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Capillary condensation in a square geometry with surface fields
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We study the influence of wetting on capillary condensation for a simple fluid in a square geometry with
surface fields, where the reference system is an infinitely long slit. The corner transfer matrix renormalization
group method has been extended to study a two-dimensional Ising model confined in an L × L geometry with
equal surface fields. Our results have confirmed that in both geometries the coexistence line shift is governed by
the same scaling powers, but their prefactors are different.
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Porous materials are solids consisting of an intercon-
nected network of pores. In recent years, microporous and
mesoporous materials have been a focus of nanoscience and
nanotechnology as their properties differ significantly from
the same bulk materials [1,2]. Both the pore size and its shape,
as well as the chemical nature of its surface, i.e., whether
hydrophilic or hydrophobic, determine the properties of porous
materials [3]. In a mesopore, the cumulative effect of the walls
becomes important. After the formation of adsorbate layers of
two to three molecular thickness on walls, further adsorption
induces attractions between adsorbate molecules, leading to a
sudden condensation of liquidlike adsorbate molecules inside
the pores. This effect is analogous to the capillary condensation
phenomenon [4].

The Ising square of a finite size L with the field h1 acting
on all four surfaces (boundaries) can be used as an idealized
representation of a simple fluid in a pore or between finely
divided colloidal particles. The choice of the model entails the
assumption that the intermolecular forces are short ranged in
character; there are no dispersionlike forces. In fluid experi-
ments the equivalent of the bulk magnetic field H describes the
deviation of the critical chemical potential, H ∼ μ − μ0, that
is determined by the density of the fluid in the reservoir. The
phenomenon equivalent to the capillary condensation can be
studied in magnetic systems [5]. Generally, in the bulk, phase
coexistence occurs for temperatures T < Tc and for vanishing
bulk magnetic field H . In a slit L × ∞ with identical surface
fields at the boundaries, the combined effect of surface fields
and confinement shifts the phase coexistence to a nonzero
value of the bulk magnetic field H = Hcoe(L), which for large
L scales as

Hcoe(L) = σ0 cos θ

mb

1

L
, (1)

where σ0, mb, and θ are the surface tension of the free
up-spin–down-spin interface, bulk spontaneous magnetiza-
tion, and contact angle given by Young’s equation, respectively
[6]. In our case the liquid phase is represented by up-spins and
the gas phase by down-spins, whereas area without spins is
identified with the wall. The above equation is known in the
literature as the Kelvin equation [7].

Wetting occurs in systems close to the line of phase
coexistence when one phase may adsorb preferentially at a
solid substrate. Typically, we model the substrate using a planar
surface where the critical line hw(T ), presented in Fig. 1, is

known exactly [8]:

exp(2J/kBT )[cosh(2J/kBT ) − cosh(2hwJ/kBT )]

= sinh(2J/kBT ). (2)

For this semi-infinite system if we approach the coexistence
line from the gas side along a given isotherm (Tc > T > Tw)
the amount of liquid adsorbed on the surface l diverges:
l ∼ H−βco

s . Moreover, the phase transition, called the complete
wetting, is characterized by the presence of the singular
part of the excess surface free energy fsing = H 2−αco

s . For
the two-dimensional Ising model, the values of the critical
exponents are 2 − αco

s = 2/3 and βco
s = 1/3.

Consequently, when we consider the (pseudo-)two-
dimensional Ising system in a slit geometry and the interaction
between the liquid and walls is strong [above the hw(T ) line],
the Kelvin equation fails and some corrections are necessary.
The reason is that, although the macroscopically thick layer
forms only for a semi-infinite system, a noticeable liquid layer
intervenes between a gas and the wall for a finite-size system
as well. Therefore, Foster pointed out [9] that if adsorbed
layers were formed prior to condensation, the slit width L in
Eq. (1) should be corrected by the layer thickness l. Derjaguin
showed [10] that if solid-fluid forces decayed exponentially
or had a finite range, the pore width L could be replaced by
L − 2l.

