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Elastic properties of a confined fluid
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Monte Carlo computer simulation is employed to determine the local, wave-number-dependent, high-frequency
elastic properties of a Lennard-Jones fluid that is confined between two walls. In particular, the elastic constants
are calculated from coarse-grained stress correlation functions and then related to the local fluid structure via
planar radial distribution functions. We find that local fluid properties correlate with the inhomogeneous fluid
density and the strength of the wall-fluid interaction. Finally, we discuss the utility of this analysis in the
interpretation of experiments involving the characterization of confined fluids.
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I. INTRODUCTION

Calculations of the mechanical properties of bulk liquids
have been of interest for some time as they provide a
testbed for the machinery of the statistical mechanics of
fluids, especially analytical approximations to correlation
functions [1,2]. Motivated by the technological importance of
microfluidic and nanofluidic systems, in recent years workers
have sought to quantify the role of liquid-solid interactions
on fluid structure [3] and associated mechanical and transport
properties [4] in confined fluids. In the case of confined fluids,
these studies have included assessments of the role of fluid
structure on slip boundary conditions and the characterization
of propagating modes parallel to confining walls [5].

The mechanical behavior of confined fluids has been
of particular interest in recent years owing to the growing
importance of micro-electromechanical systems. For example,
Barisik and Beskok [6] have performed molecular dynamics
studies to examine local stress and density variations within
a static, nanoscale-confined fluid, while Keshavarzi et al. [7]
derived an expression for the local pressure tensor in nanoslit
pores. Eslami et al. [8] developed a methodology to study
layering as a function of pressure in a confined Lennard-Jones
fluid and water, while Hartkamp et al. examined the anisotropy
of the local stress in simulations of Poiseuille flow [9].

While the aforementioned studies have elucidated the
behavior of the stress in confined fluids, comparatively little
attention has been paid to the local elastic properties of
these systems. Some notable work in this area includes an
experimental characterization of the viscoelastic response of
molecular layers in confined water [10] and a calculation
of the viscoelastic properties from a statistical-mechanical
treatment of a simplified model system [11]. By contrast, in
bulk fluids, the local elastic constants have been calculated in
a Lennard-Jones fluid [12] and a binary hard-sphere fluid [2]
and related to fluid structure via the radial distribution function.
The situation in confined fluids is expected to be more complex
as local density variations induced by confining walls alter the
high-frequency elastic response, leading to inhomogeneous
elastic behavior that depends on the strength of the fluid
particle and wall interaction.

In this paper, Monte Carlo simulation is used to determine
the local, wave-number-dependent, high-frequency elastic
properties of a confined fluid and to examine their dependence
on density. For simplicity, our system comprises two walls

of Lennard-Jones atoms bounding a Lennard-Jones fluid.
The elastic constants of the fluid are calculated from spatial
correlations of a coarse-grained stress and then related to the
local fluid structure via the local density and planar radial
distribution functions.

II. LOCAL ELASTIC CONSTANTS

A. Background: Bulk fluid

The high-frequency, elastic properties of a bulk fluid can
be obtained from static spatial correlations of the Fourier
transform of the stress σαβ(�k) in equilibrium, where �k is the
wave vector. For example, Schofield derived expressions for
the high-frequency, local elastic constants of a bulk fluid [13].
He defined the components of the fourth-rank elastic constant
tensor Cαβμδ(�k) in reciprocal (i.e., �k) space from an assumed
linear constitutive relation between the components of the
stress rate and the strain rate.

Now, by correlating the stress rate with the strain rate and
invoking the stationary property of correlation functions, one
finds that the elastic constants for a homogeneous, isotropic
liquid having a density ρ are given by the stress-stress cor-
relation functions Cαβμδ(�k) = β/N 〈σαβ(�k)σμδ(−�k)〉 [13,14],
where the angle brackets denote an equilibrium average and
β is the inverse temperature. These correlation functions may
be evaluated in terms of the radial distribution function g(r),
or, alternatively may be calculated by employing an explicit
representation of the stress tensor. For example, using Voigt
notation, Schofield expressed c11(k) in terms of g(r) for a
system described by a pair potential u(r), and this expression
can be written to highlight the k dependence as

c11(k) =
(

3

β

)
+ 2πρ

[ ∫ ∞

0
drr3g(r)u′(r)p(kr)

+
∫ ∞

0
drr4g(r)u′′(r)q(kr)

]
, (1)

where

p(kr) = 4

3k2r2
+ 4 cos (kr)

k4r4
− 4 sin (kr)

k5r5
,

(2)

q(kr) = 2

3k2r2
− 4 cos (kr)

k4r4
− 2(k2r2 − 2) sin (kr)

k5r5
.

