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Failure of the « factor in describing dynamical instabilities and chaos in quantum-dot lasers
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We show that the long-established concept of a linewidth-enhancement factor « to describe carrier-induced
refractive index changes in semiconductor lasers breaks down in quantum-dot (QD) lasers when describing
complex dynamic scenarios, found, for example, under high-excitation or optical injection. By comparing laser

simulations using a constant « factor with results from a more complex nonequilibrium model that separately
treats gain and refractive index dynamics, we examine the conditions under which an approximation of the
amplitude-phase coupling by an « factor becomes invalid. The investigations show that while a quasiequilibrium
approach for conventional quantum well lasers is valid over a reasonable parameter range, allowing one to
introduce an « factor as a constant parameter, the concept is in general not applicable to predict QD laser
dynamics due to the different time scales of the involved scattering processes.
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Semiconductor lasers are essential components in opto-
electronics that affect practically every aspect of our daily
life. There are ample indications that the present technology
is approaching a stage where fundamental constraints are
limiting performance. The semiconductor quantum-dot (QD)
laser is a strong candidate for introducing improvements at the
underlying physics level. A very important consideration is dy-
namical performance, which impacts almost all applications.

In semiconductor lasers, the connection between refractive
index and optical gain plays an important role in determin-
ing modulation response, linewidth, and the occurrence of
dynamical instabilities as well as pattern formation. Through-
out literature, this connection is commonly described by
assuming a linear relationship between changes of the real
and imaginary parts of optical susceptibility y, with the
proportionality given by a constant linewidth-enhancement
factor o [1,2]. For example, with optical injection [3] or
feedback [4], laser dynamics depends critically on the phase
dynamics of the intracavity laser field. It is customary to
describe this dynamics by introducing a constant « into the
field equation [5-7].

For QD lasers, the concept of an « factor has been
controversially discussed [8,9]. Experimental values range
from near zero [10—13] to larger values [14] up to 60 [15,16],
with different measurement techniques yielding very different
results [8,17,18]. Furthermore, frequency chirp under large-
signal modulation was found to be inaccurately described by
o [9].

Nevertheless, the failure of « in accurately describing QD
lasers is either not widely known, or ignored. Studies of QD
laser dynamics have relied on « to describe the amplitude-
phase correlation [19-23] and experimental measurements of
the carrier-induced refractive index in QD active media have
been expressed in terms of the « factor [18,24-26]. In this
Rapid Communication, we discuss situations where the use of
the o factor leads to incorrect predictions. In particular, for the
cases involving optical injection or feedback, which are widely
studied experimentally and theoretically by the laser dynamics
community [27-36], we present examples where very different
laser dynamics is predicted if an « factor is used instead of the
full microscopic description.

1539-3755/2012/86(6)/065201(5)

065201-1

PACS number(s): 05.45.—a, 42.55.Px, 42.60.Lh, 42.65.Sf

Our model for the QD laser device includes the full time
dependence of the polarization of the active medium and
allows us to derive the gain and the refractive index in each
time step without the need to introduce an « factor. We apply
a semiclassical approach using Maxwell’s equations and the
semiconductor-Bloch equations [37-39]. Carriers are injected
from the bulk into a carrier reservoir (QW), and from there into
the QDs. A bound ground state (GS) and a twofold degenerate
(excluding spin degeneracy) excited state (ES) of the QDs are
considered, both for electrons and holes. The bound states
are labeled by the index m € {GS,ES}. In order to account
for the inhomogeneous broadening of the QD transitions, we
distribute the QDs into different subgroups, labeled by an
index j, with the transition frequency wj,. The distribution
function f(j) gives the probability to find a specific QD
in the jth subgroup, such that Z/‘ f(j)=1. We assume a
Gaussian spectral distribution of the QDs with a width [full
width at half maximum (FWHM)] of 60 meV. The following
dynamic equations describe the time evolution of the slowly
varying electric field E(¢) and the occupation probabilities of
the QD subgroups pj . as well as the QW and bulk carrier

densities per unit area n2" and n2"'X, respectively (b € {e,h}

distinguishes between electrons and holes):

d 0
—E = g(.NE — kE + K — exp[—i(win — )], (1)

dt Tin
Pl = (P E) = Wl + Pl )
S = ;k; (i )
— BSnQVndV 4 %ngw‘w], 3)
%ngulk — é _ B}fulkngmknzu}k + %ngulkkor (4)