Next, Evans et al. [4] showed that the effects of wetting
layers were of quantitative rather than of qualitative impor-
tance for capillary condensation. Albano et al. [11] and Parry
and Evans [12] analyzed the next-order correction term to the
Kelvin equation for the semi-infinite system. Both studies,
using scaling and thermodynamics arguments, concluded that
for temperatures below the wetting temperature Tw (the dry
regime) the leading correction to the scaling term was of type
L−2. Above the wetting (the wet regime) the correction is
expected to be nonanalytic due to a singularity of the surface
free energy. For the two-dimensional Ising model [11,12] the
predicted correction term is proportional to L−5/3.

In the subsequent numerical investigation, the density
matrix renormalization techniques were employed [13,14]. For
a large range of surface fields and temperature, higher-order
corrections were not compatible with L−5/3, but they were of
type L−4/3. It has been shown that this apparent disagreement
was due to the fact that even for the large sizes considered
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FIG. 1. The critical wetting lines for semi-infinite systems at
T = 2.1: the corner wetting [hcw(T )] on the two planar surfaces
forming a straight angle and wetting [hw(T )] on the planar surface.
With respect to the planar wetting, h1 = 0.1 and 0.275 correspond to
the dry regime, whereas h1 = 0.371 and 0.5 correspond to the wet
one.

(L ∼ 150) the wetting layer has a limited thickness, so that
the singular part of the surface free energy that determines the
correction-to-scaling behavior is dominated by the contacts
with the walls.

In real systems, where properties of both pure fluids and
fluid mixtures confined to nanoporous and microporous mate-
rials are under consideration [15], the squarelike geometry is
more common than the slit one. In this case, the geometry of the
system significantly affects the course of wetting phenomena
because close to a corner the impact of the individual walls
is strong, which should lead to more intensive formation of
the wetting layer. Therefore, the corner wetting transition
should also be taken into account [16,17]. As two sides of the
square form the straight angle, the corresponding (L → ∞)
corner wetting line hcw(T ), presented in Fig. 1, is known
exactly [18,19]:

cosh(2J/kBT ) − exp(−2J/kBT ) sinh2(2J/kBT )

= cosh(2Jhcw/kBT ). (3)

To model the influence of wetting phenomena on the
capillary condensation in a square geometry, we consider a
square Ising ferromagnet subject to identical boundary fields
with the following Hamiltonian:

H = −J

⎛
⎜⎝

∑
ijk�

Si,j Sk,� − h1

∑
surface
spins

Si,j − H
∑

all
spins

Si,j

⎞
⎟⎠ , (4)

with J > 0 and Si,j = ±1. The first sum is taken over the
nearest neighbors, while the second sum is performed on spins
at the surface only. The surface field h1 corresponding to direct
short-range interactions between the walls and spins is related
to the preferential adsorption on the surface for one of the two
phases. The uniform bulk magnetic field H acts over all spins.

The origin of applied numerical method, called the corner
transfer matrix renormalization group (CTMRG), came from
Baxter [20]. Next Nishino and Okunishi [21] combined his

corner transfer matrix method with the ideas from the density
matrix renormalization group (DMRG) method approach. The
last technique was developed by White [22,23] for the study
of ground-state properties of quantum spin chains and next
extended by Nishino to two-dimensional classical systems in
a slit geometry [24].

The general idea is to find a representation of the configu-
rational space in a restricted space that is much smaller than
the original one: m � 2L2

. This truncation is done through the
construction of a reduced density matrix whose eigenstates
provide the optimal basis set m. Of course, the larger m, the
better accuracy, so in the present case we keep this parameter
up to m = 400.

Although in the original CTMRG algorithm the full transfer
matrix is never constructed, we have modified it to determine
the two eigenvectors related to the largest eigenvalues. Because
each of these vectors dominates on the opposite side of the
coexistence line, using both vectors for the construction of
the density matrix guarantees that the Hamiltonian is properly
projected on the subspace of most probable states. Our results
have not shown any ambiguities of the calculated free energy
and, by increasing the number of states kept m, our results
(the free energy) converged. To have a point of reference,
we compared the results for the square geometry with the
results for the slit geometry, where the DMRG technique was
applied [13,14].