The values of the elastic constants in the long-wavelength limit
follows from limx→0 p(x) = 2/15 and limx→0 q(x) = 1/5.
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An alternative route to calculating the elastic constants
follows from an explicit representation for the stress. For a
collection of atoms, each having a mass m, and described by
a pair potential u(r), the stress components at �r are given
by [15,16]

σαβ(�r) =
∑

i

piαpiβ

m
δ(�r − �Ri) − 1

2

∑
i

∑
j �=i

RijαRijβ

Rij

(
∂u

∂Rij

)

×
∫ 1

0
dλ δ(�r − λ �Rj − (1 − λ) �Ri), (3)

where �Ri ( �pi) is the canonical coordinate (momentum) of atom
i and Rij = | �Rj − �Ri |. Upon Fourier transforming Eq. (3)
and using the equations for stress correlations, one can then
determine the nonlocal elastic constants.

B. Inhomogeneous fluid

Our aim here is to characterize the elastic properties of an
inhomogeneous fluid that is bounded as described above. As
this fluid will be translationally invariant in the x-y plane,
we define elastic constants in terms of the two-dimensional
Fourier transformation

Cαβγ δ(�k‖,z,z′) = β

∫
d2r

∫
d2r ′ exp [i�k‖ · (�r − �r ′)‖]

×〈σαβ (�r)σγ δ(�r ′)〉, (4)

where the “parallel” subscript indicates that a vector is
confined to the x-y plane. Thus,

Cαβγ δ(�k‖,z,z′) = β〈σαβ (�k‖,z)σγ δ(−�k‖,z′)〉, (5)

where

σαβ(�k‖,z) =
∑

i

piαpiβ

m
exp (i�k‖ · �Ri‖)δ(Zi − z)

− 1

2

∑
i

∑
j �=i

RijαRijβ

Rij

(
∂u

∂Rij

)
exp (i�k‖ · �Ri‖)

× f (�k‖,z, �Ri, �Rj ) (6)

and

f (�k‖,z, �Ri, �Rj ) =
∫ 1

0
dλ exp [iλ�k‖ · ( �Rj − �Ri)‖]

× δ[z − λZj − (1 − λ)Zi]. (7)

Rather than computing the elastic constants directly from
Eq. (5), it is more convenient for implementation to define
coarse-grained elastic constants in terms of an averaged stress
tensor. This is accomplished by first integrating the stress
components over a slab from z1 to z2 (z2 > z1) such that

σ̄αβ(�k‖,z1,z2)

=
∫ z2

z1

dz σαβ(�k‖,z) =
∑

i

piαpiβ

m
exp (i�k‖ · �Ri‖)h(Zi)

− 1

2

∑
i

∑
j �=i

RijαRijβ

Rij

(
∂u

∂Rij

)
ei�k‖· �Ri‖

× exp [iλ2�k‖ · ( �Rj − �Ri)‖] − exp [iλ1�k‖ · ( �Rj − �Ri)‖]

i�k‖ · ( �Rj − �Ri)‖
,

(8)

FIG. 1. (Color online) A graphical construction showing how to
obtain the values λ1 and λ2 in Eq. (8). These values are determined by
calculating the fraction of the line segment of length Zj − Zi that lies
within the averaging slab delimited by z1 and z2. The intercepts at λ =
0 and λ = 1 are Zi and Zj , respectively. For the example illustrated
here, λ1 = (z1 − Zi)/(Zj − Zi) and λ2 = (z2 − Zi)/(Zj − Zi).

where

h(Zi) = �(Zi − z1)�(z2 − Zi) (9)

and where the values for λ1 and λ2 determine the fraction of
the line joining points Zi and Zj that lies in the slab delimited
by z1 and z2 (see Fig. 1). One can then define slab-averaged
elastic constants using Eqs. (5) and (8) as

c̄11(k‖) =
(

β

N�

)
〈σ̄zz(�k‖)σ̄zz(−�k‖)〉,

c̄12(k‖) =
(

β

N�

)
〈σ̄zz(�k‖)σ̄xx(−�k‖)〉, (10)

c̄44(k‖) =
(

β

N�

)
〈σ̄xy(�k‖)σ̄xy(−�k‖)〉,

where � = z2 − z1 and where, for convenience, the explicit
dependence of quantities on z1 and z2 is not shown. We note
that, in the presentation of results below, we focus on the
configurational part of the elastic constants and, therefore, do
not include trivial, kinetic (i.e., ideal gas) contributions.

