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Bounds of percolation thresholds on hyperbolic lattices
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We analytically study bond percolation on hyperbolic lattices obtained by tiling a hyperbolic plane with constant
negative Gaussian curvature. The quantity of our main concern is pc2, the value of occupation probability where a
unique unbounded cluster begins to emerge. By applying the substitution method to known bounds of the order-5
pentagonal tiling, we show that pc2 � 0.382 508 for the order-5 square tiling, pc2 � 0.472 043 for its dual, and
pc2 � 0.275 768 for the order-5-4 rhombille tiling.
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I. INTRODUCTION

Hyperbolic geometry is an important model of non-
Euclidean geometry where mathematicians have devoted a
great deal of efforts since Carl Friedrich Gauss [1]. In the
context of statistical physics, hyperbolic geometry has served
as a conceptual setting to understand geometric frustrations
in glassy materials [2]. It also has a nontrivial connection to
the two-dimensional conformal field theory [3] and there have
been attempts to identify it with the underlying geometry of
complex networks [4]. For this reason, basic understanding
of physical processes on this geometry is expected to be
relevant in a wider context of statistical physics as well. If
we are to discretize a surface by means of regular tiling
to study physical systems defined on a lattice, in particular,
hyperbolic geometry provides infinitely more possibilities than
the Euclidean geometry: Let {p,q} denote tiling where q

regular p-gons meet at each vertex. This bracket representation
is called the Schläfli symbol. It is easy to see that a flat
plane admits only three possibilities: {3,6} (triangular), {4,4}
(square), and {6,3} (honeycomb), while every {p,q} such that
(p − 2)(q − 2) > 4 describes a hyperbolic plane with constant
negative Gaussian curvature. In other words, each pair of such
{p,q} defines a hyperbolic lattice that can completely cover
the infinite hyperbolic plane with translational symmetry. The
most important physical property of a hyperbolic plane is that
the area of a circle on it is an exponential function of the radius,
which means that the circumference increases exponentially,
too. Therefore, choosing any finite domain on a hyperbolic
lattice, we find that the vertices at the boundary always occupy
a finite portion of the whole number of vertices inside the
domain even if the domain is very large. This property is called
nonamenable in literature [5] and makes essential differences
in many physical systems from their planar counterparts.

Percolation is a simple yet most interesting problem of
fully geometric nature, asking the possibility of a global
connection out of local connections [6]. Let us introduce the
bond percolation problem, which will be studied in this work:
For a given structure of sites and bonds linking them, suppose
that each bond is open with probability p and closed with
1 − p, where the parameter p is called occupation probability.
One fundamental question in percolation is to find a critical
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value p = pc where an unbounded cluster of open bonds
begins to form. This question has been already answered for
the three regular ways of tiling a flat plane [7–9] and also
for more general ones provided that they allow a generalized
cell–dual-cell transformation [10]. On these flat lattices, there
exists a unique pc above which the largest cluster occupies
a finite fraction of the system, and the length scale of this
cluster becomes unbounded at this point. On a hyperbolic
plane, on the other hand, studies of percolation started about
one decade ago [5,11]. The most remarkable prediction here is
that there generally exist two different percolation thresholds
pc1 and pc2 with pc1 < pc2, so that an unbounded cluster
begins to appear at pc1 while a unique unbounded cluster is
observed only when p reaches a higher value, pc2. Note that
this is a consequence of the nonamenable property [6] and that
these two thresholds coalesce on a flat plane by pc1 = pc2 =
pc. Numerical calculations have qualitatively supported this
mathematical prediction [12], but a direct numerical estimate
of pc2 is usually a difficult task since the system size increases
exponentially as the length scale grows. This has led to a debate
about pc2 on some hyperbolic structures [13,14].

