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Propagation of fronts in the Fisher-Kolmogorov equation with spatially varying diffusion
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The propagation of fronts in the Fisher-Kolmogorov equation with spatially varying diffusion coefficients is
studied. Using coordinate changes, WKB approximations, and multiple scales analysis, we provide an analytic
framework that describes propagation of the front up to the minimum of the diffusion coefficient. We also present
results showing the behavior of the front after it passes the minimum. In each case, we show that standard
traveling coordinate frames do not properly describe front propagation. Last, we provide numerical simulations
to support our analysis and to show, that around the minimum, the motion of the front is arrested on asymptotically
significant time scales.
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I. INTRODUCTION

Front propagation in reaction-diffusion equations (RDEs)
is an important topic in the physical and biological sciences.
These models appear throughout biology [1,2], ecology [3],
cancer research [4], chemical kinetics [5], and geochemistry
[6]. While classically concerned with homogeneous environ-
ments, interest in the behavior of fronts in heterogeneous
environments has increased over the last several years. In
particular, traveling waves, or propagating fronts, through
certain classes of time [7] and spatially varying environments
[3,8] have been well studied. Nonlinear, density-dependent
diffusion, where the diffusion coefficient depends on u, has
also been thoroughly examined in Refs. [1,2,6], among others.
The related problem of varying selectivity, or excitability, was
examined in Refs. [8–11]. For the reader interested in more
mathematical issues concerning front propagation, we refer
to Ref. [12] for a thorough review of this topic. Note that
a complete listing of all references addressing these topics
is beyond the scope of this paper, but the aforementioned
references provide extensive bibliographies to the broader
literature on front propagation in RDEs.

We consider the case of a heterogeneous Fisher-
Kolmogorov (FK), or Kolmogorov-Petrovskii-Piskunov
(KPP), equation where heterogeneities are represented by
spatially varying diffusion, i.e.,

ut = (a(x)ux)x + f (u), (1)

and f (u) = u(1 − u) [13,14]. In the biological literature, spa-
tially heterogeneous diffusion coefficients a(x) are discussed
repeatedly, but continuously varying models are rarely inves-
tigated rigorously. For example, in ecological applications,
several authors acknowledge the significance of heterogeneous
diffusion [15–19], and some have developed approaches for
estimating a(x) across different habitats [17,20]. However,
many researchers dismiss spatially varying diffusion by at-
tributing the diffusion variability to an evolutionary response in
a subpopulation (cf. Refs. [21,22]). When researchers do allow
diffusion to vary, it is typically assumed to vary periodically in
a square wave (cf. Refs. [3,16,23–25]) as would commonly be
encountered in agricultural or urban contexts. In the spatially
discrete, or lattice, context, researchers consider patches where
diffusion is constant on each patch (cf. Refs. [26] and the
references therein).

A morhpogenesis phenomenon in which a(x) has been
given serious consideration is in a general RDE model for the
slug stage of Dictyostelium discoideum. In this case, diffusion
is directly modulated by the spatial distribution of a morphogen
gradient concentration. The resulting diffusion profile across a
gap junction is a hyperbolic cosine, i.e., a(x) = cosh(x). The
RDE model with this form of a(x) has been investigated from
an analytical (establishing a scale-invariant property for the
generated wave pattern) [27] as well as computational [28,29]
perspective. More recent work has considered the impact
of letting a(x) = D + ηx2 (for D constant and η small) in
the context of the avascular growth phase of cancer [30] as
well as on Turing bifurcations of standing wave solutions to
RDEs [31].

None of these investigations, however, have generated
analytical results for the impact on traveling waves of a
continuously, strongly varying, diffusion coefficient. Thus the
form of a(x) [motivated by the biologically justified choice of
cosh(x)] we choose to study is

a(x) = x2 + ε. (2)

From a modeling perspective, the diffusion coefficient rep-
resents an environment in which the necessary resources
sustaining diffusion of the front dwindle and then grow as the
front moves from left to right. Thus, it offers a good canonical
model for a diffusion-mediated barrier. For example, one could
use this mathematical structure to model a geographic barrier
such as a mountain. Further, this choice also allows us to
study the effect of strongly varying diffusion, which is in
contrast to the case looked at in Ref. [11]. This is because
the choice in (2) is more analytically tractable than the choice
of hyperbolic cosine while still maintaining the concave shape
with a global minimum. In this work, we show that the strong
variation creates several different asymptotic regimes through
which the behavior of the front changes significantly. Last,
it is in some sense an examination of the solution behavior
on a subdomain of the periodically varying case studied in
Ref. [3].