III. SIMULATION PROCEDURE

Consider a monatomic fluid that is in a simulation cell
with two confining walls, each normal to the z direction. The
interactions between fluid atoms are described by a modified
Lennard-Jones potential [17] with parameters ε and σ , and the
wall-fluid interactions are described by a 9-3 Steele potential
[18] that is obtained by assuming that the wall atoms are static
and that they interact with fluid atoms via a standard Lennard-
Jones potential (see the Appendix). For this interaction the
relevant parameters are the wall density ρs and the potential
parameters εs and σs . As usual, the length and energy scales
are expressed in units of ε and σ , respectively. As will be seen
below, the presence of the walls leads to spatial variations in the
fluid density and, as a result, variations in the high-frequency
elastic properties.
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Conventional Metropolis Monte Carlo simulation is em-
ployed to take the system to equilibrium, starting from
a face-centered cubic lattice, and to generate equilibrium
configurations for the resulting fluid at constant temperature T .
In addition to the stress correlations functions discussed above,
the local average atomic number fraction 〈φ(z)〉 (averaged
over equilibrium configurations and the x-y plane) and the
local, planar radial distribution function g||(r,z) (where r is the
distance in the x-y plane) are calculated in equilibrium.
The former quantity is calculated from a configurational
average of the number of fluid atoms in a layer centered at
z having a width δ. For these quantities, the label z denotes
the center of an averaging slab in the z direction of width δ.
For the radial distribution function, the normalizing density is
calculated from the configurational average of the number of
atoms in the planar region of interest divided by the planar
area. As is customary, the results will be reported in reduced
units.

In our simulations we employed a three-dimensionally
periodic tetragonal cell having dimensions of 5a× 5a ×
La, where a = 1.564σ , and containing N atoms at a re-
duced temperature T . Before simulating a confined fluid,
for comparison we first model a bulk fluid having the same
spatial average density ρ. For the case of a bulk fluid L = 5,
whereas, for the case of a confined fluid, L = 20, but the
fluid is confined between walls that are erected at z = 0
and z = 10a. Thus, in the latter case, the system consists
of a confined fluid separated by walls. For the bulk fluid,
we choose N = 300 (ρσ 3 = 0.627) and T = 1.13ε/kB such
that the corresponding average pressure is nearly zero (〈P 〉 =
0.008ε/σ 3). For inhomogeneous fluids a system with N = 600
atoms at T = 0.95ε/kB is confined to a region for which
L = 10 (despite the larger cell) so that the effective density
ρσ 3 = 0.627. The density of the solid walls that confine
the fluid is ρsσ

3 = 1.045. This temperature was selected so
that the pressure when εs = 3.0 is nearly zero. Typical runs
consisted of 1.5 × 105 Monte Carlo steps (MCS), and the

FIG. 2. (Color online) The local average atomic number fraction
〈φ(z)〉 versus z/a, where a = 1.564σ , for a confined fluids with
εs = 1 (dotted line), εs = 2 (dashed line), and εs = 3 (solid line),
respectively. The fluids are confined between walls located at z = 0
and z = 10a. In each case the average density ρσ 3 = 0.627 and
T = 0.95ε/kB . The width of the averaging slab δ = 0.2a. Note the
density oscillations induced by the wall.

FIG. 3. (Color online) The local, planar radial distribution func-
tion g||(r) versus r/σ for εs = 1 (dotted line) and εs = 3 (solid line)
for the region z = 0.6a ± δ. Note the larger height of the first peak
for larger εs = 3.

widths of the averaging slabs used for the inhomogeneous fluid
are δ = 0.2a and � = 0.5a. This value of � was chosen to be
sufficiently large to average over many interatomic bonds, yet
small enough to characterize local quantities. Several values
of εs were used to model different fluid atom/wall interaction
strengths.

IV. RESULTS

The presence of the walls induces a density variation in the
fluid in equilibrium. This behavior is illustrated in Fig. 2 which
shows the variation in the equilibrium fraction of fluid atoms
〈φ(z)〉 as a function of z for several different values of εs for
σs = σ and average density ρσ 3 = 0.627. It should be noted
that the amplitude of the density oscillations decays relatively
rapidly as a function of z, and that a fluid is locally denser
for larger values of εs , as expected. Beyond these oscillations,
system inhomogeneities also alter the local fluid structure and,
therefore, the local elastic behavior. These changes in fluid
structure are evident in the local, planar radial distribution

FIG. 4. (Color online) The elastic constants c11(k) (circle), c12(k)
(square), and c44(k) (diamond) versus kσ for the bulk fluid as
determined from stress correlations. In addition, c11(k) is calculated
from the radial distribution function [Eq. (1)] (solid line) to check the
results.
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function g||(r) near a wall, as shown in Fig. 3 for two values
of εs . The increase in height of the first peak that attends an
increase in εs reflects the additional near neighbors around an
atom as the local density increases.