Owing to the finiteness of L and to the nonvanishing surface
field h1 the (pseudo)coexistence lines (for both geometries)
are shifted with respect to the bulk coexistence line (H = 0).
As one can see in Fig. 2 this effect is much stronger for the
squarelike system. This is easy to understand if one remembers
that the influence of walls on the individual spins is here
reinforced with respect to the slit geometry.

A schematic drawing of the fluid shape adopted in a square
geometry below (h1 = 0.1) and above (h1 = 0.6) wetting
is demonstrated in Fig. 3. Both top magnetization profiles
correspond to the phase when a liquid fills the squarelike pore.
For a weak field the magnetization is lower near walls, whereas
for a strong field the magnetization is essentially uniformly
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FIG. 2. Pseudocoexistence lines for the square (triangles) and slit
(circles) systems for L = 500 and h1 = 0.8. L is measured in units
of lattice constant, whereas h1 is in J units.
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FIG. 3. Two-dimensional magnetization profiles 〈si,j 〉 on the square geometry 31 × 31 for the two values of the surface field h1 = 0.1
(left-hand graphs) and h1 = 0.6 (right-hand graphs) calculated at fixed temperature T = 2.0. The profiles change their shapes and spin
polarizations while varying the bulk field value H below and above the wetting temperature Tw(h1 = 0.1) = 2.257 and Tw(h1 = 0.6) = 1.814,
respectively.

high throughout the square. The bottom magnetization profiles
illustrate the situation on the other side of the coexistence line,
when the gas phase occupies the middle of the square. While
the weak-field magnetization profile only slightly increases
at the square edges, the strong-field magnetization profile
increases considerably, which corresponds to creation of the
liquid layer. Note that the surface impact is always enhanced
in the square corners, although limited to a relatively small
area.

The real phase transition (the complete wetting) occurs
only in a semi-infinite system. Since we deal with a finite-size
system, the thickness of the wetting layer is limited, and a sharp
liquid-gas interface is not observed. Furthermore, because for a
weak surface field (below the wetting line) there remains a thin
liquid layer between a gas and the wall, the gas-wall interface
formally never occurs. For the same reason, below the wetting
line the isolated droplets of liquid cannot be observed on the
wall, so the contact angle cannot be drawn.

As a useful tool for the analysis of the higher terms of
the Kelvin equation, we introduce the logarithmic derivative
which acts as an effective dominant exponent,

α(L) = − ln[Hcoe(L + �L)] − ln[Hcoe(L)]

ln(L + �L) − ln(L)
. (5)

When the following expansion of the Kelvin equation is
assumed,

Hcoe = A

Lα
+ B

Lγ
, (6)

combining both formulas, we obtain the first-order expansion
for the effective exponent,

α(L) = α + (γ − α)
B

A

1

Lγ−α
. (7)

The Kelvin equation is expected to be valid to the first order
for all T < Tc, but since only a limited size L is available for
the numerical computation, it is preferable to consider only
temperatures not too close to the bulk critical temperature,
where the scaling of the capillary critical point Hcrit(L) ∼
L15/8 is present [6]. Therefore, our results refer to temperature
T = 2.1, but we have checked that they do not qualitatively
change for other temperatures.

Figure 4 shows that for a wide range of the surface fields,
when the system grows, the value α(L) goes to α = 1. It
confirms that, to the accuracy of the first-order expansion, the
shift of the phase coexistence and the system size are reciprocal
in both geometries.