Throughout the paper, we take as initial conditions for (1)
the step initial condition

u(x,0) =
{

1, x � xc(0)
0, x > xc(0) , (3)
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where xc(0) denotes the location of the step. It is well known
in the traveling wave literature ([32]) that for this initial
condition (and constant diffusion), the solution converges
to a propagating front with speed determined by whether
the nonlinearity induces pushed or pulled dynamics. Initial
conditions with slower rates of decay generate a waveform
with a faster wave speed. We label the location of the front
via xc(t) with the convention that u(xc(t),t) = 1/2, so that
the initial step is given by u = 1 for x < xc(0) and u = 0
for x > xc(0). We then look for fronts, i.e., solutions u(x,t)
bounded between zero and one that propagate from left to right
along the spatial coordinate.

In the FK equation, the minimum of the diffusion coefficient
represents a turning point; i.e., the sign of a′(x) changes
through the minimum. We develop, via multiple scales and
WKB methods, an asymptotic description of the propagation
of the front up to the point it crosses the turning point. Our
analysis shows because of the choice of a strongly varying
diffusion coefficient that the front does not propagate in a
simple traveling coordinate system; i.e., u(x,t) cannot be
written in the form u(x + ct). Instead, the front travels along
curves of the form xect = x̃0, where x̃0 is some constant. This
is to say that we can write u(x,t) = u( ln(x) + ct), and we can
then think of the front as a traveling wave in a more generalized
sense.

As can be seen from the analysis in Sec. II, the minimum
of (2) forces a fundamental shift in the behavior of the tail
of u(x,t) as the tail crosses the turning point. This ultimately
impacts the front by causing a shocklike structure to form as
it approaches the turning point. At the turning point, we show
numerically that the propagation of the front is arrested on a
time scale of O(1/

√
ε). This reflects the fact that at the turning

point there is an asymptotically small amount of resources
necessary for front propagation, and thus the front slows or is
trapped.

Beyond the turning point, we have preliminary analytic
results which explain the behavior of the front. We hypothesize
that the front past the turning point is described by solutions to
a stationary FK equation, in a traveling coordinate of the form
ln(x) + ct . This again shows the need for a more general notion
of traveling waves in the case of strongly varying diffusion.
However, more work is necessary to create a complete analytic
treatment of the front beyond the turning point, especially for
how the speed of the front is selected. This will be addressed
in a later paper. We show via numerical simulation that our
analytic treatment of the front up to the turning point is
accurate. The simulations also show, as analytically predicted,
that there is a fundamental shift in the dynamics on either
side of the turning point, and the numerics shows how fronts
develop past the turning point.

The structure of the paper is as follows. In Sec. II
we present our argument for how the front propagates up
to the turning point. In Sec. III we present an argument
which shows how the FK equation smooths out step initial
data. In Sec. IV we present a means of finding a traveling
coordinate in which the FK equation is stationary, and we
then present a series of arguments which supports the idea
that beyond the turning point, fronts evolve according to this
stationary equation. Finally, in Sec. V we present our numerical
results.

II. THE SOFT FRONT APPROXIMATION

When xc(t) � −1, we assume that the solution u has a soft
front, i.e., a condition we define via the asymptotic relationship

a(x)uxx � a′(x)ux.

This asymptotic condition is denoted as the Soft Front
Approximation (SFA). When the location of the front is such
that |xc(t)| � 1, we have that a(x) ∼ x2. Thus, if for λ > 0,
u ∼ 1/xλ in a region around the front, then

a(x)uxx ∼ λ(λ + 1)x−λ, a′(x)ux ∼ 2λx−λ,

so that the soft front condition requires that 0 < λ � 1. We
see that this approximation is not valid for step or rapidly
decaying initial conditions. This issue is addressed in the next
section, in which we demonstrate how the front softens from
step initial conditions. As we will show, diffusion relaxes the
rapidly decaying profile on short time scales and then makes
the soft front approximation valid.

