’s destination.
Beyond that, several attempts have been made to find routing
strategies that are less sensitive to congestion [7–9].

Packet-level simulations of these models clearly indicate
phase transitions between the free and congested phases,
and several characteristics of the queuing networks exhibit
power-law dependence from the traffic intensity close to
the transition point [3–6,10]. The analytic description of
these models, however, is rather limited, because even
the simplest routing mechanism, namely the shortest-path
routing, introduces nonlocal transport dynamics to the
system.

In recent years, extensive research has been undertaken to
discover the relationship between the topological properties of
networks and the behavior of the dynamical processes on them
[11–13]. A fundamental question is, if a dynamical system
shows phase transition phenomena, how does the structure of
the network affect the phase transition? In models with non-
local transport dynamics, however, the analytic description of
the phase transition has only been established for a few special
networks, for example, lattices [3,14] or Cayley trees [4,5,10].

In recent papers by De Martino et al. [15,16], the
authors studied the congestion phenomena on uncorrelated
annealed networks. The authors introduced a traffic-aware
congestion-control mechanism in their model and modeled
the transport process with a simple random-walk process,
instead of a nonlocal routing mechanism. It has been shown
that the model exhibits both first- and second-order phase
transition, depending on the parameters of a congestion control
mechanism.

The main focus of our paper is to gain a deeper under-
standing of the relationship between the structural properties
of the underlying graph and the congestion phenomena, that
is the dynamics, and to give a generic description of the phase
transition point in an arbitrary network with quenched disorder.
Our model is similar to the one presented by De Martino
et al. [15,16]. We approximate the particle-transport process
with a discrete-time random-walk process, where packets are
generated, absorbed, and move randomly in the network.
Moreover, we assume that the delivery of the particles is locally
homogeneous, that is the probability that a particle will be
delivered from any node to its neighbor is uniform [15].

Our work differs from Refs. [15,16] in three important
aspects, however. First, we do not consider any traffic-control
mechanism in our study. Second, instead of using time-
evolution equations, we apply an exact mean-field distribution
in the long time limit and use spectral graph theory [17] to
connect the structure of the network with the traffic dynamics.
Third, instead of using networks with annealed disorder, our
calculations are performed on an arbitrary graph but the
consequences of our formulas are validated numerically only
on uncorrelated random graphs with quenched disorder.

The paper is organized as follows. After presenting our
model in detail in Sec. II, we derive relationships that connect

066111-11539-3755/2012/86(6)/066111(11) ©2012 American Physical Society

http://dx.doi.org/10.1088/1742-5468/2009/08/P08023
http://dx.doi.org/10.1103/PhysRevE.79.015101
http://dx.doi.org/10.1103/PhysRevE.86.066111
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the critical traffic loading with the parameters of the model
(Sec. III). In Secs. IV and V, we discuss the theoretical
findings, and we then compare them to particle-level numerical
simulations and numerical computations. Finally, we conclude
our work in Sec. VI. Some of the details of the analytic
calculation are presented in the Appendix.

II. THE MODEL

We model the transportation network by a simple connected
graph with N nodes and M edges. Moreover, the dynamics
of the transport networks are modeled by a discrete time
stochastic process. The rules of the stochastic process are the
following (see Fig. 1). At each node of the graph, there is a
queue with infinite buffer capacity. In each time step, the first
particle of each nonempty queue leaves the queue. A particle at
node i will be either absorbed (i.e., leaves the queuing network)
with probability μi , or it is delivered to another queue at node
j , adjacent to node i, with probability Pji .

The probability that a particle will be absorbed at node
i can be expressed by μi = 1 − ∑

j Pji . We will assume
that the transition probability is constant in time. In locally
homogeneous network dynamics, the transition probabilities
can be given by

Pji = 1 − μi

di

, (1)

where di is the degree of node i.
Note that as long as only the queue length statistics

are concerned and not the fate of individual particles (e.g.,
trajectories or travel times), the order in which the particles
leave the queues is irrelevant. Therefore, individual particles
can be considered to be indistinguishable, and not only the first,
but any packet can be selected from the queues for delivery.

In each time step, after the delivery or absorption of the
existing particles in the system, new particles can also enter
the queues randomly. We assume that the probability, pi , that
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FIG. 1. A schematic figure illustrating the dynamics of the model.
Particles are generated and absorbed at node i by probability pi and
μi , respectively. The probability that a particle is delivered from node
i to node j is denoted by Pji .

a new particle enters the system at node i is also constant in
time. In addition, we will assume that the queuing system
is open, that is particles are generated and absorbed with
nonzero probability.

