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Self-similar dynamics of bacterial chemotaxis
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Colonies of bacteria grown on thin agar plate exhibit fractal patterns as a result of adaptation to their
environments. The bacterial colony pattern formation is regulated crucially by chemotaxis, the movement of
cells along a chemical concentration gradient. Here, the dynamics of pattern formation in a bacterial colony
is investigated theoretically through a continuum model that considers chemotaxis. In the case of the gradient
sensed by the bacterium is nearly uniform, the bacterial colony patterns are self-similar, which means they look
the same at every scale. The scaling law of the bacterial colony growth has been revealed explicitly. Chemotaxis
biases the movement of the bacterial population in colony to trend toward the chemical attractant. Moreover, the
bacterial colonies evolve for a long time as the traveling wave with a sharp front.
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Bacteria adapt to the hostile environmental conditions by
cooperatively spreading the colony with well-defined spatial
patterns [1,2]. The colonies of various bacterial species exhibit
a branching pattern [1,3–5] that looks similar to the fractal
pattern in the diffusion-limited aggregation (DLA) process [6].
In this manner, the branching patterns of a bacterial colony are
typically self-similar, where they are the same at every scale
(scale invariant). It suggests that the pattern formation reflects
the bacterial communication and social behavior [7,8]. The
underlying mechanism of the bacterial pattern formation is
important because it is a key to understand living organisms.

The bacteria respond to a chemical attractant such as
a nutrient by swimming along its gradient, known as the
chemotaxis. It has been demonstrated that the chemotaxis
has an essential role on the regulation of bacterial colony
pattern formation [9–11]. The bacteria move in a fluid medium
by swimming as random walk motion, in which the bacteria
propel themselves in a nearly straight run separated by a brief
tumble to change directions. They detect the spatial gradients
by comparing a temporal difference between the amounts of
attractant molecules that bind to the membrane receptors along
their path. Then the bacteria delay the tumbling frequency
as cells swim up the gradient of the attractant (or down the
gradient of repellent). This causes the bacteria to move in
directions of increasing attractant gradient.

The reaction-diffusion model has successfully described
the dynamics of pattern formation in bacterial colonies at
the continuum level [1,2,4,5]. Recently, a nonlinear reaction
diffusion with the chemotaxis model has been proposed for
studying the pattern formation in bacterial colonies exempli-
fied by Paenibacillus dendritiformis grown on a Petri dish
[1,5,12,13]. This bacteria species is motile on a dry surface
by cooperatively producing a layer of lubrication fluid in
which they swim. Its colony exhibits a branching pattern.
The numerical simulations of this model can reproduce the
branching pattern in the bacterial colonies, which agrees well
in comparison with experimental data. However, the scaling
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law that indicates the self-similarity of bacterial colony growth
has not been obtained explicitly by the numerical results.
Therefore, an analytical work is needed to be carried out.

In this work, we investigate the simplified form of nonlinear
reaction diffusion with chemotaxis models for pattern forma-
tion in a bacterial colony [1,5,12,13]. The aim of this paper
is to find the scaling law of bacterial colony evolution. This
analytical result could be plausible for interpreting the results
in both experiments and simulations.

We now explain the bacterial chemotaxis model under our
consideration. The bacterial colony evolves in two dimensions
however; each tip grows in one dimension, except for occa-
sional branching. This allows us to investigate this problem
in one-dimensional space, for which its results could be
equivalent to one obtained from the two-dimensional space [4].
As proposed in Ref. [14], the dynamics of bacterial populations
is governed by a generalized convection-reaction-diffusion
equation

∂u

∂t
= ∂

∂x

(
D(u)

∂u

∂x
− uϑ(s)

)
+ R(u), (1)

where u(x,t) and s(x,t) are, respectively, the bacterial density
and the attractant density in spatial coordinate x and time
t . D(u), R(u), and ϑ(s) are the diffusion coefficient, the
reaction term, and the drift velocity due to the chemotaxis,
respectively. This equation is similar to the generalized Keller-
Segel equation [15]. Equation (1) is a simplified form of the full
model in Refs. [5,12,13], under following assumptions. (i) The
nutrient density is proportional to the bacterial density and it
is absorbed some way in the reaction term. (ii) The production
of lubricant fluid is proportional to the bacterial density and
it is absorbed into the medium. Thus, the effect of lubrication
fluid is represented through the diffusion [12,14]. (iii) The
chemotactic signal can be also a field produced directly or
indirectly by the bacterial cells.