Here, « is the optical cavity loss rate, K is the injection strength
of the external optical signal, scaled by the free-running
electric field amplitude E° and the cavity round-trip time
Tin. The injected signal is assumed to be a monochromatic
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wave with the frequency wiy;. The Einstein coefficient W,
gives the spontaneous recombination rate in the QDs. The
charge carrier losses in the QW and in the bulk are given by
a bimolecular recombination rate BS and Bgulk’ respectively.
The sum in Eq. (3) describes the charge carrier losses in the
QW due to stimulated recombination between states described
by an in-plane vector k?° (the factor of two accounts for
spin degeneracy). A is the in-plane device area. The pump
current density is given by J, with the electron charge ey.
The complex amplitude gain g(w,t) is calculated from the
adiabatically eliminated microscopic polarization amplitudes
of the QD and QW transitions p;, and p,%D, respectively [9,38]:

iol' 2NQD i)
A= —— o )V Iy — Im(g®™),
BN =5 ij:f(J)v o Eay | HImE™
)
; UmTz , j Awn T, +i
p};(l) = (loe],m + pii,m - 1) E(1), (6)

2h 1+ (Aol )’
where w,, is the respective QD dipole transition moment.
I' is the geometric confinement factor, &pg the background
permittivity, A2V the height of each QW layer, N the
QD areal density per QW layer, and v, the degree of
degeneracy of the confined QD states. The transition fre-
quency detuning is Awj, = (wj, — ®), and the polarization
dephasing time constant is 7. Here, the QW transitions
are assumed to be detuned far enough from the QD GS
transition to not influence the gain appreciably, such that
only index changes due to the QW are taken into account,
with gV = (iwl)/(ep,80 ARV )Yy w P> (1)/ E(1)]. For
the polarization amplitudes p;° of the QW transitions, an
expression similar to Eq. (6) is used, with the corresponding
dipole moment pow and transition frequency detuning of
the QW transitions. The real and imaginary parts of g(w,t)
correspond to the electric field amplitude gain and frequency
shift, respectively.

The collision terms 9/0t|c, in Egs. (2)—(4) describe the
scattering between the different carrier states in the device.
We account for direct carrier (Auger-) capture processes from
the QW into the QD GS and ES, as well as relaxation
processes between ES and GS, with microscopically calculated
scattering rates that depend nonlinearly on the QW carrier
densities [40]. Additionally, we consider carrier-carrier (c-c)
and carrier-phonon (c-p) scattering between QW and bulk
states, described within the relaxation rate approximation [41],
with relaxation rates of 20 ps~! (c-c) and 4 ps~! (c-p) (hole
rates twice as fast). The numerical and device parameters used
in the simulation are given in Table I.

TABLE I. Numerical parameters used in the simulation.

Symbol Value Symbol  Value Symbol Value

K 0.05 ps~! T 48 ps T 100 fs
Has 0.60epnm  ups 0.40ep nm  pqw 0.50eq nm
Was 0.44 ns™! Wegs 0.24ns™'  BS(QD) 540 ns~!' nm?
r 0.15 ho  0952eV  BS(QW) 54 ns~! nm?
Ebg 14.2 hwv 4 nm NQP 10" cm™2
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To compare with the QD laser we also model a QW laser de-
vice by taking only the QW and bulk charge carrier subsystems
into account, which is obtained by eliminating Eq. (2) from
the dynamic equations. In order to describe nonequilibrium
distributions in the QW, we model the k-resolved carrier
distribution. The amplitude gain is then given by g@V.

In general, the o factor is defined as the ratio of the
derivatives of the real and imaginary part of the optical sus-
ceptibility x (w) with respect to the total charge carrier number
N =Y, " +n %+ 2N® Y f(j)vupi,,]. Rewritten
in terms of the amplitude gain g(w,?) defined in Eq. (5) this
leads to a = —[%Im g(w)]/ [%Re g(w)], where the relation
X (@) = 2&ps/(iwl")g(w) between the optical susceptibility
and the optical gain g(w) was used. The derivative /9 N in the
above definition is, however, ill defined. The contribution to the
optical susceptibility, and thus to «, is different for each charge
carrier transition in the considered laser system. Near-resonant
transitions affect mainly the gain, while having little effect on
the refractive index, whereas off-resonant transitions mainly
contribute to the index change. To overcome this problem,
we define an o factor via the response of the laser to an
optically injected signal, as also done in several experimental
studies [42,43]. We define

72 Im g(w)

- . 7
-Re g(w) @

Uipj = —

The above definition overcomes the need to make assumptions
about the exact shape of the charge carrier variation dN
required for evaluating «. Instead, the charge carrier variation
is determined from the response of the system to the injected
signal and thus from the intrinsic system dynamics. Other
experimental setups yield different charge carrier variations
and thus different variations in g(w) leading to apparently
different . We show below that this issue can be resolved by
a full dynamic simulation.

