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Evolution of cooperation on spatially embedded networks
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In this work we study the behavior of classical two-person, two-strategies evolutionary games on networks
embedded in a Euclidean two-dimensional space with different kinds of degree distributions and topologies
going from regular to random and to scale-free ones. Using several imitative microscopic dynamics, we study
the evolution of global cooperation on the above network classes and find that specific topologies having a
hierarchical structure and an inhomogeneous degree distribution, such as Apollonian and grid-based networks,
are very conducive to cooperation. Spatial scale-free networks are still good for cooperation but to a lesser degree.
Both classes of networks enhance average cooperation in all games with respect to standard random geometric
graphs and regular grids by shifting the boundaries between cooperative and defective regions. These findings
might be useful in the design of interaction structures that maintain cooperation when the agents are constrained
to live in physical two-dimensional space.
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I. INTRODUCTION

In a strategic context, game theory is an “interactive
decision theory,” where an agent’s optimal action for herself
depends on expectations on the actions of other agents,
including herself [1]. This approach has proved very useful
in a number of settings in biology, economy, and social
science. Evolutionary game theory in particular is well suited
to the study of strategic interactions in animal and human
populations that are large and well mixed in the sense
that any agent can interact with any other agent in the
population (see, e.g., Refs. [2–4]). However, lattice-structured
populations were used starting with the works of Axelrod
on the repeated prisoner’s dilemma [5] and of Nowak and
May on the one-shot case [6]. Especially in the past few
years, population structures with local interactions have been
brought to the focus of research as it is known that social
interactions can be better represented by networks of contacts
in which nodes represent agents and links stand for their
relationships. This literature is already rather abundant and it is
difficult to be exhaustive; good recent reviews can be found in
Refs. [7–9] and important foundational work dealing with the
microscopic agent dynamics appears, among others, in Refs.
[10–13]. Most of the recent work has dealt with populations
of agents structured as nonspatial graphs (relational graphs),
i.e., networks in which there is no underlying spatial structure
and distances are measured in terms of edge hops. Relational
networks are adequate in many cases; for instance, when two
people have a connection on Facebook, for the purposes of
the electronic communication, their actual physical distance
is irrelevant, although many links in the network will be
related to closeness in space. However, often it is the case
that actual distances matter; for example, networks such as
the road or the railway networks are of this type. Thus, while
the recent focus in complex network research has been mainly
on relational graphs, spatial graphs are also very important and
have attracted attention (see Ref. [14] for an excellent recent
review).
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In evolutionary games regular graphs such as one- and two-
dimensional lattices have been used early on to provide a local
structure to the population of interacting agents [5,6]. These
networks can be considered relational for certain purposes
but can also be trivially embedded in some low-dimensional
Euclidean space, with the associated distance metric. The vast
majority of the work on spatial evolutionary games has been
done on this kind of structure and a large literature has been
produced (for a summary with references to previous work
see Ref. [15]). To the best of our knowledge, only few works
have dealt with spatial networks other than grids in games,
e.g., Refs. [16,17]. In Ref. [16] geometric random graphs,
which are Euclidean graphs built by drawing links between
nodes that are within a given distance, and spatially embedded
Watts-Strogatz networks are used in connection with the
naming game. Reference [17] deals with games on Apollonian
networks, which can be viewed as Euclidean networks that can
be built by recursively joining a new node in the interior of
a triangle with the nodes at its vertices. This kind of graph
will be referred to later in the present work. Clearly, grids are
only an approximation to actual spatial graphs representing
networks of contacts in the physical world [14].