Using the SFA, we now must solve the semilinear hyper-
bolic equation

ut ∼ a′(x)ux + f (u).

The method of characteristics then gives the system of
differential equations

dx

dt
= −a′(x),

du

dt
= f (u).

Using our choice of diffusion model a(x) = x2 + ε, and
choosing f (u) = u(1 − u), we get the solution

u(x,t) ∼ u(xe2(t−t0),t0)et−t0

1 + u(xe2(t−t0),t0)(et−t0 − 1)
, (4)

which follows the characteristics x(t) = x0e
−2(t−t0). In the case

that x0 < 0, we see that information propagates towards the
origin as desired for a traveling front. However, if x0 > 0, then
all information again propagates to the origin, and thus the soft
front model cannot describe a front propagating past the origin.
Hence, we have a mechanism that explains front propagation
that follows a decreasing diffusion coefficient; i.e., a(x) is
strictly decreasing when xc(t) < 0.

Therefore, given a snapshot of the profile u(x,t) at a time t0
where the SFA holds, we can describe the propagation of the
front up to a neighborhood of the minimum of a(x). As can
be seen from (4), the front does not propagate as a traveling
wave; i.e., there is not a constant wave speed such that u(x,t) ∼
u(x − ct). However, if we suppose that

u(xe2(t−t0),t0) ∼ 1

for xe2(t−t0) < xc(t0), then we see that (4) gives us that u(x,t) ∼
1. Likewise, if we suppose that

u(xe2(t−t0),t0) ∼ 0

for xe2(t−t0) > xc(t0), then we see that (4) gives us that u(x,t) ∼
0. In this case, then, taking logarithms, we get that the front
travels along curves of the form

ln |x(t)| + 2(t − t0) = ln |xc(t0)|. (5)

In this log-transformed spatial coordinate we can see the front
propagates with speed c = 2. We refer to (5) as a traveling
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wave coordinate (TWC), and we see that the TWC and the
SFA allow us to compute a generalized notion of wave speed.
This idea is studied further in Sec. IV, where we extend our
analysis beyond the turning point.

We note that on a finite time scale we do not imagine that
u(x,t) transitions globally to an algebraically decaying profile.
We are therefore arguing that the SFA holds in a region around
xc(t) and this region must be matched, via intermediate layers,
to the far field of u(x,t), which should have a much steeper
decay profile. To begin to solve this problem, we look ahead of
the front where 0 < u � 1. To study this regime, we linearize
the FK equation around u = 0; i.e., we let u = ε̃v, and then
collect all terms in ε̃. As is common, we assume that f (u) > 0,
f (0) = f (1) = 0, f ′(0) = 1, and f ′(1) < 0, so that we get an
equation for v(x,t) of the form

vt = (a(x)vx)x + v. (6)

We suppose v is given by the WKB ansatz (cf. Refs. [9], [11],
and [33] for examples of this approach)

v(x,t) = A(x,t)eφ(x,t),

from which we get the leading order problem:

φt + a(x)φ2
x + 1 = 0. (7)

Using the method of characteristics and noting that (7) is a
Hamilton-Jacobi equation (cf. Ref. [34]), with Hamiltonian
H (p,x) = 1 + a(x)p2, we get that

dx

dt
= ±2H̃

√
a(x),φ(x,t) = (H̃ 2 − 1)t + φ0(x0(x,t)),

where H̃ = √
H − 1 is a constant along the characteristics.

The characteristics associated with the choice of diffusion
coefficient (2) are given by

x0 +
√

x2
0 + ε = (x +

√
x2 + ε)e∓2H̃ t .

This expression is equivalent to

−ε = (
x0 −

√
x2

0 + ε
)
(x +

√
x2 + ε)e∓2H̃ t ,

and we therefore get that

x0 = 1

2

[
(x +

√
x2 + ε)e∓2H̃ t − ε

x + √
x2 + ε

e±2H̃ t

]
.

Thus we see that for |x| � √
ε, the characteristics are to

leading order given by x0 ∼ xe∓2H̃ t . In general we see that
information can propagate to or away from the origin. There-
fore, ahead of the front, the decaying tail of u(x,t) propagates
along characteristics of the form x ∼ x0e

−2H̃ t for that portion
of the tail between the front and the turning point. The portion
of the tail beyond the turning point follows characteristic
curves of the form x ∼ x0e

2H̃ t so that information travels away
from the origin. Note, the value of H̃ changes along different
characteristics, and so we see that information propagates at
different speeds along different characteristic curves.