When injecting a monochromatic optical signal from a
master laser into a semiconductor slave laser, a phenomenon
called phase locking emerges, where the phase difference
between the electric field inside the cavity and the injected
signal becomes constant [44]. The slave laser then emits a
constant-wave signal with the same frequency as the injected
signal. Outside the locking range the laser exhibits complex
dynamics, including chaos, excitability, and multistability
[45—47]. The parameter space consists of the injection strength
K and the frequency detuning Aviy = (winj — @)/ (27) be-
tween the injected master laser signal and the free-running
laser frequency wy; of the slave laser.

The parameter region in the (K, Avjy;) plane for which phase
locking is possible is shown by the colored region in Figs. 1(a)
and 1(b) for the QW and QD laser, respectively. It forms Arnold
tongues. For low injection strengths, the phase-locked region
is limited by saddle-node bifurcations (black solid lines), and
becomes limited by Hopf bifurcations (black dashed lines) at
higher K. Since the injection of the optical signal affects the
charge carrier distribution of the laser device, we expect the o
factor to change when changing the parameters K, Avi,; due
to the change of operating conditions. In order to determine
an effective o inside the phase-locked parameter range, we
apply Eq. (7) at each parameter point, by slightly increasing
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FIG. 1. (Color online) Locking tongues in the (K, Avy,;) phase-
space for (a) the QW laser and (b) the QD laser. The phase-
locked region is bounded by saddle-node (solid lines) and Hopf
bifurcations (dashed lines). Black lines correspond to the locking
tongue determined for the full model and gray lines to a static
effective @. The color code shows the calculated « factor inside the
phase-locked region. J = 2Jy,.

K and evaluating the changes in gain and index after the
transient time. The resulting values for «j,; are shown by
the color code in Fig. 1. It can be seen that the effective «
factor indeed varies with the injection parameters, showing
a considerable decrease inside the locking tongue for both
the QD and the QW laser. To identify the differences arising
from using a constant « factor across the parameter space, we
additionally simulate the QD and QW lasers using a gain term
corresponding to those used in conventional laser models, by
assuming a linear relationship between the refractive index and
the gain, given by g(w) = (1 — i@)Re g(w), where the effective
@ can be arbitrarily chosen. We use & = ajpj at K = Avyj =0
as defined in Eq. (7), which should approximate the « factor
of the laser under optical injection in the best way possible
(@ =0.73 in the QD case and & = 1.72 in the QW case).
Surprisingly, the limits of the locking tongue shown in Fig. 1
can be very well described by using constant « factors (gray
lines) both for the QW and the QD lasers.

Outside of the phase-locked parameter range, the optically
injected laser exhibits oscillatory intensity pulsations [3,35].
These oscillations occur on a time scale comparable to the
charge carrier scattering lifetimes of QD lasers. We therefore
expect the dynamics of the gain and refractive index of the QD
laser to become important here. Figure 2 shows a comparison
of the laser dynamics outside of the phase-locked region
calculated with the full model (black solid lines) and with
a constant effective & [red (gray) dashed lines]. The time
series of the intensity in Fig. 2(a) reveal qualitatively similar
dynamics in the case of the QW laser. Also a near-linear
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FIG. 2. (Color online) Laser dynamics with optical injection out-
side the locking range. (a) Time series of the intensity for the QW laser
with K = 0.3, Avy,j = —4.0 GHz (left), and for the QD laser with
K =0.5, Avy,j = —4.25 GHz (right), with dynamically calculated
phase dynamics (black solid line) and with constant effective & factor
[dashed red (gray) line]. (b) Trajectory in the complex susceptibility
plane, shifted by the free-running laser susceptibility xo for the QW
(left) and QD laser (right). Same parameters as in (a). J = 2Jy,.

relation between the real and imaginary susceptibility exists as
shown in Fig. 2(b), which justifies the assumption of a constant
&. However, for the QD laser case displayed in the right column
of Fig. 2(a) the assumption of a constant & factor leads to
qualitatively different dynamics (dashed line showing period-2
oscillation) if compared to simulations with the full model
(period-4 oscillations). The reason for this becomes apparent
in Fig. 2(b), where the trajectory in the complex susceptibility
plane deviates appreciably from the linear relationship given
by & = 0.73. Here the independent dynamics of resonant and
off-resonant states leads to a desynchronization of gain and
refractive index in the full model. The time evolution of the
optical susceptibility in this case cannot be described by a
single o factor. Note that the desynchronization of the real and
imaginary part of the susceptibility is observed for all K in the
QD laser.