In the present work, we extend the ideas and methods of
evolutionary game theory to fixed spatial networks that go
beyond the much-studied discrete two-dimensional lattices.
Previous results show that networks with heterogeneous degree
distributions increase cooperation in the Hawks-Dowes games,
while regular lattices increase cooperation in the stag-hunt
games [8,18,19]. Therefore, we study spatial network models
with a scale-free degree distribution as a first step. In a
second part, by extending a previous work [17], we show that
Apollonian networks [20] are such that both the benefits of
spatiality and scale-free degree distribution can be gathered.
Some previous works use reduced game spaces. As these
settings are not suitable for our discussion, we extend them
to a larger game space. Mobility (see, e.g., Refs. [21,22])
is an important issue in these spatial networks but, as an
obvious first step, here we shall deal only with static networks.
Our exploratory approach is based on numerical Monte Carlo
simulations since an exact analytical description is essentially
only possible in the mean-field case.
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II. EVOLUTIONARY GAMES ON NETWORKS

A. The games studied

We investigate three classical two-person, two-strategy,
symmetric games classes, namely the prisoner’s dilemma
(PD), the hawk-dove game (HD), and the stag hunt (SH).
These three games are simple metaphors for different kinds
of dilemmas that arise when individual and social interests
collide. The harmony game (H) is included for completeness
but it does not originate any conflict. The main features of these
games are summarized here for completeness; more detailed
accounts can be found elsewhere, e.g., Refs. [2–4]. The games
have the generic payoff matrix M [Eq. (1)], which refers to the
payoffs of the row player. The payoff matrix for the column
player is simply the transpose M� since the game is symmetric,

C D

C

D

(
R S

T P

)
. (1)

The set of strategies is � = {C,D}, where C denotes “co-
operation” and D denotes “defection.” In the payoff matrix
R denotes the reward the two players receive if they both
cooperate, P is the punishment if they both defect, and T

is the temptation, i.e., the payoff that a player receives if he
defects while the other cooperates getting the sucker’s payoff
S. In order to study the usual standard parameter space [8,19],
we restrict the payoff values in the following way: R = 1,
P = 0, −1 � S � 1, and 0 � T � 2.

For the PD, the payoff values are ordered such that T >

R > P > S. Defection is always the best rational individual
choice, so (D,D) is the unique Nash equilibrium (NE) and also
the only fixed point of the replicator dynamics [2,3]. Mutual
cooperation would be socially preferable but C is strongly
dominated by D.

In the HD game, the order of P and S is reversed, yielding
T > R > S > P . Thus, when both players defect they each
get the lowest payoff. Players have a strong incentive to play
D, which is harmful for both parties if the outcome produced
happens to be (D,D). (C,D) and (D,C) are NE of the game in
pure strategies. There is a third equilibrium in mixed strategies
which is the only dynamically stable equilibrium [2,3].

In the SH game, the ordering is R > T > P > S, which
means that mutual cooperation (C,C) is the best outcome,
Pareto-superior, and a NE. Pareto-superior means that the
equilibrium is a set of strategies, one for each player, such that
there is no other strategy profile in which all players receive
payoffs at least as high and at least one player receives a strictly
higher payoff. The second NE, where both players defect, is
less efficient but also less risky. The tension is represented by
the fact that the socially preferable coordinated equilibrium
(C,C) might be missed for fear that the other player will
play D instead. The third mixed-strategy NE in the game is
evolutionarily unstable [2,3].

Finally, in the H game, R > S > T > P or R > T > S >

P . In this case, C strongly dominates D and the trivial unique
NE is (C,C). The game is nonconflictual by definition and
does not cause any dilemma, it is mentioned to complete the
quadrants of the parameter space.

T

S

H HD

SH PD
0 1 2

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

T

S

(1)

  (0.5) (0)  

(0.5)

0 1 2
−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

FIG. 1. (Color online) Left: The games phase space (H =
harmony, HD = hawk-dove, PD = prisoner’s dilemma, and SH =
stag hunt). Right: Average cooperation over 50 runs at steady state
in a well-mixed population (right image). The initial fraction of co-
operators is 0.5 randomly distributed among the graph nodes and the
update rule is imitation proportional to the payoff. Lighter tones stand
for more cooperation. Figures in parentheses next to each quadrant
indicate average cooperation in the corresponding game space.