The queuing network can be in either a free or a congested
state. The network is in free state if, after a transient period, the
number of particles in the system fluctuates around an average
value. This stationary behavior does not depend on the initial
distribution of the length of the queues [18,19]. In this case, the
average number of particles arriving to the system equals the
average number of particles leaving the network. On the other
hand, in the congested state the average number of particles
arriving to the system is greater than the average number
of particles absorbed. Therefore, in the congested state, the
average number of particles in the network will almost surely
increase in time. This observation suggests the definition of
the order parameter

η(p1, . . . ,pN ) = lim
t→∞

n(t + 1) − n(t)∑
i pi

, (2)

which measures the expected growth rate of the number of
particles in the system, n(t), at time t , relative to the arrival
rate of incoming particles,

∑
i pi [4,20–23].

In the case of a stationary state, the order parameter is
obviously zero, whereas in the congested state it is greater
than zero. The transition between the free and congested
states can be characterized by the critical probability, pc =
(p1,p2, . . . ,pN )T , where the expected arrival rate of the
incoming particles equals the expected rate of absorbed
particles at least at one of the queues. It has been shown
earlier [24,25] that several characteristics of these networks
(e.g., probability distribution of delay times, queue length
distribution, etc.) show power law dependence on the loading
probability near the critical point, which suggests a close
analogy with the theory of phase transitions.

III. CONGESTION IN ARBITRARY NETWORKS

In this section we present an analytical estimation of the
critical point using a mean-field approximation [15].

Let us suppose first that the queuing system is in equilib-
rium. In this case, the expected number of particles arriving at
each queue is equal to the expected number of particles leaving
the queue, that is

ξi = pi + �i, (3)

where ξi denotes the expected number of particles leaving the
queue, �i denotes the expected number of particles arriving
to node i from its neighbors in one time step, and pi is the
arrival rate of the particles at node i. Since either zero or one
particle leaves the queue in each time step, ξi is also equal
to the probability that the queue of node i is not empty. Our
model is a large-scale Jackson network [18] and it belongs
to the class of zero-range processes [26], so the mean-field
approximation in the long time limit is exact, the distribution
of the queue lengths factorizes on the graph. (For the detailed
investigation of the question, see the Appendix of Ref. [15].)
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Therefore, �i can be calculated as

�i =
∑

j

Pij ξj . (4)

With standard vector and matrix notations we obtain that
in the uncongested, stationary phase the state vector ξ has
to satisfy the equation (E − P) ξ = p, where E denotes the
identity matrix. Since the matrix E − P is invertible (see
Appendix A), the loading probabilities uniquely determine
the components of the state vector ξ in the uncongested phase:

ξ = (E − P)−1 p. (5)

The state of the network can be classified according to the
state vector ξ . If the components of ξ satisfy the inequality
ξi < 1 for all i, then the network is in an uncongested state,
whereas if there is at least one node where ξi = 1, the network
is in the congested state. Therefore, based on this condition, the
order parameter of the system can be calculated theoretically.

Note first that the balance Eq. (3) cannot hold at the
congested nodes of the network, because the expected number
of incoming particles is greater than one, which is the
maximum of the expected number of outgoing particles at
a queue. Therefore, the congested queues grow steadily, and
these queues are never empty. It follows that ξi = 1 for the
congested queues, and the expected growth rate of these queues
can be given by pi + �i − 1. Based on these observations, we
can develop an algorithm, presented in Appendix C, that can be
used to calculate the order parameter numerically for arbitrary
networks and traffic load.

In order to validate our model, we compared the order
parameter obtained from our algorithm with packet-level
simulations on the same network. For comparison we used
the uncorrelated Barabási-Albert (BA) [27], Erdős-Rényi (ER)
[28], and Watts-Strogatz (WS) [29] networks. The loading
probability was the same at every node of the network, and both
the absorption probabilities and the elements of the transition
matrix P were random numbers distributed uniformly between
zero and one.

The results are shown in Fig. 2. It can be seen that the
theoretical curve, computed by our numerical method, fits
very well to the values of the order parameter determined
by simulations.

We also validated our results for inhomogeneous traffic
loads. For this purpose we generated several realizations of
random loading vectors, p, and transition matrix P on the
same ER graph and compared the order parameter calculated
by simulations and numerical computations. Results are shown
in Fig. 3. The simulations agree with our numerical method
very well.