To shed more light on the differences in the dynamics
arising from using a constant &, we calculate bifurcation
diagrams of the QD and QW laser dynamics outside of the
locking range, using the full model on the one hand, and
a constant & on the other hand (see Fig. 3). By sweeping
the injection detuning downwards from the phase-locked
parameter range for a constant K and plotting the intensity
extrema of the time series, we can numerically trace bifurca-
tions in the (K, Avy,;) parameter plane. As discussed before,
the assumption of constant & does not lead to qualitative
differences in the dynamics of the QW laser [see Fig. 3(a)].
The QD laser, instead, reveals remarkable differences in the
bifurcation structure outside the phase-locked region if a
constant & is used [see Fig. 3(b)]. At K = 0.5 the full model
exhibits a large region of chaotic dynamics, followed by
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FIG. 3. (Color online) Bifurcation diagrams of the output inten-
sity extrema determined by sweeping the injection detuning Ay
from the phase-locked detuning range towards lower values for (a) the
QW laser at K = 0.5 (left), K = 0.6 (right), and (b) the QD laser at
K = 0.5 (left), K = 0.7 (right). In (a) and (b) red (top, gray) data
are obtained using constant & and bottom (black) data using the full
model. The saddle-node (SN) bifurcation limiting the phase-locked
regime is shown by the vertical dashed line. J = 2Jg,.

inverse period-doubling bifurcations, below the saddle-node
bifurcation. These bifurcations are missing completely if a
constant @ is used. Also at K = 0.7 the constant @ factor
leads to more complex periodic orbits, while the full model
predicts only period-1 oscillations outside the locking range.
This reveals that the assumption of a linear relation between
refractive index and gain is not justified in QD lasers and
will eventually lead to an incorrect prediction of the QD
laser dynamics. Note that in QW lasers the use of « is
justified only for sufficiently low injection current and injection
strength (K 5 0.7). Otherwise nonequilibrium effects become
important, invalidating the use of an « factor also for studying
complex dynamics in QW lasers.
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So far we showed that the use of an « factor in QD lasers is
only valid when discussing steady states. However, even then
the o factor needs to be treated with care as it changes for
each operation point (i.e., pump current) and experimental
setup. Apart from the optical injection, common ways of
determining « include the evaluation of frequency modulation
and amplitude modulation response [48,49] and the evaluation
of amplified spontaneous emission (ASE) spectra [50]. From
simulations of the different experiments for the QW laser, the
calculated « is similar for all setups. This is due to very fast
relaxation processes coupling the resonant (near-band-edge)
and off-resonant (higher k) states. As long as nonequilibrium
effects can be neglected, i.e., for sufficiently low injection
strengths, the charge carrier distribution closely follows a
quasi-Fermi distribution. Therefore a functional relationship
of the k-resolved carrier distribution on the total charge carrier
number exists, and thus the derivative 9/d N is well defined. In
QD lasers, however, we find that different experimental setups
yield different values for «, even at the same operation point
[38] due to the considerably slower carrier scattering between
resonant and off-resonant states. Consequently, measurements
of the refractive index dynamics gathered from one experiment
should not be used to predict the laser response in a different
setup, since the underlying charge carrier dynamics may be
different.

To summarize, by applying a semiclassical model to
evaluate the concept of an « factor in QD and QW lasers,
we show that the refractive index dynamics in QD lasers is
inaccurately described by «. We find that in the context of an
optical injection setup it is possible to define an effective o
factor both for QD and QW lasers when dealing with cw
output, but its value varies appreciably with the operating
conditions. The dynamic response of the QD laser to the
injected signal outside of the locking region differs crucially
from the dynamics predicted by using a constant «, due
to the desynchronization of gain and refractive index. Thus
the concept of o breaks down. We expect that result to
hold also, e.g., in modulation and optical feedback scenarios
where the laser emits non-cw output. We conclude that the
approximations inferred by introducing an « factor for the
field dynamics are reasonable for QW lasers operated close
to equilibrium but are too limiting for modeling complex
dynamic scenarios in QD lasers.
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