In the T S plane each game class corresponds to a different
quadrant depending on the above ordering of the payoffs as
depicted in Fig. 1(left) and the figures that follow. We finally
remark that a rigorous study of the evolutionary dynamics
of 2 × 2 matrix games in finite mixing populations has been
published by Antal and Scheuring [23].

B. Population structure

The population of players is a connected undirected
graph G(V,E), where the set of vertices V represents the
agents, while the set of edges E represents their symmetric
interactions. The population size N is the cardinality of V .
The set of neighbors Vi of an agent i are the agents that are
directly connected to i; the cardinality |Vi | is the degree ki of
vertex i ∈ V . The average degree of the network is called 〈k〉,
and p(k) is the network’s degree distribution function.

C. Payoff calculation and strategy update rules

We need to specify how individual’s payoffs are computed
and how agents decide to revise their current strategy, taking
into account that each agent only interacts locally with its first
neighbors, not globally as in well-mixed populations. Let σi(t)
be a vector giving the strategy profile at time t with C = (1,0)
and D = (0,1) and let M be the payoff matrix of the game
[Eq. (1)]. The quantity

�i(t) =
∑
j∈Vi

σi(t) M σ�
j (t) (2)

is the cumulated payoff collected by player i at time step t .
We use an asynchronous scheme for strategy update, i.e.,

players are updated one by one by choosing a random player
in each step. Several strategy update rules are customary
in evolutionary game theory. Here we shall describe the
four imitative update protocols that have been used in our
simulations. The first three are well known; we thank an
anonymous reviewer for suggesting a rule very similar to the
fourth one presented here.

The local fitness-proportional rule is stochastic and gives
rise to replicator dynamics (RD) [24,25]. Player i’s strategy
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FIG. 2. (Color online) Average cooperation over 50 runs at steady state in BA networks. Network size is N = 10 000, 〈k〉 = 8. The initial
fraction of cooperators is 0.5 randomly distributed among the graph nodes. Lighter tones stand for more cooperation. The update rule is
imitation proportional to the payoff (left image); imitation of the best (middle image); randomized imitation of the best (right image).

σi is updated by randomly drawing another player j from the
neighborhood Vi and replacing σi by σj with probability,

p(σi → σj ) =
{

(�j − �i)/K if �j > �i

0 if �j � �i

, (3)

where �j − �i is the difference of the payoffs earned by j

and i, respectively. K = max(ki,kj )[(max(1,T ) − min(0,S)]
ensures proper normalization of the probability p(σi → σj ).
This normalization increases the frequency of imitations
between nodes with smaller degree. A more flexible update
rule without the problem of normalization is the Fermi rule.
Here the randomly chosen player i is given the opportunity to
imitate a randomly chosen neighbor j with probability

p(σi → σj ) = 1

1 + exp[−β(�j − �i)]
, (4)

where β is a constant corresponding to the inverse temperature
of the system, i.e., high temperature implies that imitation is
random to a large extent and depends little on the payoffs. Thus,
when β → 0 the probability of imitating j tends to a constant
value 0.5 and when β → ∞ the rule becomes deterministic:
i imitates j if (�j − �i) > 0, otherwise it does not. For β ⊂
[1.0,10.0], the rule leads approximatively to similar results as
the local fitness-proportional one. Another imitative strategy

update protocol is to switch to the strategy of the neighbor
that has scored best in the last time step. In contrast with the
previous one, this rule is deterministic. This imitation of the
best (IB) policy can be described in the following way: The
strategy si(t) of individual i at time step t will be

si(t) = sj (t − 1), (5)

where

j∈{Vi ∪ i} such that �j = max{�k(t − 1)}, ∀k∈{Vi ∪ i}.
(6)