IV. CRITICAL TRAFFIC LOAD IN ARBITRARY
NETWORKS

The main difficulty of using Eq. (5) is the computational
complexity of inverting the matrix E − P. Moreover, even if
the matrix can be inverted numerically for a particular network,
the dependence of the critical point on the network structure
and the traffic load remains obscure. In the case of large
irregular networks, approximations are needed to describe the
phase transition analytically.
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FIG. 2. (Color online) The order parameter as a function of
homogeneous loading probabilities. The graphs show numerical
calculations (solid line) and particle-based simulations (black points)
on three distinct networks. All graphs had N = 500 nodes. (a) BA
network (m = 2); (b) ER network (pER = 0.4); (c) WS network
(z = 16 and qWS = 0.1024).

For a detailed analysis of topological effects on the critical
load pc, let us consider networks with random-walk-like
particle transport with homogeneous absorption probabilities.
In this case, if nodes i and j are connected in the
network, the transition probability from node i to node j is
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NORBERT BARANKAI, ATTILA FEKETE, AND GÁBOR VATTAY PHYSICAL REVIEW E 86, 066111 (2012)

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0.15  0.16  0.17  0.18  0.19  0.2

η s
im

ηnum

FIG. 3. (Color online) Comparison of the order parameter com-
puted numerically with our algorithm and obtained from simulation
with inhomogeneous loading probabilities on an ER graph (N = 500
and pER = 0.4).

Pji = (1 − μ)/di , where di is the degree of node i, and μ is the
absorption probability. Using the adjacency and degree matrix
of the network, P can be written in a very compact form:

P = (1 − μ)AD−1. (6)

Using the spectral decomposition of the transition matrix,
we can write

AD−1 =
N∑

k=1

λkvkw
T
k , (7)

where wk and vk are the left and right eigenvectors of AD−1,
respectively, and λk is the corresponding eigenvalue. Note that
the symmetric matrix D−1/2AD−1/2 has the same eigenvalue
spectrum as the transition matrix AD−1. Indeed, if uk is an
eigenvector of the later matrix with eigenvalue λk , then vk =
D1/2uk will be the right, and wk = D−1/2uk will be the left
eigenvector of AD−1 with the same eigenvalue [30].

The transition matrix AD−1 is well known in the theory
of random walks on graphs [30]. Its eigenvalues satisfy the
inequality −1 � λk � 1 [30]. The largest eigenvalue is always
λ1 = 1 and it is degenerate only if the graph is not connected.
Moreover, the smallest eigenvalue is equal to −1 if and only
if the graph is bipartite [30]. In the following we will assume
that the graphs under study are connected.

It is easy to see that the normalized eigenvector of
D−1/2AD−1/2 corresponding to λ1 = 1 is u1 = D1/21/

√
2M ,

where M is the number of links in the network, and 1 =
(1,1, . . . ,1)T . It follows that the left and right eigenvectors
of AD−1 corresponding to λ1 = 1 are w1 = 1T /

√
2M and

v1 = d/
√

2M = D1/
√

2M , respectively.
Using the power series expansion of the function 1/(1 − x)

and the spectral decomposition of the transition matrix, we can
formally calculate the inverse of E − P:

(E − P)−1 =
N∑

k=1

1

1 − (1 − μ)λk

vkw
T
k . (8)

The above sum can be split into three parts that behave
differently as μ varies:

∑
λk=0

vkw
T
k + 1

μ

d1T

2M
+

∑
λk �=0,1

1

1 − (1 − μ)λk

vkw
T
k . (9)

The first term, corresponding to the eigenvalues λi = 0, is
independent of μ. The second term, which belongs λ1 = 1,
becomes singular as μ → 0. The last term, which consists of
all the eigenvalues that are neither zero nor one, is finite for
every value of μ.

V. DISCUSSION

A. Low absorption levels

In the case of low absorption levels, the second term
dominates in Eq. (9). Therefore, we obtain

ξ = (E − P)−1 p � d

d

p

μ
, (10)

where p = ∑
i pi/N and d = 2M/N . Moreover, if the loading

is homogeneous, i.e., p = p1, the critical loading probability
is

pc = d

dmax
μ, (11)

where dmax is the maximal degree in the graph.
Note that in the low absorption limit the critical point

depends only on the relative spread of the degree sequence,
i.e., dmax/d , and not on the absolute scale of the degrees.
In particular, in the case of regular graphs, where each node
has the same degree, the relative spread is dmax/d = 1, so the
critical point, pc = μ, is independent of the degree of a regular
graph. Furthermore, dmax is always greater than or equal to d,
and equality holds if and only if the graph is regular. Therefore,
the critical point pc is the highest in regular graphs at a given
absorption level.