Recently, nontrivial upper bounds of pc1 for self-dual tiling
{m,m} were derived by a combinatorial argument [15,16].
If m = 5, for example, p

{5,5}
c1 is bounded as 1/4 � p

{5,5}
c1 �

0.381 296. The upper bound is a solution of the following
polynomial equation:

−2 + 3p + 3p2 − 567p3 + 6721p4 − 35 655p5

+ 115 505p6 − 257 495p7 + 41 8210p8 − 509 100p9

+ 469 900p10 − 328 480p11 + 171 560p12 − 65 000p13

+ 16 900p14 − 2700p15 + 200p16 = 0,

and the lower bound originates from the simple fact that

pc1 � 1/(n − 1) (1)

for a lattice {m,n} with coordination number n. This work
is important in two aspects: First, it showed the possibility of
rigorous analytic bounds free from any numerical ambiguities.
Second, it dealt with the problem from a new point of
view, that is, in terms of the capacity of a quantum erasure
channel. In this Brief Report, we point out that the nontrivial
bounds in Ref. [16] also imply nontrivial bounds of other
hyperbolic lattices. Specifically, it is made possible by using
the substitution method [17], and the lattices considered here
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will be endowed with transitivity to remove any undesirable
boundary effects, which allows us to exploit duality properties
among the lattices, too. In the next section, we will briefly
explain the substitution method and then show how to apply
it to hyperbolic lattices as well as the results in Sec. III. This
work is summarized in Sec. IV.

II. SUBSTITUTION METHOD

The easiest way to explain the substitution method is to
begin with the star-triangle transformation [6,17,18]. Then, we
proceed to other cases such as star-square and star-pentagon
transformations, which will be used in our problem. Consider
a lattice L with congruent n-gons as its basic building blocks.
By drawing an n-star with n-bonds inside every n-gon, we
obtain another lattice L′, where the occupation probability is
denoted as q in order to avoid confusion with p of L.

A. Triangle

If n = 3, L is the triangular lattice [Fig. 1(a)], whereas
if n = 4, L is the square lattice [Fig. 1(b)]. To explain the
substitution method in a simple manner, we consider the
n = 3 case. Suppose that we happen to know the percolation
threshold qc of L′. We wish to find bounds of pc on L from
the knowledge of qc. Consider one of the triangles T in L
and its corresponding star T ′ in L′ so that T and T ′ share the
boundary vertices, A, B, and C. We look at all the possible
cases of connection among the boundary vertices A, B, and C

on T and T ′, respectively. Suppose thatL is in the supercritical
state and L′ is at the critical state (percolating phase). Then,
we can make the following qualitative statement: it is probable
that T has more connectivity among its boundary vertices than
T ′. To transform this qualitative statement into a quantitative
expression, we introduce some combinatorial concepts. Let S
be a set of all the possible partitions of boundary vertices A,
B, and C: If A and B are connected by open bonds and C is
separated from them, the representation is partition AB|C. A
set of connected vertices in a partition will be called a block.
For partition AB|C, AB and C are two distinct blocks. And
for n boundary vertices in general, there are nth order Bell
numbers of elements in S [18]. The set S can be a partially
ordered set if we define an order: For two partitions π and
σ of L, we define π � σ if and only if for a block bπ of π ,
there exists a block bσ containing bπ on σ . And we say that
π is more refined than σ , or that π is a refinement of σ . For
example, A|B|C � AB|C and AB|C � ABC. But there is no
order between AB|CD and ABC|D because there is no block
in AB|CD which covers ABC of ABC|D and vice versa. A
subset U of S is an up-set if and only if for π1,π2 ∈ S, π1 ∈ U
and π1 � π2, then π2 ∈ U . By this definition, we can generate
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FIG. 1. Substitution regions of the (a) star-triangle, (b) star-
square, and (c) star-pentagon transformations. The solid lines are
occupied with probability p and the dashed lines are occupied with q.

nine up-sets as follows:

U0 = S, U1 = {ABC}, U2 = {ABC,A|BC},
U3 = {ABC,AB|C}, U4 = {ABC,B|AC},
U5 = {ABC,A|BC,AB|C}, U6 = {ABC,AB|C,B|AC},
U7 = {ABC,A|BC,B|AC},
U8 = {ABC,A|BC,AB|C,B|AC}.