That is, individual i will adopt the strategy of the player with
the highest payoff among its neighbors, including itself. If
there is a tie, the winner individual is chosen uniformly at
random. The next update rule is a randomized version of
the imitation of the best that we call IBR. Here player i

imitates player j according to formula (3), but K is such that∑
j∈Vi

pij = 1.
A final remark is in order here. The above model rules

are common and almost standard in numerical simulation
work, which has the advantage that the mathematics is simpler
and results can be compared with previous work such as, for
instance, Refs. [8,19]. However, it is far from clear whether
these rules are representative of the ways in which human
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FIG. 3. (Color online) Average cooperation over 50 runs at steady state on the configuration model with exponent γ = 3.0, with N = 10 000,
and 〈k〉 = 8.0. The initial fraction of cooperators is 0.5 randomly distributed among the graph nodes. The update rule is imitation proportional
to the payoff (left); imitation of the best (middle); randomized imitation of the best (right).
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FIG. 4. (Color online) Average cooperation over 50 runs at steady state in a regular lattice, the size is N = 10 000, 〈k〉 = 8. The initial
fraction of cooperators is 0.5 randomly distributed among the graph nodes. Figures in parentheses next to each quadrant indicate average
cooperation in the corresponding game space. The update rule is imitation proportional to the payoff (left); imitation of the best (middle);
randomized imitation of the best (right).

players actually take their strategic decisions, as has been
shown by many laboratory experiments. In these experiments
it seems that learning and heuristics play an important role.
Moreover, players are inhomogeneous in their behavior while
our stereotyped automata all behave in the same way and
never change or adapt. Some less conventional work along
these lines can be found in Refs. [26,27]. In Cardillo et al. [26]
standard strategy update rules are used but they are permitted
to coevolve with the agent’s strategies. In Szolnoki et al. [27],
rather than imitating strategies, agents imitate a proxy that
stands for emotions among their neighbors.

D. Simulation parameters

The T S plane has been sampled with a grid step of 0.1 and
each value in the phase space reported in the figures is the
average of 50 independent runs using a fresh graph realization
for each run, except for strictly regular or degree-invariant
networks. The evolution proceeds by, first, initializing the
players at the nodes of the network with one of the two
strategies uniformly at random such that each strategy has a
fraction of approximately 1/2 unless otherwise stated. For each
grid point, agents in the population are chosen sequentially
at random to revise their strategies (asynchronous updating).
Payoffs are updated after each strategy change. We let the
system evolve for a period of 2N time steps. At this point, the
system has reached a steady state in which the frequency of

cooperators is stable except for small fluctuations. We then let
the system evolve for 300 further steps and take the average
cooperation value in this interval. We repeat the whole process
50 times for each grid point and, finally, we report the average
cooperation values over those 50 repetitions.

III. RESULTS

In the following sections we investigate how spatiality
affects cooperation through its effect on network topology.
In Sec. III A we study a class of spatial scale-free networks,
and in Sec. III B we study Apollonian networks, a different
model of spatial scale-free network leading to high levels
of cooperation. Spatial scale-free networks and Apollonian
networks combine spatiality and scale-free degree distribution.
In Sec. III C we propose a class of hierarchical spatial networks
derived from lattices and random geometric graphs which also
improve cooperation.

A. Spatial scale-free networks

The right image of Fig. 1 shows cooperation in the
well-mixed population case as a baseline to which we refer
when evaluating the amount of cooperation that evolves in
network-structured populations. Scale-free networks, such as
the Barabási-Albert (BA) [28] and the configuration model
(CF) [29], are known to induce high levels of cooperation
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FIG. 5. (Color online) Average cooperation over 50 runs at steady state on SFSN networks (see text). Size is N = 10 000, 〈k〉 = 8 and
γ = 2.0 (left), 3.0 (middle), and 4.0 (right). The rightmost image corresponds to random geometric graphs with 〈k〉 = 20. The initial fraction
of cooperators is 0.5 randomly distributed among the graph nodes and the update rule is imitation proportional to the payoff.
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FIG. 6. (Color online) Average cooperation over 50 runs at steady state on SFSN networks with imitation of the best update rule. Size is
N = 10 000, 〈k〉 = 8 and γ = 2.0 (left), 3.0 (middle), 4.0 (right). The rightmost image corresponds to random geometric graphs with 〈k〉 = 20.
The initial fraction of cooperators is 0.5 randomly distributed among the graph nodes.