B. High absorption levels

If the absorption probability μ is close to one, then (1 −
μ)λk is close to zero, so the denominators of the third term in
Eq. (9) can be approximated by one. Since the eigensystem of
AD−1 is complete, we obtain that

(E − P)−1 � E + 1 − μ

μ

d1T

2M
, (12)

and the state vector can be approximated by

ξ � p + (1 − μ)
d

d

p

μ
. (13)

Note that we kept the 1/μ factor in Eq. (13). This way Eq. (13)
can reproduce Eq. (10) in the small absorption limit, since p
can be neglected compared to the second term, which diverges
if μ → 0.

In the case of homogeneous loading, the critical loading
probability is

pc � μ

μ + (1 − μ)dmax/d
, (14)
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which depends again only on dmax/d , the relative spread of
the degree sequence. It is remarkable that the critical point
is almost completely independent of the fine details of the
network structure in both the small and high absorption limit.

C. Intermediate absorption levels

Numerical simulations presented later in this section show
that Eq. (13) is valid not only for small and large values of μ

but also for intermediate values if the edge density of the graph
is large. The reasons are the following. The approximation that
leads to Eq. (13) is the assumption that the term (1 − μ)λk is
close to zero for those λk , that are neither equal to zero nor
one. This approximation is valid not only when μ is close to
one, but also if the second largest absolute eigenvalue is close
to zero.

If the graph is nonbipartite, the second largest absolute
eigenvalue is related to τ , the characteristic time until a
particle reaches the stationary distribution of a random walk,
as 1/τ = max{|λ2|,|λN |}. Numerical calculations, presented
in Sec. V D, show that 1/τ decreases when the average degree
increases and remains constant with small fluctuations if
the average degree is fixed. Therefore, in the case of dense
networks, it is plausible to use the lowest terms of the power
series expansion

1

1 − (1 − μ)λk

= 1 + (1 − μ)λk + (1 − μ)2λ2
k + · · · . (15)

in the third term of Eq. (9). The zeroth-order term of the
series expansion reproduces Eq. (13). If the network is not
dense, like many real networks, or the absorption level is in
the intermediate range, we need to consider the first-order term
in the power series expansion Eq. (15) as well. Since bipartite
and nonbipartite graphs are qualitatively different, we will
discuss the two cases separately.

1. Nonbipartite graphs

It is easy to see that the first-order correction to (E − P)−1

is (1 − μ)(AD−1 − d1T /2M). Using this correction we obtain
that the state vector can be approximated by

ξ � p + (1 − μ)AD−1 p + (1 − μ)2 d

d

p

μ
. (16)

In order to study the effects of the topology on the critical
traffic load, let us consider homogeneous loading probabilities.
After straightforward calculations, we obtain that in this case
the ith component of the state vector is

ξi

p
� 1 + (1 − μ)2

μ

di

d
+ (1 − μ)

di

hi

, (17)

where hi denotes the harmonic mean of the degree of the
neighbors of the ith node,

hi =
⎛
⎝ 1

di

∑
j∈N (i)

1

dj

⎞
⎠

−1

, (18)

and N (i) is the set of neighbors of node i. Consequently, we
obtain that the critical loading probability is

1

pc

� 1 + max
i

{
(1 − μ)2

μ

di

d
+ (1 − μ)

di

hi

}
, (19)

which is one of the main results of our paper.
The main novelty of Eq. (19) is that it shows that the critical

point of the phase transition is determined not only by the
spread of the degree sequence, dmax/d , like in the low and
high absorption limit, but also by hi , which depends on the
local structure of the network.

We validated our result on BA and ER networks. We
calculated the critical load pc by inverting Eq. (5) numerically
and then compared the result with Eq. (14) and Eq. (19) on the
same graph with the same absorption level.

The results are presented in Fig. 4. It can be seen that
the zeroth-order approximation (14) is valid only for small
and large absorption levels. On the contrary, the first-order
approximation (19) fits the numerical data closely on the whole
range of absorption levels. In order to emphasize the clear
advantage of Eq. (19), the absolute difference between Eqs.
(14) and (19) and the numerical data is also shown in Fig. 4.

2. Bipartite graphs

The nodes of a bipartite graph can be divided into two
disjoint groups, G1 and G2, in such a way that the edges of the
graph connect only nodes from different groups. Since trees
are bipartite graphs, bipartite graphs are extremely important
from the practical point of view.

Suppose that there are N1 nodes in G1 and N2 nodes in G2,
and denote the average degree and loading probability in Gi

(i = 1,2) are di = M/Ni and pi = ∑
k∈Gi

pk/N , respectively.
The critical traffic load in bipartite graphs can be calculated

similarly to the nonbipartite graphs. The calculation is based on
the symmetry of the spectra of the transition matrix. Here, we
only summarize the results for homogeneous loading, details
of the calculation and the case of heterogeneous loading are
presented in Appendix B.