We consider the diffusion coefficient in a density-dependent
form D(u) = M(u/σ )p, where M > 0 is the diffusion con-
stant, σ = limt→∞ u(x,t) is the equilibrium density, and
p > 0. This represents the crowd-avoidance movement of
individuals [16–20]. The growth with a limited nutrient

062901-11539-3755/2012/86(6)/062901(4) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.062901


BRIEF REPORTS PHYSICAL REVIEW E 86, 062901 (2012)

supply for bacteria is modeled as the generalized logistic law
R(u) = αu[1 − (u/σ )p], where α > 0 is the rate constant [20].
The chemotatic drift velocity can be expressed as ϑ(s) =
ζ (s)χ (s)sx , where χ (s)sx acts as the gradient sensed by the
bacterium [with χ (s) having the units of 1 over the chemical
concentration] [12]. ζ (s) is the bacterial response to the sensed
gradient and it has the same units as a diffusion coefficient
[12]. Therefore, we assume that ζ (s) = γD(u) = γM(u/σ )p,
where γ is a constant, positive for attractive chemotaxis
and negative for repulsive chemotaxis [12]. Here, we are
interested in a special case where the gradient sensed by
the bacterium is nearly uniform and χ (s)sx is treated as
a constant [14]. By substituting D(u), R(u), and ϑ(s) into
Eq. (1) with the transformations t∗ = αt , x∗ = (mα/M)

1
2 x,

u∗ = u/σ , and κ = (1/2)γ (mM/α)
1
2 χ (s)sx , we obtain the

dimensionless equation

ut = (um)xx − 2κ(um)x + u − um, (2)

where m = p + 1 > 1 and the asterisk is dropped. So far,
the solution of Eq. (2) is well understood as the traveling
wave [14,21,22]. However, the exact or explicit solution in
space-time coordinates has been unknown.

As studied in our previous work, without chemotaxis,
Eq. (2) can be mapped to a purely diffusion process, for
which the exact solution can be obtained [23]. We then
extend the similar technique to analyze Eq. (2). We rewrite
Eq. (2) as ( ∂

∂t
− 1)u = 1

ω2 ( ∂
∂y

+ 1)( ∂
∂y

− ω2)um, where y =
x/ω and ω = κ ± √

κ2 + 1, and then it can be evaluated to
et ∂

∂t
e−t u = ω−2e−y ∂

∂y
ey(eω2y ∂

∂y
e−ω2yum). By introducing the

transformations

u(y,t) = ete
ω2

m
y�(y,t), (3)

τ (t) = e(m−1)t − 1, (4)

φ(y) = e
(m+ω2)

m
y, (5)

we obtain the reduced form of Eq. (2):

�τ = k[φl(�m)φ]φ, (6)

where k = 1
ω2(m−1) (

m+ω2

m
)2 and l = (ω2+2)m+ω2

m+ω2 . Equation (6)
is known as the anomalous diffusion equation, whose solution
is assumed to be the scaling function �(φ,τ ) = 1

T (τ )F ( φ

T
) =

F (θ)
T (τ ) , where θ (φ,τ ) = φ/T (τ ) [24–26]. By performing the
calculations similar to Ref. [23], we obtain

� =
{

1

(τ + a)
m+ω2

m

[
b + θ

− (m−1)ω2

m+ω2

]} 1
m−1

, (7)

where a and b are constant. After substituting Eq. (7)
into Eq. (3), we obtain the initial density profile: u0(x) =
u(x,0) = a−1/p{1 + b[epωx/aω2

]1/p+1}1/p. We consider the
initial density that satisfies the following properties: u0(x) = 0
for x � x0 and limx→−∞ u0(x) = ρ, where ρ is the initial
density amplitude and x0 is the initial front position [23].
According to these conditions, we have a = ρ−p and b =
−ρ−pω2/(p+1)e−pωx0/(p+1). Now the exact solution to Eq. (2) is
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FIG. 1. (Color online) The spatiotemporal evolution of the bac-
terial density profile u(x,t) [Eq. (8)] in the case of p = 2 with initial
conditions ρ = 0.2 and x0 = 1. The solid lines represent u+(x,t) and
the dashed lines represent u−(x,t).

given by

u(x,t) = ρet

[ρp(ept − 1) + 1]
1
p

×
{

1 −
[

epω(x−x0)

[ρp(ept − 1) + 1]ω2

] 1
p+1

} 1
p

. (8)

Since the solution Eq. (8) has two forms, depending
on the value of ω, we define u+(x,t) and u−(x,t) as the
solutions corresponding to ω+ = κ + √

κ2 + 1 and ω− =
κ − √

κ2 + 1, respectively. As proved in our previous work
[23], the linear combination of these two solutions w(x,t) =
u+(x,t) + u−(x,t) is a solution of Eq. (2). By using an
approximation (u+ + u−)p ≈ u

p
+ + u

p
− [23], we obtain

w(x,t) ≈ 2− 1
p

[
u

p
+(x,t) + u

p
−(x,t)

] 1
p , (9)

where (2)−1/p is a normalized factor. We note that in the case
of no chemotaxis κ = 0; thus ω = ±1; these results recover
our previous work [23].