Through the turning point, or when |x| � √
ε, we get the

leading order behavior

x0 ∼ ∓√
ε sinh(2H̃ t) +

(
x + x2

2
√

ε

)
cosh(2H̃ t),

so that for x0 < 0 we have

x(t) ∼ √
ε[−1 +

√
1 − 2 tanh(2H̃ t) + 2

x0√
ε

sech(2H̃ t)],

and for x0 > 0 we have

x(t) ∼ √
ε[−1 +

√
1 + 2 tanh(2H̃ t) + 2

x0√
ε

sech(2H̃ t)].

Note, neither formula is useful on all time scales, but they
are useful on time scales of O(1). We see for x0 < 0 that the
characteristics in the layer |x| � √

ε propagate away from
the origin back to −√

ε. Thus the characteristics in the outer
region |x| � √

ε collide in some intermediary layer with those
in the inner region. The WKB analysis thus shows how the SFA
eventually breaks down.

Likewise, the WKB analysis shows that as the front ap-
proaches the origin, something like a shock, or steepened front,
must form. Determining this shock structure is beyond the
scope of the current paper, though we are able to demonstrate
it numerically in Sec. V. We can get some hint though of the
dynamics of the front from the following argument. Once the
front has entered the inner region, i.e., |xc(t)| � √

ε, the FK
equation becomes

ut ∼ εuxx + f (u).

If the solution u follows the dynamics of a propagating front,
then u is of the form

u(x,t) ∼ u

(
x − √

εct√
ε

)
,

so that we expect the front to be trapped in the inner region
around the turning point on time scales of O(1/

√
ε). While

our analysis at this time is not complete, the numerical results
supports this hypothesis.

III. SOFTENING SHARP INITIAL CONDITIONS

In this section we explain how starting with step initial
conditions (3), we can transition from the sharp to soft front
regime. We note that in the life of the traveling wave, the
softening discussed here happens before the SFA becomes
valid. However, presenting it first would distract from the
more important results in Sec. II. We present it now so that a
complete description of the behavior of the wave before barrier
transit is available for reference in Sec. IV.

We assume throughout this section that xc(0) � 1. The
asymptotic condition describing the sharp front is that

a(x)uxx � a′(x)ux,

which, if u ∼ 1/xλ, implies that λ � 1. We also choose a
parameter L � xc � 1 so that ux(±L,t) = 0. We choose
Neumann boundary conditions to allow for analytical tractabil-
ity. We introduce the fast time T = t

ε
, so that, using the ansatz,

u = u0(x,T ,t) + εu1(x,T ,t) + · · · ,

we get the equations

∂T u0 = ∂x(a(x)∂xu0),

∂T u1 = ∂x(a(x)∂xu1) + f (u0) − ∂tu0.
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As for the leading order behavior u0, we need only solve the
linear diffusion equation to find it. Using separation of vari-
ables in space and time, we write u0(x,t,T ) = φ(x; t)ψ(T ),
which leads to the expansion for u0:

u0(x,T ,t) =
∞∑

n=0

σn(t)φn(x)eλnT , (8)

where φn and λn solve the Sturm-Liouville problem

∂x(a(x)∂xφn(x)) = λnφn, ∂xφn(±L) = 0. (9)

Sturm-Liouville theory (cf. Ref. [35]) ensures the functions φn

form a complete, orthonormal set with respect to the norm:

‖φ‖2 =
∫ L

−L

|φ(x)|2dx.

Since we assume that a(x) > 0, then

λn

∫ L

−L

|φn(x)|2dx =
∫ L

−L

φn(x)∂x(a(x)∂xφn)dx

= −
∫ L

−L

a(x)|φn,x |2dx � 0,

so that λn � 0. Further, we see φ0 is a constant corresponding
to the eigenvalue λ0 = 0. We set φ0 = √

1/2L so that ||φ0|| =
1. Likewise, using the step initial condition for u, we can find
the initial condition for σ0(t) as

σ0(0) = xc + L√
2L

.