In the case of a bipartite graph, we obtain that each partition
defines a separate critical loading probability. For low or high
absorption levels and homogeneous traffic load we obtain,
analogously to Eq. (14), that

1

p
(1)
c

�1 + 1

μ

(1 − μ)2/d1 + (1 − μ)/d2

2 − μ
d (1)

max,

1

p
(2)
c

�1 + 1

μ

(1 − μ)2/d2 + (1 − μ)/d1

2 − μ
d (2)

max,

(20)

where d (i)
max is the maximal degree in Gi . The critical loading

probability of the whole network is the lesser of the two:
pc = min(p(1)

c ,p(2)
c ).

This result is very similar to the case of nonbipartite graphs.
It can be seen that pc depends only on the absorption level, μ,
and global properties of the graph, namely the mean di and the
maximal degree d (i)

max, which can be obtained from the degree
sequences of G1 and G2 straightforwardly.

In the case of intermediate absorption levels, the
zeroth-order approximation of critical traffic load, presented
in Eq. (20), has to be corrected. Similar to nonbipartite
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NORBERT BARANKAI, ATTILA FEKETE, AND GÁBOR VATTAY PHYSICAL REVIEW E 86, 066111 (2012)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

p c

μ

pc,i
pc,f

(a)

(d)(c)

(b)
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

p c

μ

pc,i
pc,f

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  0.2  0.4  0.6  0.8  1

Δ 
p c

μ

pc,f
pc,i

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  0.2  0.4  0.6  0.8  1

Δ 
p c

μ

pc,f
pc,i

FIG. 4. (Color online) Numerical validation of the analytic results in BA (N = 512 nodes, m = 2) and ER (N = 64 nodes, p = 0.1)
networks. The dashed and continuous lines pc,i and pc,f represent Eqs. (14) and (19), respectively. Numerical data, obtained by solving Eq. (5)
numerically, are represented by dots. (a) The critical load, pc, in a BA network; (b) the critical load, pc, in an ER network; (c) The absolute
error, �pc, in a BA network; (d) The absolute error, �pc, in an ER network.

graphs, the first-order correction, obtained from the spectral
decomposition of the transition matrix, is proportional
to di/hi . The critical loading probabilities p(1)

c and p(2)
c ,

including the first-order corrections and corresponding to the
two subcomponents of a bipartite graph, are

1

p
(1)
c

� 1 + max
i∈G1

{
1

μ

(1 − μ)2/d1 + (1 − μ)3/d2

2 − μ
di

+ (1 − μ)di/hi

}
,

1

p
(2)
c

� 1 + max
i∈G2

{
1

μ

(1 − μ)2/d2 + (1 − μ)3/d1

2 − μ
di

+ (1 − μ)di/hi

}
.

(21)

Consequently, the critical loading probability of the whole
network is pc = min(p(1)

c ,p(2)
c ).

In order to validate our results, we calculated the critical
load pc by inverting Eq. (5) numerically. For validation, we
used BA scale-free trees, grown by preferential attachment,
and compared the numerical data with Eqs. (20) and (21) with

the same graph and absorption level. The results are shown in
Fig. 5. Equation (21), which includes first-order corrections,
fits the numerical data closely, not only at low and high
absorption levels, like Eq. (20), but also in the intermediate
absorption range.

D. Error estimation in the large graph limit

We have seen that in the case of nonbipartite graphs the
largest absolute eigenvalue is |λ1| = 1, whereas in case of
bipartite graphs it is |λ1| = |λN | = 1. In the power series ex-
pansion Eq. (15) we considered the largest absolute eigenvalue
precisely and neglected the higher order terms for |λ| < 1. In
this section we discuss the validity of our approximation and
show numerically how the precision of our model depends on
the graph properties.

The error of the derived formulas depends on the magnitude
of the higher-order terms that we neglected in the power
series expansion Eq. (15). These terms can be bounded from
above with the second-largest absolute eigenvalue, that is
max{|λ2|,|λN |} for nonbipartite graphs and λ2 for bipartite
graphs. The smaller the second largest absolute eigenvalues
are, the smaller the error of Eq. (19) and Eq. (21) is.
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FIG. 5. (Color online) Numerical validation of the analytic results
on a BA tree (N = 1024 nodes, m = 1). The dashed and continuous
lines pc,i and pc,f represent Eqs. (20) and (21), respectively. Numer-
ical data, obtained by solving Eq. (5) numerically, are represented by
dots. (a) The critical load, pc, as a function of the absorption level,
μ; (b) the absolute error of the critical load, �pc, as a function of the
absorption level, μ.