in HD games and also improve cooperation in the PD and the
SH [8,19]. Results on these topologies are shown for future ref-
erence in Figs. 2 and 3. On the other hand, spatial grids induce
high levels of cooperation in SH games but not in PD games,
and they reduce the levels of cooperation in the HD games
as compared to the well-mixed case [8]; see Fig. 4. In order
to understand how cooperation is affected by the combination
of spatiality and heterogeneous degree distribution, we used
a spatial network model with a given degree distribution. Our
construction is inspired by the one given by Rozenfeld et al.
[30] and only differs from the latter in the way in which a given
node looks for its k neighbors. We start from a given sequence
of target degrees {k1,k2, . . . ,kN } and we place the N nodes in a
regular lattice as in Ref. [30]. However, instead of selecting the
nearest neighbors of a given node, the neighbors of a node are
chosen in the following way. For each of the k edges of a node
we perform a random walk on the underlying lattice starting
from this node until we find a free neighbor whose effective
degree is less than its target degree and we create a link to that
node. The process is halted when the effective degree of the
considered node is equal to the target degree. Since it is possi-
ble that a node has already cumulated edges up to its target de-
gree, we fix a maximum m = N for the number of random walk
steps for the construction of one edge. We used a scale-free
distribution p(k) ∝ k−γ with exponent γ ∈ {2.0, 3.0, 4.0}. In
order to keep a constant mean degree 〈k〉 = 8, the lower bound
of the scale-free degree sequence was shifted. Thus, as γ

increases the distribution becomes more peaked around 〈k〉.
The network model just described, called SFSN, gives very

FIG. 7. Apollonian network after two generations (see text).

similar results on cooperation as the one of Rozenfeld et al.;
thus, we show only those concerning our model.

For comparison purposes, and by analogy with Erdös-Rényi
random graphs [31] in relational networks, we take as a
spatial baseline case the random geometric graph (RGG).
Random geometric graphs are constructed as follows [14,32].
N nodes are placed randomly on a subset of Rn; two nodes
then are linked if their distance is less than a constant r .
The resulting graph has a binomial degree distribution which
tends to a Poisson degree distribution as N → ∞ and r → 0
[14,32], with 〈k〉 = Nq(r) and q(r) = πr2/S, for n = 2, is the
probability that a node is in a disk of radius r . S is the total
surface.

Average cooperation on SFSNs with RD and IB update
rules for γ = 2.0,3.0,4.0 are shown in Figs. 5 and 6. The
first remark is that spatial scale-free networks are slightly less
conducive to cooperation than the corresponding BA and CF
relational networks. This can be seen by comparing the first
images of Fig. 2 and Fig. 3, which corresponds to the BA and
CF cases, with the second image of Fig. 5 which refers to
SFNSs with γ = 3. Nevertheless, it can be seen that SFNSs
do favor cooperation, especially in the HD and the PD space
with respect to the RGG case depicted in Fig. 5 (rightmost
image). It can also be observed that the gains in the transition
between cooperation and defection that is apparent in the SH
games with increasing γ are partially offset for low γ . The
comparison with the RGG case (rightmost image) shows that
cooperation levels tend to those of the random graph case
with increasing γ , except for the HD quadrant where the
RGG topology causes some cooperation loss. As in nonspatial
networks [8], the imitation of the best neighbor strategy update
rule is more noisy and gives rise, in general, to somewhat
higher levels of cooperation. Results with IBR rule are similar
to those with IB and are not presented.