The remaining terms σn(t) have the initial conditions

σn(0) = a(xc)

λn

∂xφn(xc/ε).

Moving to the second term u1(x,T ,t), we see, using
Duhamel’s principle, that we can write u1 as

u1(x,T ,t) =
∫ T

0

∞∑
n=0

γn(t,s)φn(x)e−|λn|(T −s) ds,

where

γn(t,s) =
∫ L

−L

[−∂tu0 + u0(1 − u0)]φn dx. (10)

Since λ0 = 0, we see that a possibility for a secularity, which
means the asymptotic series becomes invalid on O(1) time
scales (cf. Ref. [36]), arises from computing∫ T

0
γ0(t,s) ds,

since if γ0(t,s) were independent of s then u2 would have a
term that growing linearly in T . Expanding the integrand in
Eq. (10) gives

−∂tu0(x,t,s) + u0(x,t,s)[1 − u0(x,t,s)]

= φ0{−σ̇ (t) + σ0(t)[1 − φ0σ0(t)]}

+
∞∑

n=1

[(1 − 2σ0φ0)σn − σ̇n]φne
−|λn|s

−
∞∑

n,j>0

σnσjφnφje
−(|λn|+|λj |)s .

Using the orthonormality of the functions φn, then from the
above one has∫ T

0
γ0(t,s) ds = T {−σ̇0(t) + σ0(t)[1 − φ0σ0(t)]}

+ φ0

∞∑
n=1

σ 2
n

2 |λn| (e−2|λn|T − 1).

Thus, in order to remove the secularity, we enforce the
condition

σ̇0 = σ0(1 − φ0σ0),

which has the solution

σ0(t) = 1

φ0 + σ̃ e−t
,

where σ̃ = −φ0 + 1/σ0.
As for the terms γn, one has
∫ T

0
γn(t,s)e−|λn|(T −s) ds

= T [(1 − 2σ0φ0)σn − σ̇n]e−|λn|T

−
∞∑

m,j>0

σmσj 〈φmφj ,φn〉
|λm| − |λm| − |λj | (e−(|λm|+|λj |)T − e−|λn|T ).

Note, |λn| − |λm| − |λj | �= 0 due to the linear independence
of the orthonormal eigenfunctions φn(X). If we remove the
terms of order T e−|λn|T as T → ∞, then we have that

σ̇n = (1 − 2σ0φ0)σn

or

σn(τ ) = σn(0)et

[1 + σ0(0)φ0(et − 1)]2 .

Thus, on time scales T = O(1/ε), or t = O(1), one has

u(x,T ,t) = u0(x,T ,t) + O(ε).

From this, since for n � 1, one has by orthonormality
∫ L

−L

φn(x) dx = 0,

it follows that the average of u(x,T ,t) to leading order is given
by σ0(τ )φ0, or

〈u〉 ∼ σ0(t)φ0 = 1

1 + L−xc

L+xc
e−t

. (11)

The quantity 〈u〉 is given by

〈u(·,T ,t)〉 = 1

2L

∫ L

−L

u(ξ,T ,t) dξ.

This result shows that the average should increase exponen-
tially fast on time scales of O(1) or less, which amounts to
showing that the transition region of the solution u becomes
smoother and “softer” rapidly. Having done this, the solution
then enters the SFA regime.
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IV. FRONT BEYOND THE TURNING POINT: REDUCTION
TO A STATIONARY EQUATION

Since the SFA only leads to a model that describes
propagation of a front up to the turning point, we must now
find some other means of trying to describe propagation of the
front past the turning point. To do this, by taking x � 1, so
that a(x) ∼ x2, we suppose that u = u(η(x,t)), which means
the FK equation becomes

ηt

du

dη
= (xηx)2 d2u

dη2
+ (x2ηx)x

du

dη
+ f (u).

By choosing

ηx = ± 1

x
, ηt = c,

we get the stationary FK equation

d2u

dη2
+ (−c ± 1)

du

dη
+ f (u) = 0

with coordinate

η(x,t) = ± ln |x| + ct.