Before determining the elastic properties of the confined
fluid, it is useful to examine the corresponding properties

FIG. 5. (Color online) (a) The three nonlocal elastic constants
c11(k) (circle), c12(k) (square), and c44(k) (diamond) versus kσ for an
inhomogeneous fluid near a wall (0.5a � z � 1.0a). For this case,
εs = 3.0. (b) The elastic constant c11(k) versus kσ in the near-wall
regime for three different values of εs , namely εs = 3.0 (circle), εs =
2.0 (square), and εs = 1.0 (diamond). Clearly, this elastic constant is
larger for larger values of εs . (c) The elastic constant c11(k) versus kσ

for 0.5a � z � 1.0a (circle), 1.0a � z � 1.5a (square), and 3.0a �
z � 3.5a (diamond).

of the corresponding bulk fluid at the same average density
and temperature. Figure 4 shows the dependence of c11(k),
c12(k), and c44(k) on kσ for the bulk fluid as determined from
stress correlations. In addition, as a check, c11(k) is calculated
from the radial distribution function [Eq. (1)]. The results
imply that the fluid is more compressible at shorter wave-
lengths, where the compressibility κ = 3/[c11(k) + 2c12(k)].
Moreover, the fluid is only isotropic in the limit k → 0 as the
anisotropy parameter c11(k) − c12(k) − 2c44(k) only vanishes
in this limit. Finally, we note that the oscillations in c11(k)
occurring at large k can be traced to the oscillations in h(kr).

The three nonlocal elastic constants near a wall for the
inhomogeneous fluid for εs = 3.0 are shown in Fig. 5(a).
As is evident upon comparison with Fig. 3, the fluid is
“harder” for larger values of εs , presumably because 〈φ(z)〉
is concomitantly larger in this regime (see Fig. 2). This trend
is confirmed upon examining Fig. 5(b), which shows c11(k)
as a function of kσ in the same near-wall regime for three
different values of εs . This elastic constant is larger for larger
values of εs . Finally, Fig. 5(c) shows the variation of c11(k)
with the distance from the wall z highlighting the decrease in
this constant with decreasing fluid density.

V. CONCLUSION

We employed Monte Carlo simulation to calculate the local,
wave-number-dependent (k), high-frequency elastic properties
of a Lennard-Jones fluid that is confined between two walls.
For this purpose, we constructed correlation functions of
coarse-grained stresses in reciprocal space. It was found that
local elastic properties correlate with the inhomogeneous
fluid density and the strength of the wall-fluid interaction.
Thus, we define position-dependent elastic constants whose
values decay to their corresponding bulk values as one probes
regions far from the walls. It is straightforward to employ
this formalism for other confining geometries. Moreover, this
analysis can be useful in the interpretation of laser trapping
studies involving binary fluids [19] as these experiments probe
the elastic response of fluids associated with depletion forces
inherent in these systems [20].

APPENDIX

The wall-fluid potential can be obtained by considering
a solid having density ρs forming two walls separated by a
distance D. For the Lennard-Jones (i.e., 12-6) potential with
energy parameter εs and length parameter σs , respectively, the
resulting 9-3 potential is

U (z) = 4πεsρsσ
3
s

{[
1

45

(
σs

D − z

)9

− 1

6

(
σs

D − z

)3]

+
[

1

45

(
σs

z

)9

− 1

6

(
σs

z

)3]}
. (A1)

The functional form of the modified Lennard-Jones potential
UBG(r) due to Broughton and Gilmer [17] that we employ here
is given in terms of the energy and length parameters ε and σ
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by

UBG(r) =

⎧⎪⎨
⎪⎩

4ε
[(

σ
r

)12 − (
σ
r

)6] + A1, r � 2.3σ,

A2
(

σ
r

)12 + A3
(

σ
r

)6 + A4
(

r
σ

)2 + A5, 2.3σ < r < 2.5σ,

0, r � 2.5σ,

(A2)

where A1 = 0.016 132ε, A2 = 3136.6ε, A3 = −68.069ε, A4 = −0.083 312ε, and A5 = 0.746 89ε.
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