B. Apollonian networks: A spatial scale-free model
with higher cooperation

An interesting case of scale-free spatial networks are the
Apollonian networks (AN) [20], which, as we show in this
section, lead to high levels of cooperation. Apollonian net-
works are constructed by linking adjacent circles in Apollonian
packings. In the simplest case, an Apollonian packing is built
by starting from three tangent circles, adding a smaller circle
tangent to the three previous ones, and iterating the process
for each new hole between three circles (see Fig. 7 and
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FIG. 8. (Color online) Average cooperation over 50 runs at steady state on the Apollonian network of size N = 9844 and 〈k〉 � 6.0. The
initial fraction of cooperators is 0.5 randomly distributed among the graph nodes. From left to right, the strategy update rules are as follows:
replicator dynamics, Fermi rule, imitation of the best, and probabilistic imitation of the best.

Ref. [20]). Our sample Apollonian networks have been
obtained in this way after nine iterations and are of size
N = 9844 nodes. AN belong to a class of networks that are
scale-free, small-world, planar, and embedded in Euclidean
space. The degree-distribution exponent is γ = 2.585 and the
clustering coefficient Ccl = 0.83 [20].

In a recent work, Yang et al. [17] have shown that
Apollonian networks foster cooperation on the weak prisoner’s
dilemma (R = 1,P = 0,S = 0,T ∈ [0,3]) using update pro-
portional to payoff. The space covered is thus just the segment
at the frontier between HD and PD. Here, with the aim of
extending the scope of the study, we sample the full ST plane.
Our results are summarized in Fig. 8. They show that the AN
topology is more conducive to cooperation than SFNS and
BA networks in the HD games, but also in the SH games,
by shifting to the right the transition from cooperation to
defection at S = −1, as in other spatial networks. However,
the amount of cooperation gain depends on the strategy update
rule. Replicator dynamics and the Fermi rule (first and second
images from the left, respectively) have a similar behavior and
are also analytically close (if the exponent β of the Fermi
rule is between 1 and 10). On the other hand, the rule that
prescribes straight imitation of the best (third image), and the
rule that imitates the best neighbor probabilistically (rightmost
image) perform better. Intuitively, the first two rules choose
a very good neighbor to imitate less often than the latter
two, especially when compared with deterministic imitation
of the best. This could favor the latter rules in an Apollonian
network when some cooperators surrounded by a majority of
cooperators have gained a foothold on several hubs.

In Ref. [17], the authors discuss the topology features that
induce the high cooperation levels. They point out, besides
other facts, the presence of connections between hubs and
that there exist nodes with high gi and Ui , gi being the
degree gradient between a node i and its neighbors {Vi},
gi =

√
1
ki

∑
j∈Vi

(ki − kj )2 and Ui = kigi . By transforming the

network they show that these features are linked to high
levels of cooperation. They point out the high clustering
coefficient and explain that clustering increases cooperation
on the reduced PD games as shown in Ref. [33].

C. High levels of cooperation on lattice and derived structures

Simple hierarchical networks were shown to be favorable
to cooperation by using a rigorous stochastic process of

the Moran type by Lieberman et al. [34]. In Ref. [35] we
showed how to construct relational hierarchical networks
that induce high levels of cooperation. By analogy with the
latter work, in this section we construct a lattice embedded
in two-dimensional space with a similar local structure and
obtain high levels of cooperation. This model shows that space
along with some specific constraints creates such cooperative
topologies. We first place the nodes on a regular square
lattice and label them according to their integer coordinates
(i,j ). Each node with coordinates such that i mod 4 = r and
j mod 4 = 2r is a “hub” of radius r which is connected to all
“small nodes” in a square neighborhood of side 2r + 1 and to
the four closest hubs. This topology models a situation where
there exist two kinds of nodes distributed in space. One kind
(vertices with few connections) tries to make undirected con-
nections to the other kind (hubs) while minimizing distances.
Low-degree nodes have connections to hubs only. The hubs, in
turn, form a lattice in which they are connected to the closest
hubs. In Fig. 9 we show such a graph with r = 2. Cooperation
levels are very good in all games and for all the strategy revision
rules, as seen in Fig. 10. Indeed, the cooperation enhancement
goes beyond the best levels found in relational networks as can

