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Return radius and volume of recrystallized material in Ostwald ripening
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Within the framework of the Lifshitz-Slyozov-Wagner theory of Ostwald ripening, the amount of volume of
the second (solid) phase in a liquid solution that is newly formed by recrystallization is investigated. It is shown
that in the late stage, the portion of the newly generated volume formed within an interval from time t0 to t is a
certain function of t/t0 and an explicit expression of this volume is given. To achieve this, we introduce the notion
of the return radius r(t,t0), which is the unique radius of a particle at time t0 such that this particle has—after
growing and shrinking—the same radius at time t . We derive a formula for the return radius, which later on is
used to obtain the newly formed volume. Moreover, formulas for the growth rate of the return radius and the
recrystallized material at time t0 are derived.
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I. INTRODUCTION

Recrystallization of minerals is a combination of simultane-
ous processes of dissolution and precipitation that leads to the
formation of larger mineral crystals. The driving force of this
coarsening process, so-called Ostwald ripening, where larger
particles are growing at the expense of smaller ones, is usually
the dependence of the chemical potential at the interface on
the grain size.

A prominent example is Ostwald ripening of calcite
(CaCO3) in an aqueous solution, which is the subject of a
number of experimental investigations; see, e.g., [1–6]. In
these experiments, one is interested in the amount of newly
formed crystalline material, i.e., the volume of the solid
phase present at time t , that has been precipitated from
the solution after some time instant t0 < t . Experimental
methods tending to determine the newly formed material
usually proceed as follows: An isotope of a crystal lattice
constituent of the mineral—in the case of calcite 45Ca or
14C—is added as a radioactive tracer to the solution at time t0.
The isotope concentration in the solution is monitored during
the experiment. If surface effects and diffusion into the bulk
may be neglected, the isotope uptake does grow proportional
to the newly formed material.

Surprisingly, there is, to the best of our knowledge, no
theoretical investigation of the amount of newly formed
material in the literature so far, which would be desirable to
confirm the experimental results. This may also be interesting
in the case of Ostwald ripening of crystalline particles initially
being inhomogeneous in composition, since the newly formed
material will be homogeneous.

In this Brief Report, we are going to calculate the newly
formed volume theoretically in the late stage of the coarsening
process in the setting of the mean field theory due to Lifshitz-
Slyozov-Wagner (LSW); see [7,8]. Thus, it is assumed that the
grains are spherical particles and the growth kinetics of a grain
only depends on its size compared to the size distribution of
all particles, and not on the local environment. Moreover, it is
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assumed that the total volume of the crystallized material is
conserved, i.e., large particles grow exclusively at the expense
of smaller ones.

For an ensemble of particles with radii Ri(t0), the newly
formed volume V new(t,t0) between time t0 and time t is

V new(t,t0) = 4

3
π

∑
i:Ri (t)�Ri (t0)

[Ri(t)
3 − Ri(t0)3]. (1)

Note that due to the assumption of mass conservation of the
solid phase, all of the newly formed crystalline material comes
from the dissolution of smaller particles.

Let Rc(t) denote the critical radius, such that at time t

precisely, the particles with radius R(t) > Rc(t) are growing.
Since in the LSW theory Rc(t) is growing faster than R(t),
particles that initially grow start to shrink at later times, and
eventually vanish in finite time; see Fig. 1. Thus, there is a
unique radius r = r(t,t0) such that Ri(t0) = Ri(t) if and only
if Ri(t0) = r . We will call this radius r the return radius, and
V new(t,t0) may be expressed as

V new(t,t0) = 4

3
π

∑
i:Ri (t)�r(t,t0)

[Ri(t)
3 − Ri(t0)3]. (2)

It will be shown in Sec. III that the return radius r(t,t0)
is a function of t/t0 and can be easily computed by inverting
an explicitly given function. Moreover, we obtain an analytic
expression for the growth rate of r(t,t0) at t = t0. This will
lead, in Sec. IV, to our main result: The volume V new(t,t0)
or, equivalently, the volume fraction �new(t,t0) of the newly
formed solid phase within the interval from t0 to t also
depends on t/t0 and may be calculated by function inversion
of the explicitly given expressions. We also give an explicit
expression for the initial rate of the formation of new solid
material.