Although it is easy to manipulate the eigenvalues λk

formally, it is difficult to see how the eigenvalues depend on
the graph properties. In order to see more easily how the error
depends on the graph properties, let us introduce the mixing
time from the theory of random walk on graphs.

The mixing time, τ , is the expected time until a particle,
performing random walk on a graph, reaches a stationary
distribution. It can be shown that the mixing rate, the reciprocal
of the mixing time, is precisely equal to the second largest
eigenvalue, i.e., 1/τ = max{|λ2|,|λN |} for nonbipartite graphs
and 1/τ = λ2 for bipartite graphs [30]. Therefore, it is
plausible to conclude that for graphs that have small mixing
rate, the error will be also small.

There is no known formula in the literature on how the
mixing rate depends on the graph parameters in general [31].
However, our numerical experiments showed that the mixing
rate depends strongly on the edge density, M/N = d/2. In
particular, the mixing rate decreases as the edge density
increases. In Fig. 7 we can see the relative error of the derived
formulas, �pc/pc, as the function of various graph parameters.
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FIG. 6. (Color online) The relative error, �pc/pc, of the derived
formulas as a function of N and m in BA networks with absorption
rate μ = 0.8. The black dots and red triangles show the error of
the derived zeroth- and first-order approximations, respectively. The
insets show the dependence of the mixing rate, 1/τ , on N and m.
Data points were averaged over 32 graph realization in each case.
(a) BA tree with m = 1 fixed and N varied; (b) BA network with
m = 2 fixed and N varied; (c) BA network with N = 1024 fixed and
m varied.

In the inset we can see the mixing rate as the function of the
corresponding graph parameter.

In the case of a BA network, for example , the edge density
is M/N � m, where m is the number of edges connecting
the new nodes to the graph in preferential attachment. This
means that the mixing rate, 1/τ , remains constant with small
fluctuations if m is fixed, even if N → ∞. This phenomenon
is the same in bipartite and nonbipartite graphs. For example,
one obtains a BA scale-free tree, which is a bipartite graph, if
m ≡ 1, In this case, the error of the derived formulas is also
constant, and it will not decrease even in the thermodynamic
limit.

In Fig. 6(a) and Fig. 6(b) we can see BA networks with
m = 1 and m = 2 fixed, and N varied. These cases correspond
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FIG. 7. (Color online) The relative error, �pc/pc, of the derived
formulas as a function of N and pER in ER networks with absorption
rate μ = 0.8 (Figs. 7(a) and 7(b)) and μ = 0.5 (Fig. 7(c)). The black
points and red triangles show the error of the derived zeroth and first
order approximation, respectively. The insets show the dependence of
the mixing rate, 1/τ , on N and pER. Data points were averaged over
32 graph realizations in each case. (a) ER network with N = 1024
fixed and pER varied; (b) ER network with pER = 0.5 fixed and N

varied; (c) ER with NpER = 49 fixed, N and pER varied.

to a bipartite and a nonbipartite graph, respectively. We can
see that in both cases both the relative error and the mixing
rate tends to a fixed value as N → ∞. On the other hand, in
Fig. 6(c) the size of the graph is fixed, and m is varied. We can

see that the mixing rate increases as m increases and, at the
same time, the relative tends to zero.

The construction of ER networks is fundamentally different
from the BA graphs. In the case of ER networks, the edge
density is M/N = p(N − 1)/2 � pN/2. Therefore, the edge
density increases, and the relative error tends to zero, if either
p or N is increased, and the other parameter is fixed. Note
that in the case of p = 1 the ER network is a complete graph,
in which case the derived formulas are exact. In contrast, the
relative error of the derived formulas tends to a fixed value if
pN is fixed.

Numerical simulations carried out on ER networks are
shown in Fig. 7. We can see that the simulation results confirm
our assumption that the relative error of the derived formulas
decreases if the density of the network increases and remain
fixed if the density is fixed.

VI. CONCLUSION

In this paper, we studied congestion phenomena in queuing
networks. We analyzed how the critical point of the phase
transition between free and congested phases is influenced
by the topological properties of the network. In order to
study the influence of the network structure on the traffic
dynamics in an arbitrary network, we neglected congestion
control mechanisms, and we modeled the particle transport by
a simple Markovian random walk.

In our model the critical traffic load in the network can
be controlled by the absorption level of the particles. We
first derived Eq. (14), the zeroth-order approximation for the
critical traffic load for low and high absorption levels. For
high absorption levels, our formulas are the same on quenched
networks as the results of De Martino et al. [15] on a model
with a congestion control mechanism included on annealed
networks. Our result extends their finding that at the critical
point the details of the congestion control mechanism are less
important in some cases of networks with quenched disorder.