Let Pp(U) and Qq(U) be probabilities that T and T ′ form an
element partition of up-set U , respectively. Then, we rewrite
the qualitative statement as such Pp(U) � Qqc

(U) for every
up-set U of S with probability 1. We can solve this inequality
with respect to p and get a solid interval of pm � p � 1,
for Pp(U) is known as a monotone increasing polynomial
function of p with Pp=0(U) = 0 and Pp=1(U) = 1 for every
up-set U �= S while Qqc

(U) is a constant. Here, pm is a lower
bound of the percolation threshold of L since if p is smaller
than pm, the above inequality cannot hold and L cannot be in
the supercritical state. On the contrary, suppose that L is in
the subcritical state and L′ is at the critical state. Similarly,
we can conclude Pp(U) � Qqc

(U). By solving this inequality
again, we get another interval, 0 � p � pM , where pM is an
upper bound of the percolation threshold of L. By taking the
intersection of the two intervals, we obtain pm � p � pM .
This is the interval in which the percolation threshold of L
can exist. In n = 3 case, the resulting set of inequalities with
respect to all its up-sets is found as PL[Ui] � PL′ [Ui] with
i = 0, . . . ,8. In fact, by symmetry and triviality, seven of them
turn out to be redundant or trivial so we are left with

3p2(1 − p) + p3 � q3
c ,

3p(1 − p)2 + 3p2(1 − p) + p3 � 3q2
c (1 − qc) + q3

c ,

with 0 � p � 1. The largest value satisfying all these inequal-
ities for given qc is a lower bound of pc. In order to find an
upper bound for pc, we need to revert both the inequalities
above and the smallest p satisfying the reversed inequalities
gives us an upper bound of pc. The results are shown in
Fig. 2(a). There is one point where the upper and lower bounds
coalesce, that is, (qc,pc) = (1 − 2 sin π

18 ,2 sin π
18 ). Here, the

star-triangle transformation yields the exact percolation thresh-
old pc = 2 sin(π/18) for the triangular lattice {3,6} and
qc = 1 − 2 sin(π/18) for the honeycomb lattice {6,3} [9]. But
generally, the substitution method gives us an interval in which
the percolation threshold can exist.

B. Square

Let us now turn our attention to the star-square case
shown in Fig. 2(b). By enumerating all the possible 345
up-sets, we find 53 different inequalities. Many of them
are redundant, however, and we need to consider only the
following inequalities:

4p2 − 4p3 + p4 � 2q2
c − q4

c , 2p2 − p4 � q4
c ,

4p − 6p2 + 4p3 − p4 � 4q2
c − 4q3

c + q4
c ,

with 0 < p < 1 in order to find a lower bound of pc for
given qc. The first inequality is for an up-set {ABCD,
A|BCD, B|ACD, C|ABD, D|ABC, AC|BD, A|C|BD,
B|D|AC}, generated by {A|C|BD, B|D|AC}. The second
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FIG. 2. (Color online) Solutions of the inequalities in the
(a) star-triangle, (b) star-square, and (c) star-pentagon transforma-
tions, respectively. In (a), the horizontal dashed line represents
pc = 2 sin(π/18) ≈ 0.347 296 and the vertical dashed line represents
qc = 1 − 2 sin(π/18) ≈ 0.652 704. In (b), the dashed curve means
pc = 1 − √

1 − qc to check the square lattice {4,4} (see text).

inequality is for {ABCD, AB|CD, AD|BC} generated by
{AB|CD, AD|BC}, and the third is for an up-set generated
by {A|B|CD, B|C|AD, C|D|AB, A|D|BC}, respectively. As
above, reverting all the three inequalities will yield an upper
bound for pc, and the results are plotted in Fig. 2(b).