II. LSW THEORY

We will shortly review some results of the LSW analysis
given in [7,8]; for a more detailed description, see, e.g., [9].
The representation and the notation follow [10], where the
two-dimensional case is discussed. The kinetics of Ostwald
ripening is governed by two different processes: the mass
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FIG. 1. (Color online) Examples of the time evolution of the
radius R(t) of a spherical particle in the LSW theory. For example,
the solid blue line indicates that R(2t0) = R(t0), i.e., the return time
is t = 2t0 and the return radius for t = 2t0 is given by R(t0) ≈ 8.42.

transport between the mineral grains via diffusion in the
solution and the attachment or detachment process at the
grain boundaries. The two limiting kinetic regimes are termed
attachment limited (AL) growth and diffusion limited (DL)
growth.

In LSW theory, the ensemble of spherical particles is
characterized in terms of a particle radius distribution function,
F (R,t), which obeys the continuity equation

∂tF + ∂R(ṘF ) = 0, (3)

since it is assumed that no nucleation and coalescence of
particles takes place. Note that the number of particles per
unit volume, n(t) = ∫ ∞

0 F (R,t)dR, may only change due to
radii decreasing to zero in finite time.

The growth rate Ṙ(t) of a single particle with radius
R is derived from the quasistationary diffusion equation
for the solute concentration c(x,t) and the Gibbs-Thomson
law for the equilibrium concentration ceq(R) at the particle
surface, ceq(R) = c∞(1 + lc/R), where c∞ is the equilibrium
concentration at a flat surface and lc = 2γVm/RgT is the
capillary length, γ is the interfacial free energy, Vm is the
molar volume, T is the temperature, and Rg is the gas constant.
Measuring length in units of lc and time in units of l2

c /(Dc∞Vm)
(DL) or lc/kc∞Vm (AL), with diffusion constant D, molar
volume Vm, and attachment rate k, one does obtain

Ṙ(t) = 1

Rλ

(
R

Rc

− 1

)
, λ =

{
2 : (DL)
1 : (AL) . (4)

The critical radius Rc(t) is given in terms of the solute
concentration c̄(t) far away from the particle as Rc(t) =
c∞/[c̄(t) − c∞]. Introducing the new variables

z = R

Rc

, τ = ln

[
Rc(t)

Rc(0)

]
, (5)

Eq. (4) becomes

dz

dτ
= ν

z − 1

zλ
− z, (6)

where ν is a function of the critical radius Rc. Note that z = 1
corresponds to the critical radius Rc(t) of a particle, which

is neither growing nor shrinking. In the LSW analysis, it is
argued that ν becomes constant at late times approaching the
unique values [7,8] ν = 27/4 (DL) and ν = 4 (AL). This in
turn implies the scaling law

Rc(t) =
{[

Rc(0)3 + 4
9 t

]1/3
(DL)[

Rc(0)2 + 1
2 t

]1/2
(AL).

(7)

Moreover, z(τ ) may be obtained from (6) by inverting the
explicit solution of τ (z) given by

τ (z) =
∫ (

ν
z − 1

zλ
− z

)−1

dz

=
{

1
2z−3 − 4

9 ln(z + 3) − 5
9 ln(3 − z) (DL)

2
z−2 − ln(2 − z) (AL),

(8)

where we have omitted a constant of integration, since later
on only differences τ (z) − τ (z0) will be used. Note that the
right-hand side of (6) is negative for all z < zmax, where

zmax = 3/2 (DL), zmax = 2 (AL), (9)

and therefore z(τ ) is decreasing also for particles with z > 1,
i.e., R(t) > Rc(t).

The continuity equation (3) for f (z,τ ) = F (Rcz,t(τ ))Rc

can now be solved by a separation ansatz, f (z,τ ) = g(τ )h(z),
yielding the scaled normalized island size distribution function
(see [7,8])

h(z) =
⎧⎨
⎩81e2− 5

3 z2(z + 3)−
7
3
(

3
2 − z

)− 11
3 exp

( −3
3−2z

)
: (DL)

24z(2 − z)−5 exp
(−3z

2−z

)
: (AL),

(10)

with a cutoff of the particle size, z � zmax, and the scaling

g(τ ) = g0 exp(−3τ ) = g0
Rc(0)3

Rc(t)3
. (11)

Using a change of variables, the volume fraction � of the solid
phase may be written in terms of g(τ ) and h(z) as

�(0) = �(t) = 4

3
π

∫ ∞

0
F (R,t)R3dR

= 4

3
πg0Rc(0)3z3, z3 :=

∫ zmax

0
h(x)x3dx. (12)