In our paper we also showed that in the case of intermediate
absorption levels the zeroth-order formula is not valid, and
higher-order corrections are needed. We derived Eq. (19),
which incorporates the first-order corrections to Eq. (14) and
improves the precision of the critical point considerably. In
contrast to the zeroth-order formula, higher-order corrections
include not only the global properties of the degree sequence,
i.e., the mean and maximum degree, but also the local infor-
mation on the network structure. The improvement achieved
by the higher-order correction was validated by numerical
simulations.

We also demonstrated that in the case of intermediate
absorption levels the structure of the network can have
dramatic effects on the analytic behavior of the critical point.
We showed, in particular, that one must pay special attention
when considering a bipartite graph, because the spectra of
bipartite graphs are symmetrical. We derived Eq. (21) and
showed that the critical point in a bipartite graph is the
maximum of the critical points of its subcomponents.

Finally, we investigated the validity of our model. We
showed that the higher-order terms that were neglected during
our calculations depend on the spectral gap, which can also
be expressed by the mixing rate in the graph. We presented
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numerical arguments that the mixing ratio, that is the precision
of our approximations, strongly depends on the edge density
M/N . This empirical fact is well known in the mathematical
community, but up to now, as far as we know, there is no
rigorous proof of the phenomenon. We would like to examine
this question in detail in our future work.
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APPENDIX A

Let us suppose that E − P is not invertible, which is
equivalent to the statement that P has a normalized eigenvector
x with eigenvalue 1. In this case, using the assumption that
there is at least one node where

∑
i Pij < 1 (i.e., there is

absorption at least at one node), the following inequalities will
hold:

N∑
i=1

|xi | �
N∑

j=1

N∑
i=1

Pij |xj | <

N∑
j=1

|xj |, (A1)

which is a contradiction.

APPENDIX B

Using an indexing of the nodes that is suitable for the
definition of bipartite graphs, every vector mentioned in
the main text can be split into two parts, p = ( p1, p2)T ,
d = (d1,d2)T ξ = (ξ 1,ξ 2)T , such that the N1 (N2) components
of the first (second) part belong to nodes in G1 (G2). The form
of A and D are the following.

A =
(

0 B

BT 0

)
D =

(
D1 0

0 D2

)
, (B1)

where B is an N1 × N2, D1 is an N1 × N1, and D2 is an N2 ×
N2 matrix. The transition matrix has the following form:

AD−1 =
(

0 BD−1
2

BT D−1
1 0

)
. (B2)

The structure of D−1/2AD−1/2 is similar to A, the off-
diagonal block matrices are D−1/2

1 BD−1/2
2 and its transpose.

A one-line calculation shows that if ui = (u1,k,u2,k)T is an
eigenvector of D−1/2AD−1/2 with eigenvalue λk , then the
vector (u1,k, − u2,k)T is also an eigenvector with eigenvalue
−λk , so the spectra of D−1/2AD−1/2 is symmetric to the origin.
One consequence of this symmetry is that if the number of
nodes is even (odd), the kernel dimension of D−1/2AD−1/2 is
also even (odd). For the sake of simplicity, we study only
bipartite graphs with an even number of nodes. For large
networks, this has no serious consequence. Let us define the

matrices I(1)
k and I(2)

k :

I(1)
k =

(
u1,kuT

1,k 0

0 u2,kuT
2,k

)
, (B3)

and

I(2)
k =

(
0 u1,kuT

2,k

u2,kuT
1,k 0

)
. (B4)

Then, the spectral decomposition of D−1/2AD−1/2 is

N∑
k=1

λk

(
I(1)
k + I(2)

k

) =
N/2∑
k=1

2λkI(2)
k . (B5)

It is easier to perform the calculation on the spectral de-
composition of D−1/2AD−1/2 instead of AD−1 to get an
approximation of (E − P)−1:

(E − P)−1 = D1/2[E − (1 − μ)D−1/2AD−1/2]−1D−1/2.

(B6)
The spectral decomposition of the factor in the middle of the
right-hand side is

N∑
k=1

ukuT
k

1 − (1 − μ)λi

, (B7)

which, using the symmetry of the spectra, can be written in
the form

N/2∑
k=1

2
I(1)
k + (1 − μ)λkI(2)

k

1 − (1 − μ)2λ2
k

. (B8)

This also can be split into three parts as in Eq. (9):

∑
λk=0

2I(1)
k + 2

μ

I(1)
k + (1 − μ)I(2)

k

2 − μ

+
∑

λk �=0,1

2
I(1)
k + (1 − μ)λkI(2)

k

1 − (1 − μ)2λ2
k

, (B9)

but here, summation runs over only the first half of the spectra.
The power series expansion of the summands of the last
term is