It is interesting to consider the square lattice {4,4} since
the star-square transformation transforms a square lattice with
double bonds to another square lattice, rotated by angle π/4
from the original lattice. Then, pc and qc should be related
by pc = 1 − √

1 − qc. Our upper and lower bounds include
this relationship over the whole region of qc. If this happened
only within a limited region of qc, we could obtain nontrivial
bounds for pc directly from this plot. Although this is not the
case, this example shows that the substitution method indeed
yields correct results.

C. Pentagon

For the star-pentagon case, the number of possible up-sets
is 161 166, from which 1237 different inequalities are found.
Once again, most of them are redundant, and the set of
inequalities to solve turns out to be

5p − 10p2 + 10p3 − 5p4 + p5 � 5q2 − 5q3 + q5,

5p3 − 5p4 + p5 � q5,

5p2 − 5p3 + p5 � 5q2
c − 5q3

c + q5
c ,

with 0 � p � 1 when we are to find a lower bound. The
first inequality is for an up-set generated by {AB|C|D|E,
AE|B|C|D, BC|A|D|E, CD|A|B|E, DE|A|B|C}. The sec-
ond inequality is for an up-set generated by {AB|CDE,
AE|BCD, BC|ADE, CD|ABE, DE|ABC}. Finally, the
third inequality is for an up-set generated by {A|B|CDE,
A|E|BCD, B|C|ADE, C|D|ABE, D|E|ABC} and essen-
tially the same as p � qc. Finding an upper bound is also
straightforward. The results are shown in Fig. 2(c).

III. RESULTS

A. Order-5 square tiling

By applying the star-pentagon transformation to the order-5
pentagonal tiling {5,5} with double bonds, we find the order-5
square tiling {4,5} [Fig. 3(a)]. Note that we need double
bonds in order to distribute five bonds to every pentagonal
face. Recall that the threshold pc1 of {5,5} is bounded as
1/4 � p

{5,5}
c1 � 0.381 296 [15], which automatically implies

0.618 704 � p
{5,5}
c2 � 3/4 by self-duality since the duality

implies

p
{m,n}
c1 + p

{n,m}
c2 = 1, p

{m,n}
c2 + p

{n,m}
c1 = 1, (2)

for lattices represented by {m,n} and {n,m} [11]. If every
neighboring pair of vertices in {5,5} are connected by double
bonds with occupation probability p′, the corresponding
bounds of the critical threshold are located by the simple
relation p′

c = 1 − √
1 − pc as

0.133 975 � p′{5,5}
c1 � 0.213 423,

0.382 508 � p′{5,5}
c2 � 0.5.

Then, solving the inequalities for the star-pentagon case,
we obtain bounds for {4,5}. The detailed procedure is
given as follows: Suppose that p′{5,5}

c1 = 0.133 975. The
corresponding bounds are 0.133 975 � p

{4,5}
c1 � 0.413 131,

whereas if p′{5,5}
c1 = 0.213 423, the bounds are 0.213 423 �

p
{4,5}
c1 � 0.527 957. Therefore, the resulting bounds should

be 0.133 975 � p
{4,5}
c1 � 0.527 957 in total, and the same

reasoning yields 0.382 508 � p
{4,5}
c2 � 0.807 697. However,

Eq. (1) further constrains p
{4,5}
c1 as larger than or equal to 1/4.

(a) (b) (c)

FIG. 3. (Color online) Lattice structures depicted on the Poincaré
disk [19]. (a) The star-pentagon transformation of the order-5
pentagonal tiling {5,5} (black) leads to the order-5 square tiling
{4,5} (gray). (b) The star-square transformation of {4,5} (black)
leads to the order-5-4 rhombille tiling (gray). (c) The star-pentagon
transformation relates the order-4 pentagonal tiling {5,4} (black) to
the order-5-4 rhombille tiling (gray). If shifted by one lattice spacing,
the order-5-4 rhombille tiling in (c) looks the same as that in (b).