FIG. 9. Lattice topology with two kind of nodes. Each hub is fully
connected to a square neighborhood of side 5 and to the 4 nearest
hubs.
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FIG. 10. (Color online) Average cooperation levels on the lattice. The size of the graph is 10 000 nodes. From left to right, the strategy
update rules are as follows: replicator dynamics, Fermi rule, imitation of the best, and probabilistic imitation of the best. In all cases the initial
fraction of cooperators is 0.5 randomly distributed among the graph nodes.

be seen by comparing Fig. 10 with Fig. 2, which refers to BA
networks.

Starting from random geometric graphs with arbitrary
radius distribution, in the limiting case where there are two
different kinds of nodes, we show how a network with similar
properties to those of the above lattice can emerge by using
the RGG model. We constructed random geometric graphs in
the same way as explained in Sec. III A, except that two nodes
are linked if the sum of their radii is larger than their mutual
distance. In Fig. 11 (left) we used the following distribution
of radius: 1/16 of the population has an arbitrary radius r

and the other vertices have a null radius. The undirected
resulting network is composed of hubs mainly connected to
low-degree vertices, which in turn are not connected among
themselves. The low-degree vertices which are not connected
to any hubs are isolated. In order to focus on the interesting
part of the network, we discarded them, taking into account
that they cannot change their initially attributed strategies.
Figure 11 (right) shows that cooperation is greatly enhanced
for a sizable range of radius r , although it does not reach
the exceptional levels of the lattice. The shape of the curves

can be qualitatively understood noting that, when r is small,
say less than 0.015, the hubs have few connections between
themselves and the network becomes fragmented into small
clusters. On the other hand, when r is large, the mechanism
leading to cooperation explained in detail in Ref. [35] no
longer works. Now low-degree vertices may be connected to
several hubs. This fact weakens the probability for defector
hub to imitate the strategy of a high-payoff cooperator hub,
since cooperator hubs are no longer surrounded by low-degree
cooperators.

D. Network type and assortativity of strategies

A potentially interesting question concerns the way in
which strategies are distributed at steady state among the
network nodes. At the beginning the distribution is uniform
random but during the dynamics it typically evolves and its
final state could differ in different network types, according
to the game played. This effect can be evaluated by using
several measures of “similarity” between vertices. Here
we have chosen a measure that is inspired by Newman’s
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FIG. 11. (Color online) Left: An instance of a random geometric graph with two kinds of nodes and r = 0.03. Right: Average cooperation
levels on an ensemble of these graphs as a function of the hubs radius; the frequency of hubs is 1/16, and the radius of small vertices is null.
The update rule is imitation proportional to payoff and the initial fraction of cooperators is 0.5 randomly distributed among the graph nodes.
In both images isolated vertices were discarded.
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FIG. 12. (Color online) Average strategy assortativity levels with the replicator dynamics on the Apollonian network (left), cooperative
grid (middle), and the regular geometric graph with 〈k〉 = 8 (right). In all cases, the initial fraction of cooperators is 0.5 randomly distributed
among the graph nodes.

work on assortativity in networks [31].1 A state will be
called “assortative” if cooperators tend to be surrounded
by coperators and defectors by defectors. It will be called
“disassortative” in the opposite case, and there will be an
absence of correlations between strategies if the distribution is
random.