Finally, we remark that the critical radius Rc may be
expressed in terms of the mean radius R̄ as Rc = R̄ and
Rc = 9

8 R̄ for the DL and the AL ripening, respectively [8].

III. RETURN RADIUS

As has been sketched in Sec. I, to calculate the newly formed
volume between time t0 and time t , we need to calculate
what we have called the return radius r = r(t,t0), i.e., the
unique radius r such that a particle with radius R(t0) = r

will have the same radius at later time t , R(t) = r . In fact,
this amounts to solving a boundary value problem for the
differential equations (4). We will see, however, that the return
radius may be calculated quite easily in the asymptotic regime
of LSW, i.e., for t0 large enough, without explicitly solving the
boundary value problem.
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We will use the rescaled coordinates z,τ as introduced in
(5). First note that in the rescaled coordinate z, the return
radius r does take two different values at time t0 and at time t ,
namely, z(t0,r) and z(t,r). We will use the notation τ0 = τ (t0),
τ = τ (t), z0 = z(τ0) = z(t0,r), and z = z(τ ) = z(t,r). From
(5) follows that r being the return radius is equivalent to

ln z − ln z0 = τ0 − τ. (13)

Moreover, the scaling law (7) implies

z

z0
= z(t,r)

z(t0,r)
= Rc(t0)

Rc(t)
=

(
t0

t

)1/γ

, (14)

for t,t0 � Rc(0)γ , where γ = 3 (DL) and γ = 2 (AL). Note
that this condition is valid in good approximation, as soon as
the average radius R at time t, t0 is at least twice or triple the
size of the average radius at time t = 0 for DL or AL ripening,
respectively. This can be realized in ripening experiments; see,
e.g., [11].

The two identities (13) and (14) uniquely fix the return
radius r = r(t,t0), which may be calculated as follows. Since
the time dependence of the rescaled radius z = z(τ ) is given
by Eq. (6), we use the explicit solution of τ (z) given in (8) to
express (13) as

α(z) = α(z0), with α(x) = ln x + τ (x). (15)

Since the return radius has to be larger than the rescaled
radius, r � Rc(t0), we may assume z0 = z(t0,r) � 1. One
easily checks that

α′(z)

⎧⎨
⎩

> 0 : z ∈ (0,1)
= 0 : z = 1
< 0 : z ∈ (1,zmax),

and

lim
z→0

α(z) = lim
z→zmax

α(z) = −∞.

Thus, Eq. (15) allows for a unique solution for z0 ∈ [1,zmax).
Denoting this inverse of α on (−∞,α(1)] by ψ , we may express
z = z(t,r) as a function z = ρ(z0),

ρ : [1,zmax] → [0,1], ρ(z0) := ψ[α(z0)],
(16)

z0 ∈ (1,zmax), ρ(1) = 1, ρ(zmax) = 0.

This function is easily evaluated numerically, e.g., using
bisection, and depicted in Fig. 2(b).

Now we may calculate the return time t(r) for any initial
radius r , i.e., the time t , such that R(t) = R(t0) = r . By
Eq. (14), we have

t(r) = t0

[
z0

ρ(z0)

]γ

, z0 = r/Rc(t0). (17)

Inverting t = t(r) in (17) numerically yields the return radius
r(t). We point out that according to (17), the return radius
r(t,t0) is a function of t/t0. As it will turn out in the
next section, we only need the pair z0, ρ(z0) in order to
calculate the amount of material which has been produced
by recrystallization. Let us finally calculate the growth rate
ṙ(t) of the return radius at time t = t0. Using (17), we get

ṙ(t) =
[

d

dr
t(r)

]−1

=
(

dt

dz0

)−1

Rc(t0),
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FIG. 2. (Color online) (a) The function α(z) = ln z + τ (z) in
(15) has a unique maximum at z = 1. Choosing z0 > 1, there is a
unique z := ρ(z0) < 1 with α(z) = α(z0). (b) The function ρ has
been evaluated numerically using bisection.

and Eq. (17) gives

dt

dz0
= t0γ

[
z0

ρ(z0)

]γ−1
ρ(z0) − z0ρ

′(z0)

ρ(z0)2
. (18)

To proceed further, the derivative of ρ(z0) defined in (16) is
needed at z0 = 1. Since α′(1) = 0, α′′(1) �= 0, we have

ρ(1 + h) = 1 − h + O(h2), i.e., ρ ′(1) = −1. (19)