062105-3



BRIEF REPORTS PHYSICAL REVIEW E 86, 062105 (2012)

TABLE I. Analytic bounds of bond percolation thresholds on hyperbolic lattices.

Tiling Lower threshold Upper threshold Method

Order-5 pentagon 1/4 � pc1 � 0.381 296 0.618 704 � pc2 � 3/4 Ref. [16]
Order-5 square 1/4 � pc1 � 0.527 957 0.382 508 � pc2 � 2/3 substitution
Order-4 pentagon 1/3 � pc1 � 0.617 492 0.472 043 � pc2 � 3/4 duality
Order-5-4 rhombille 1/4 � pc1 � 0.656 963 0.275 768 � pc2 � 2/3 substitution

Likewise, we see that p{5,4}
c1 � 1/3, which implies p

{5,4}
c2 � 2/3

from the duality [Eq. (2)]. We thus conclude that

1/4 � p
{4,5}
c1 � 0.527 957, 0.382 508 � p

{4,5}
c2 � 2/3.

B. Order-5-4 rhombille tiling

The same procedure can be repeated on the order-5 square
tiling {4,5}. The star-square transformation changes it to the
order-5 rhombille tiling, whose face configuration can be
denoted by V 4.5.4.5 [Fig. 3(b)]. The face configuration means
the numbers of faces at each of vertices around a face. The
computation is similar to the above one: By putting double
bonds between every pair of vertices in {4,5}, we see that the
critical probabilities are bounded as

0.133 975 � p′{4,5}
c1 � 0.312 946,

0.214 194 � p′{4,5}
c2 � 0.422 65.

When the star-square transformation is applied, it is straight-
forward to obtain

0.178 197 � pV 5.4.5.4
c1 � 0.656 963,

0.275 768 � pV 5.4.5.4
c2 � 0.760 854,

but some are no better than trivial since pV 5.4.5.4
c1 � 1/4 for

coordination number n � 5, and the dual of V 5.4.5.4, called
the tetrapentagonal tiling, has pc1 � 1/3 with coordination
number 4. The bounds for this order-5-4 rhombille tiling are
therefore found to be

1/4 � pV 5.4.5.4
c1 � 0.656 963, 0.275 768 � pV 5.4.5.4

c2 � 2/3.

C. Order-4 pentagonal tiling

It is notable that the order-4 pentagonal tiling {5,4} is
also related to the order-5-4 rhombille tiling by the star-

pentagon transformation [Fig. 3(c)]. Since the duality [Eq. (2)]
also imposes conditions for thresholds in {5,4} and {4,5}
as

p
{4,5}
c1 + p

{5,4}
c2 = 1, p

{4,5}
c2 + p

{5,4}
c1 = 1,

one could expect sharper bounds by exploiting both the
relations, i.e., the star-pentagon transformation and the duality
transformation. Unfortunately, since the star-pentagon trans-
formation yields too large bounds [see Fig. 2(c)], it adds no
information to the duality results, which are expressed as

1/3 � p
{5,4}
c1 � 0.617 492, 0.472 043 � p

{5,4}
c2 � 3/4,

where 1/3 is a trivial bound from the coordination number
n = 4 and p

{5,4}
c2 � 3/4 is a direct consequence of p

{4,5}
c1 � 1/4.

IV. SUMMARY

In summary, we have obtained analytic bounds of per-
colation thresholds on three hyperbolic lattices by applying
the substitution method to the known bounds for the order-5
pentagonal tiling {5,5}. Our results are summarized in Table I.
The obtained bounds are admittedly too broad to be very
informative. But our approach illustrates how analytic bounds
for one lattice can be made useful in estimating those for other
lattices tiling a hyperbolic plane. Precise knowledge of pc2

is still greatly needed in studies of percolation on hyperbolic
lattices in general, and we hope that this approach can make
further progress in future studies.
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