The variable η is another instance of a TWC, and so again we
see that strongly varying diffusion requires a generalization of
the definition of a traveling front. Linearizing around both the
“+” and “−” cases from above, for the “+” case, we get roots
to the characteristic equation of the form

λ+(c) = (c − 1) ± [(c − 1)2 − 4]1/2

2
,

and for the “−” case, we get

λ−(c) = (c + 1) ± [(c + 1)2 − 4]1/2

2
.

The front behaves like u ∼ ηeλη, when λ is a double root or
u ∼ eλη, when λ is a single root. In either case, we see that the
decay rate of the front is not exponentially fast, but is instead
only algebraically fast since

eλη = |x|±λeλct .

In order to ensure nonoscillatory decay, in the “+” case, one
must take c < −1, and in the “−” case, one must take c > 1.
We define the characteristic curves of the TWC as the curves
of constant η(x,t), which are given by

± ln |x0| = ± ln |x| + ct

so that x(t) = x0e
∓ct . Since the characteristics are identical

in both of the relevant cases, we take the “−” case as our
convention. We also see that, in contrast to the characteristic
curves in the soft front case, that information is transported
away from the origin. Thus, it appears the TWC can provide a
mechanism for propagation of fronts past the turning point.

However, the algebraic decay is unexpected, and at first
glance would seem to imply the TWC does not provide relevant
information about the propagation of true fronts; i.e., it is not
clear that

lim
t→∞ u(x,t) = ũ(η(x,t)), (12)

where u(x,t) is some solution to the FK equation with arbitrary
initial condition and ũ(η) denotes a solution to the stationary
FK equation. It is nontrivial, even for the constant diffusion
case, to show that solutions of the FK equation for some class
of initial data satisfy (12). The literature on this issue is large, so
we only refer the reader to the foundational papers [32,37–39]
as an introduction to this issue. Lacking any rigorous proof of
(12), we provide a formal result to support the hypothesis that
fronts evolve according to the TWC argument.

Motivated then by classical approaches to the FK equation
(cf. Ref. [1]), we again look at the linearized FK equation (6).
Taking x � 1, so that a(x) ∼ x2, separation of variables can
be used to solve (6). This gives the solution

v(x,t) ∼ x− 1
2 ±

√
4c̄−3
2 ec̄t = e(− 1

2 ±
√

4c̄−3
2 ) ln(x)+c̄t ,

where we take c̄ � 3/4 so as to eliminate oscillatory solutions.
Thus, we see algebraically decaying fronts are quite natural
in this problem. This analysis supports the argument that
solutions found via the TWC are in fact representative of
true front behavior. Again, this is to say that (12) holds for
some class of initial data. We also note the TWC fits into the
framework of the WKB analysis presented in Sec. II since the
characteristics past the origin found via the WKB analysis are
the same as the TWC with η held constant.

V. NUMERICAL RESULTS

We have developed an explanation for how a strongly
varying diffusion coefficient affects the propagation of a front
up to the turning point of a(x). Using the TWC, we have some
analytical results explaining front propagation past the turning
point. In this section, we corroborate our results with numerical
simulations. To simulate solutions to the FK equation, we
implemented the numerical scheme presented in Ref. [40], an
implicit-explicit method that is second order in space and first
order in time. In these simulations we chose the nonlinearity
f (u) = u(1 − u), as well as Neumann boundary conditions
ux(±L,t) = 0 and step initial condition as in (3).

Figures 1 and 2 depict the development of the solution in
the (t,x) plane as a surface and as a contour plot, respectively.
Figure 3 shows the front before, at, and after the turning
point. In Fig. 4 we compare the numerical propagation of the
front and our asymptotic theory. The two curves represent
the function xc,n(t) at which unum(xc,n(t),t) = 1/2, where
unum(x,t) denotes the numerical approximation to u(x,t). In

FIG. 1. Plot of solution u(x,t): L = 100, xc(0) = −35, ε = 0.1.
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FIG. 2. Contour plot of solution u(x,t): L = 100, xc(0) = −35,
ε = 0.1.

the case of the asymptotic curve, we take t0 = 0 and use the
same step initial condition as used in the numerics in (4). The
agreement between the SFA and numerics is convincing, and
thus we have confirmation that the SFA is valid up to the
turning point. As can be seen the SFA breaks down at the
turning point. From Figs. 1, 2, and 3, we see that the front
steepens substantially.