For the wet phase (θ = 0) in the slit geometry, the exact
formula for the coefficient is known [see Eq. (1)], giving
A(T = 2.1) = 0.335 which very well agrees with our esti-
mated value 0.345. Generally, our numerical fittings for curves
Hcoe(L) according to Eq. (6) show that the ratio of the main
prefactors for the slit and square geometries is Aslit/Asquare ∼
1/2 for each value of the surface field. For example, below
the wetting Aslit(h1 = 0.1) = 0.121 and Asquare(h1 = 0.1) =
0.242, whereas above the wetting Aslit(h1 = 0.5) = 0.345 and
Asquare(h1 = 0.5) = 0.669. This fact can be explained in the
following way: when the size of the square increases,
the impact of the corners remains more or less the same, but the
influence of the sides increases. Thus, when L goes to infinity,
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FIG. 4. Plots of the local exponent for both geometries at
T = 2.1. Lines correspond to the square geometry, whereas the
symbols are related to the slit one.

the system begins to resemble a set of two slits perpendicular
to each other.

As one can see in Figs. 4 and 5, the shape of the curves
indicates that we are dealing with various expressions of a
higher order. First of all, the B coefficient, which is always
positive in the slit geometry, is negative in the dry regime for
the square geometry. This is manifested by the α(L) function
minima for small 1/L, where the leading correction B/Lγ

dominates. Obviously, the next correction has to be positive.
Moreover, in the wet regime, where the B coefficients are
positive, as one can see in Fig. 4, the curves corresponding
to the same value of the surface field start to overlap when L

becomes enough large.
In the square geometry, as far as the leading correction

terms are concerned, the precise analysis of our numerical
results shows, in both the dry and wet regimes, they are the
same as in the slit geometry (see Fig. 5).

It is worth adding that the values of the surface field h1 =
0.1 (h1 = 0.5) were chosen to be in the dry (wet) regime
with respect to both wetting curves (see Fig. 1). Although the
presented curves correspond to infinite systems, we are dealing
with systems large enough to guarantee that both points are
localized on the appropriate side of the wetting curves.

To sum up, the corner transfer matrix renormalization group
method has been extended to study the equilibrium statistical
mechanics of simple fluids confined in the square geometry,
providing some input for understanding experiments in porous
materials. As the method is not perturbative, it can be applied
to arbitrary values of the model parameters and yields accurate
results, provided that a convergence of the free energy is
reached. Accuracy of the CTMRG method is completely
controlled by varying the number of the states kept. Moreover,
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FIG. 5. The effective exponents α(L) and their fitting curves
denoted by the thick lines for two sample values of the surface
field: h1 = 0.1 for the dry system and h1 = 0.5 for the wet system
[see Fig. (1)].

the method does not suffer from getting stuck in a local
minimum of the free energy instead of the true global free
energy minimum, which is a typical problem in Monte Carlo
simulations. There are neither metastabilities nor hysteresis
effects provided that m is set to be sufficiently large, which is
our case concluded by the converged free energy.

Our results confirm that in a more realistic (square)
geometry the coexistence line shift is inversely proportional to
the system size L and the main prefactor is two times larger
than for the case of an infinitely long slit of width L. Moreover,
for the square geometry the leading correction term to the
Kelvin equation becomes negative in the dry regime.

We have also found that similarly to the slit geometry the
leading corrections to scaling in the square geometry are of
type 1/L2 in the dry regime and of type 1/L5/3 in the wet
regime. The last correction is again nonanalytic due to a
singularity of the surface free energy.

Curve fitting was carried out for the values of the surface
fields that correspond to the dry or wet regime with respect to
both wetting lines defined by Eqs. (2) and (3). The area between
the wetting lines was not analyzed in detail, although the
strongest competition can be expected between the two types
of wetting. This requires an examination of larger systems,
which implies the need for a more precise calculation. In our
next studies, we aim to increase the precision of the numerical
results by additional improvement of the CTMRG algorithm.

This work was done under Projects No. VEGA-2/0074/12,
No. APVV-0646010 (COQI), and No. POKL.04.01.01-00-
041/09-00. Numerical calculations were performed in WCSS
Wrocław (Poland, Grant No. 82).
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