Evaluating (18) at z0 = 1 and using ρ(1) = 1 yields

dt

dz0

∣∣∣∣
z0=1

= 2γ t0 and ṙ(t0) = Rc(t0)

2γ t0
. (20)

IV. VOLUME FRACTION OF RECRYSTALLIZED
MATERIAL

Now let �new(t,t0) denote the newly formed volume
Vnew(t,t0) per unit volume, i.e., the volume fraction of that part
of the solid phase at time t that was produced between time t0
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FIG. 3. (Color online) Specific volume ϕ(t,t0) of recrystallized
material from time t0 to time t over normalized time t/t0, as defined
in (23).

and time t through recrystallization. Only those particles that
have grown between t0 and t , i.e., R(t) � R(t0), contribute,
which are precisely the ones for which R(t) is larger than the
return radius r = r(t,t0), or, equivalently, R(t0) > r . In terms
of F (R,t), we get, as in Eq. (2),

�new(t,t0) = 4

3
π

[∫ ∞

r

F (R,t)R3dR −
∫ ∞

r

F (R,t0)R3dR

]
.

(21)

Assuming the LSW theory to be valid, we may express F (R,t)
and F (R,t0) in terms of f (z,τ ) = g(τ )h(z) and f (z,τ0) =
g(τ0)h(z), respectively, as given in (10) and (11). Since
F (R,t) = f (z,τ )/Rc(t), a change of variables in (21) leads
to

�new(t,t0) = 4

3
πg0Rc(0)3

∫ z(t0,r)

z(t,r)
h(x)x3dx, (22)

where the return radius r = r(t,t0) may be calculated from
Eq. (17), as described in the last section. In fact, it is sufficient
to solve for z0 = z(t0,r) in order to evaluate (22), i.e., to invert
the function t = t(z0) in (17), and to calculate z(t,r) = ρ(z0);
see Eq. (16).

Thus, with Eq. (12), the percentage of the volume of the
solid phase at time t that has been produced by recrystallization
between time t0 and time t is given by

ϕ(t,t0) := �new(t,t0)/� = 1

z3

∫ z0

ρ(z0)
h(x)x3dx, (23)

and may be easily computed by determining z0 = z(t0,r) and
ρ(z0) = z(t,r) as described in Sec. III and using numerical
quadrature. Again, we point out that ϕ(t,t0) may be expressed
as a function of t/t0, since r(t,t0) depends on t/t0 only.

In Fig. 3, the specific produced volume ϕ(t,t0) is depicted
over the normalized time s := t/t0. As expected from (23),
we observe that ϕ(s) approaches the value ϕ = 1 for s → ∞.
Moreover, the growth of the recrystallized volume is nearly
linear up to the value ϕ(s) ≈ 1/4. The growth rate of ϕ(t,t0)
at time t = t0 may be calculated using Eqs. (19) and (20) as
follows:

z3
d

dt
ϕ(t,t0)

∣∣∣∣
t=t0

= d

dz0

∫ z0

ρ(z0)
h(x)x3 dx

∣∣∣∣
z0=1

d

dt
z0(t)

∣∣∣∣
t=t0

=
{

(h(z0) − h[ρ(z0)]
d

dz0
ρ(z0)

} ∣∣∣∣
z0=1

1

2γ t0
= h(1)

γ t0
. (24)

Here, in the last equality, we have again used that ρ(1) = 1
and ρ ′(1) = −1; see Sec. III. Using (24) and (10), we obtain
the numerical values

d

dt
ϕ(t,t0)

∣∣∣∣
t=t0

= h(1)

γ t0 z3
≈

{
0.51/t0 : (DL)

0.62/t0 : (AL)
. (25)

V. CONCLUSIONS AND OUTLOOK

Besides being able to quantitatively calculate the newly
formed volume by turning back to dimensional units, we may
draw some further qualitative conclusions. By (14) and the
last remark in Sec. II, the quotient t/t0 may be expressed in
terms of the length scale of the coarsening system given by
the average particle radius R̄ as t/t0 = [R̄(t)/R̄(t0)]γ . Thus,
we can see from Fig. 3 that more than two-thirds of the solid
material is newly formed, if the average radius has doubled
from t0 to t .

In a forthcoming paper, we plan to apply our findings to the
isotope uptake during Ostwald ripening. Here one also has to
account for the adsorption of the tracer material at the surface
of the solid phase and therefore the change of surface area
during ripening may play a role. Moreover, a generalization to
the case of large volume fractions, where the LSW theory is
not valid, needs further investigation.
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