Once the front reaches the turning point, we see in Figs. 1,
2, and 4 that the front becomes trapped. In Sec. II we have
predicted the time scale of trapping to be O(1/

√
ε). In Fig. 5

we plot the time duration that the simulated front spends near
x = 0 as a function of 1/ε, where we define near as |x| < 0.4.
Note the value 0.4 is the width of the spatial mesh step in the
numerics, and thus the smallest scale on which phenomena
can be distinguished. Figure 5 shows that a least squares fit
of the times to a curve growing like 1/

√
ε is accurate. Note

that a decrease the spatial mesh step size will reduce the error
between observed time and the least squares fit curve (results
not presented here).

On the other side of the turning point, as seen in Fig. 2,
the solution propagates in a manner consistent with the
log-transformed TWC; i.e., information is propagating along
curves of the form η = − ln |x| + ct , or x = x0e

ct . However,
it is currently an open question as to how c is selected (as
opposed to the constant coefficient case where the regularity
of the initial condition chooses c), and this is a direction of
future work.
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FIG. 3. Solution profiles at various times: L = 100, xc(0) = −35,
ε = 0.1.
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FIG. 4. Comparison of SFA to numerics: L = 100, xc(0) = −35,
ε = 0.1.

VI. CONCLUSIONS AND FUTURE WORK

We have shown in the paper that, after diffusion smooths
the initial conditions such that the SFA is valid, the choice of a
strongly varying diffusion coefficient with a global minimum
implies the following:

(1) The definition of a traveling front must be generalized
via the Traveling Wave Coordinate as defined in Sec. II.

(2) Using WKB analysis, we show the minimum, or turning
point, of a(x) causes the formation of shocklike behavior and
leads to a trapping of the front on asymptotically long time
scales.

(3) The behavior of the front on either side of the turning
point is fundamentally different, and on either side, the TWC
is necessary to describe dynamics.

(4) After the front is past the turning point, the TWC allows
us to transform into a stationary FK equation, thus simplifying
all subsequent analysis.

To the best of our knowledge, the case of strongly varying
diffusion has not been studied in the literature, and this article
is the first investigation of traveling waves with continuously
and strongly varying spatial diffusion. We think these results
will prove especially useful in modeling real world data for
two reasons.

First, quadratic spatial diffusion could be used to model
barriers such as mountains, and our results will give estimates

5 10 15 20
3

4

5

6

7

1/ε

T
im

e 
S

pe
nt

 in
 L

ay
er

 (
|x

|<
.4

)

Numerics

Least Squares: −0.131+1.51(1/ ε)1/2

FIG. 5. Trapping times in layer around minimum: L = 100,
xc(0) = −35.
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of a time to barrier transit. For example, the invasion of
the Midwestern United States by gypsy moths has been
extensively studied (cf. Ref. [41] and references therein). It
is also well known that the moths’ spatial diffusion rate is
tightly correlated with the local habitat [42]. By estimating
the population growth rates and fitting a quadratic curve to the
local diffusion rates from capture-mark-recapture experiments
(like those described in Ref. [15]), the method developed in
this paper could be used to estimate the waiting time until
the moths reach a certain habitat. In a nonecological context
such as the morphogen gradients discussed in Ref. [28], these
barriers could be nutrient-deficient regions in gap junctions.
Here our results could be used to estimate the time till the
concentration of morphogen or metabolite at some boundary
reaches a critical threshold.

Second, with our work, we now have a nontrivial spatially
varying FK equation that (via a traveling wave ansatz) could be

reduced to a much simpler stationary problem. This will allow
for a greater degree of control and flexibility in curve-fitting
routines as it will only require a snapshot at a single point
in time. With the gyspsy moth invasion example, one could
envision estimating the wave speed from a single snapshot.
Furthermore, the authors currently have a manuscript in
progress applying these tools to the gypsy moth invasion in
an effort to estimate the time to barrier transit and invasion
wave speed.

Naturally, there are also many future directions for the
analytical aspect of this work. It would be of particular interest
to develop asymptotic matching techniques that would allow
for connecting the various regimes of the front, i.e., the sharp
to soft front transition, and then the trapping layer around the
minimum of a(x). Likewise, it would also be of interest to
develop higher order expansions for the speed c in the SFA
regime.
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