2I(1)
k + 2(1 − μ)λkI(2)

k + 2(1 − μ)2λ2
kI(1)

k + · · · (B10)

Dropping all the terms except the first gives

E + 2

μ

(1 − μ)2I(1)
1 + (1 − μ)I(2)

1

2 − μ
(B11)

as the inverse of E − (1 − μ)D−1/2AD−1/2, so

(E − P)−1 � E + 1

μ

(1 − μ)2J(1)
1 + (1 − μ)J(2)

1

2 − μ
, (B12)

where J(1)
1 and J(2)

1 are the following matrices:

J(1)
1 = 1

M

(
d11T

1 0
0 d21T

2

)
, (B13)

and

J(2)
1 = 1

M

(
0 d11T

2
d21T

1 0

)
. (B14)
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This gives the values of ξ 1 and ξ 2:

ξ 1 = p1 + 1

μ

(1 − μ)2p1/d1 + (1 − μ)p2/d2

2 − μ
d1,

ξ 2 = p2 + 1

μ

(1 − μ)2p2/d2 + (1 − μ)p1/d1

2 − μ
d2.

(B15)

Equation (20) gives the final result for homogeneous loading.
To get the first finite-size correction, we have to use not only

the first but also the second term in Eq. (B10). Using Eq. (B5),
the correction term to the inverse of E − (1 − μ)D−1/2AD−1/2

appears to be (1 − μ)D−1/2AD−1/2 − 2(1 − μ)I(2)
1 , so the

corrected formula for the inverse is

E + 2

μ

(1 − μ)2I(1)
1 + (1 − μ)3I(2)

1

2 − μ

+ (1 − μ)D−1/2AD−1/2, (B16)

and the inverse of E − P is

(E − P)−1 � E + 1

μ

(1 − μ)2J(1)
1 + (1 − μ)3J(2)

1

2 − μ

+ (1 − μ)AD−1. (B17)

The corrected values of ξ 1 and ξ 2 are

ξ 1 � p1 + 1

μ

(1 − μ)2p1/d1 + (1 − μ)3p2/d2

2 − μ
d1

+ (1 − μ)BD−1
2 11

(B18)

ξ 2 � p2 + 1

μ

(1 − μ)2p2/d2 + (1 − μ)3p1/d1

2 − μ
d2

+ (1 − μ)BT D−1
1 12.

In the case of homogeneous loading probabilities, this leads to
the appearance of the harmonic means:

ξ1,i

p
� 1 + 1

μ

(1 − μ)2/d1 + (1 − μ)3/d2

2 − μ

+ (1 − μ)di/hi,
(B19)

ξ2,i

p
� 1 + 1

μ

(1 − μ)2/d2 + (1 − μ)3/d1

2 − μ
di

+ (1 − μ)di/hi,

and the individual critical loading probabilities in G1 and G2

are those that are in Eq. (21).

APPENDIX C

The following algorithm calculates the order parameter.
Suppose that p = pe, where e is a normalized vector. If p

is close to zero, the network is in the uncongested phase,
the components of ξ (p) satisfy Eq. (5) and the number of
the uncongested nodes is equal to the number of the nodes
in the system. If one increases p slowly, one finds that one or
more nodes will surely have at least one waiting particle in their
queues in the stationary regime, i.e., at least one ξi(p) becomes
1 at a certain value of p. Increasing p toward this value drives
these nodes to the congested state, and the expected value of
the growing length at the queues at these nodes in one time
step is pei + ∑

j Pij − 1. On the other hand, these congested
nodes send particles to their neighbors with rates equal to the
corresponding element of P. These ideas suggest the following
algorithm.

(1) Set P(0) = P, y(0) = e, z(0) = 0, and s to a small positive
number.

(2) In the kth step, calculate the vector

x(k)(s) = (E(k) − P(k))−1(s y(k) + z(k)). (C1)

Starting from the last value at the (k − 1)th step, increase s

until one of the components of x(k) becomes 1, or s becomes
p. If the latter is the case, equate the components of ξ to
the corresponding components of x(k). If the former is true,
set ξi = 1 at the node where x

(k)
i is equal to one—this is the

new congested node. Increase every component of z(k) with
the corresponding element of P located in the column of the
new congested node. Delete the rows and columns of the new
congested node in E(k), P(k), x(k), and z(k). This gives matrices
E(k+1), P(k+1), and vectors x(k+1) and z(k+1) for the (k + 1)th
step.

(3) If all components of ξ are calculated, the order parameter
is

η( p) =
∑

ξi=1

(
pi + ∑

j Pij ξj − 1
)

∑
i pi

. (C2)
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