The evolution in space and time of bacterial density profiles
u+(x,t) and u−(x,t), as in Eq. (8), is illustrated in Fig. 1.
The density profiles start from the initial state u0(x) and then
grow and expand to the unoccupied region. At a sufficiently
large time scale, the density profiles reach the saturated value
at 1. After that, they seem to propagate with unchanged
shape; u+(x,t) is propagating to the right whereas u−(x,t)
is propagating to the left. The roles of chemotaxis on the
regulation of pattern formation in the system is reflected
by parameter κ . Since κ <

√
κ2 + 1, ω+ is always positive

whereas ω− is always negative. This causes the tails of u+ to
decay as x → ∞ and the tails of u− decay as x → −∞. In the
former case, the front interface is sharper because |ω+| > |ω−|.
Due to the influence of chemotaxis, the distribution of the
density profile is biased toward the right; thus the front of u+ is
moving faster than of u−. The spatiotemporal evolution of the
combined density profiles w(x,t) is also illustrated in Fig. 2.
The densities w(x,t) form the pulselike profiles that grow and
expand with asymmetric shape. It behaves like u+(x,t) for
x � x0 and like u−(x,t) for x � −x0. Due to the bias force
from chemotaxis, the peak of w(x,t) is moving toward the
right.

062901-2



BRIEF REPORTS PHYSICAL REVIEW E 86, 062901 (2012)

−10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

x

w
(x

,t
)

t=0

t=1

t=2 t=3 t=4 t=5 t=6 t=7

FIG. 2. (Color online) The spatiotemporal evolution of the pulse-
like bacterial density profile w(x,t) [Eq. (9)] in the case of p = 2
with initial conditions ρ = 0.2 and x0 = 1.

From Eq. (8), we calculate the front position r(t), that the
density falls to zero u(r,t) = 0 as r(t) = x0 + ω

ln[ρp(ept−1)+1]
p

.
The plot of relative front position r(t) − x0 is shown in Fig. 3.
The relative front position of u−(x,t) is slow varying when
compared with that of u+(x,t). At a sufficiently large time,
that ept ′ � 1 and ρpept ′ � 1 thus t ′ ≈ − ln ρ, the relative
front position seems to vary linearly in time r(t) − x0 ∼ ωt .
It implies the constant front propagating speed. Consequently,
we calculate the front speed as v(t) = d

dt
r(t) = ωρpept

ρp(ept−1)+1 .
At large time scale t � t ′, the front speed tends to be the
constant c = limt→∞ v(t) = ω(κ). At this point, it is clearly
seen that the spreading speed is biased by the chemotaxis
through the parameter κ .

At the large time scale, t � t ′, the bacterial density profile
Eq. (8) emerges the traveling wave form

ũ(x − ωt) =
[

1 − e
pω

p+1 (x−ωt−x0)

ρ
pω2

p+1

] 1
p

, (10)

where ω is front speed. The front speed obtained here is
comparable to the minimum value for the sharp traveling
wave [14,22]. Similarly, at the large time scale t � t ′, Eq. (9)
develops to the expanding pulselike wave

w̃(x − ω±t) ≈ 2− 1
p

[̃
u

p
+(x − ω+t) + ũ

p
−(x − ω−t)

] 1
p , (11)

with the expanding speed ω±.
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FIG. 3. (Color online) The relative front position r(t) − x0 cor-
responding to the bacterial density profile in Fig. 1. The solid line
represents the relative front position of u+(x,t), and the dashed line
represents the relative front position of u−(x,t).

Finally, we found that Eq. (7) forms a scaling law at large
time scale t � t ′:

�(φ,τ ) ≈ 1

τβ
F

(
φ

τβ

)
, (12)

where β = m+ω2

m(m−1) . It implies that the bacterial colonies evolve
as the self-similar object in the terms of transformed quantities:
� → e−ωx/me−t u, τ → e(m−1)t , and φ → e(m+ω2)(x−x0)/mω.
Moreover, they evolve from the self-similar pattern form to the
traveling wave pattern form. This behavior can be classified as
the intermediate asymptotics of the second type [27].

In summary, the spatiotemporal pattern formation of bacte-
rial colony in the presence of chemotaxis has been investigated
at the continuum level. We have shown that the bacterial
colony patterns in the case of uniform gradient sensed by
bacterium are self-similar, where they are scale invariant. The
scaling law of bacterial colony growth has been revealed
explicitly. Moreover, we found that the bacterial colonies
evolve on a long time scale as the sharp traveling wave
where the front speed is biased to move toward the chemical
attractant.
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