In Figs. 12 we report the results of our assortativity analysis
for Apollonian networks (left), the spatial cooperative grid
defined at the beginning of Sec. III C (middle), and for RRGs
(right). The first thing to notice is that strategy disassortativity
is present only in the RGG for the HD quadrant, as the HD
stable equilibrium in well-mixed populations, and also partly
in random graphs, consists of a mix of Cs and Ds. Now,
due to the HD payoff structure, locally a cooperator tends
to be surrounded by defectors and the other way around
for a defector. On the other hand, in the middle and left
images, in the HD space assortativity disappears because
now the corresponding game phase space becomes totally
cooperative (compare with the leftmost images of Figs. 8
and 10). For the SH there is an increase in cooperation, too,
going from the RGG to Apollonian and especially the lattice.
The SH game features two monomorphic stable equilibria
in well-mixed populations which explains why assortativity
is near zero in most of the quadrant. Nevertheless, in the
unstable middle and low region C and D can coexist thanks
to the local network structure that allows clusters to form. But
here, contrary to the HD, the strategies show some positive
assortativity since it is best for players to coordinate on the
same action. In Fig. 12 we observe that this assortative region
bends downwards and extends to the right in the left and middle
image with respect to the RGG case (right image). This region
extends to the PD phase space in the two highly cooperative
networks.

1To calculate the mean assortativity of a player at steady state, we
take the frequency of neighbors having the same strategy and we
compute the mean over the whole network. Then we subtract the
same quantity assuming that the strategies are randomly distributed
in the same network.

IV. DISCUSSION AND CONCLUSIONS

Evolutionary games on static spatial networks have been
intensively studied in the past but mainly on two-dimensional
regular lattices, either taking into account Euclidean distances
explicitly or implicitly, as they can be trivially embedded in
a metric space. However, lattices are only an approximation
of actual network of contacts in geographical space. Indeed,
many economic, transportation, and communication systems
rely on actual positions in space and agents usually have a
variable number of neighbors. For this reason, here we have
studied typical two-person, two-strategies evolutionary games
on spatial networks having homogeneous degree distributions
such as geometric random graphs, as well as heterogeneous
ones with right-skewed degree distributions such as scale-free
networks. We have studied evolutionary games on two spatial
scale-free networks models: a first one based on a variant
of Rozenfeld et al.’s construction [30] called SFSN and the
Apollonian networks [20]. Concerning the second model, we
extended previous results to a much larger parameter’s space
so we can discuss our results more accurately. We find that
cooperation is promoted on spatial scale-free networks with
respect to the random geometric graphs, except in the stag-hunt
games. Now if we compare SFSNs with BA relational net-
works, SFSNs show the same trend but the gains are lower with
all dynamics. Still, this is an interesting result since SFSNs are
important in practice, for example, in ad hoc communication
networks. In Apollonian networks, cooperation is the highest
ever observed on networks of the scale-free type in all the
games studied here, although Apollonian networks would be
difficult to reproduce in practice. We also point out that these
results are robust with respect to the several standard strategy
update rules used in our simulations.

Finally, we have introduced a two-dimensional hierarchical
net whose structure has been inspired by a previous relational
graph model which highly promotes cooperation [35]. In this
particular spatial network, cooperation reaches the highest
values, with 69% of the population being cooperators in the
average in the PD, the totality in the HD, and 85% in the HD
with the local fitness-proportional rule and the Fermi rule. IB
and IBR give similar figures. Of course, these unprecedented
cooperation levels are theoretically interesting but can only be
actually reached if the special network can be formed and kept
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fixed, since naturally formed networks could hardly take this
shape. However, using similar ideas, we have shown that more
realistic networks can be produced that can attain a rather high
level of cooperation using a modified construction starting
from random geometric graphs.

The general conclusion of this work is that promotion of
cooperation in all the games’ parameter space is possible on
static networks of agents constrained to act in geographical

space, provided that agents interact according to some special
spatial network of contacts that creates a connection hierarchy
among the agents.
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