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Entropy hysteresis and nonequilibrium thermodynamic efficiency of ion conduction
in a voltage-gated potassium ion channel
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Here we have studied the nonequilibrium thermodynamic response of a voltage-gated Shaker potassium ion
channel using a stochastic master equation. For a constant external voltage, the system reaches equilibrium
indicated by the vanishing total entropy production rate, whereas for oscillating voltage the current and entropy
production rates show dynamic hysteretic behavior. Here we have shown quantitatively that although the hysteresis
loop area vanishes in low and high frequency domains of the external voltage, they are thermodynamically
distinguishable. In the very low frequency domain, the system remains close to equilibrium, whereas at high
frequencies it goes to a nonequilibrium steady state (NESS) associated with a finite value of dissipation function.
At NESS, the efficiency of the ion conduction can also be related with the nonlinear dependence of the dissipation
function on the power of the external field. Another intriguing aspect is that, at the high frequency limit, the total
entropy production rate oscillates at NESS with half of the time period of the external voltage.
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I. INTRODUCTION

The study of ion channels plays an important role in
understanding the propagation of nerve impulse and a wide
variety of phenomena associated with excitable tissue of
neural as well as non-neural nature [1–4]. Ion channels
maintain a controlled exchange of ions between the cells
and the extracellular medium through ion-permeable pores
with the rearrangement of the tertiary structure of channel
proteins. A great deal of understanding about the function
of ion channels owes its origin in the experiments using the
voltage clamp method [3–11]. In a traditional voltage clamp
technique, ion flow across a cell membrane is measured as
electric current, while the membrane voltage is held under
experimental control with a feedback circuit [3–8]. Current
due to a single ion channel can also be measured using a
patch clamp experiment based on a similar principle [4].
Recently, nonequilibrium response spectroscopy [12,13] has
added a new dimension in the field of ion channel experiments
using the oscillating-voltage protocol. This technique has been
used for the selection of an appropriate Markov model from
various possible schemes of ion channel kinetics [12–16].
From kinetic studies, it has been found qualitatively that the
oscillating voltage drives the ion channel out of equilibrium
and resists the system to relax back to equilibrium [12–15]. The
oscillating-voltage protocol [16] thus offers an opportunity to
explore nonequilibrium response properties of the ion channel
such as hysteresis [17] at nonequilibrium steady state (NESS).

Hysteresis has a long history [17] in its wide manifestation
in various magnetic [18,19] and other condensed-matter
systems [20,21] as well as in biological processes [16,22,23].
In voltage-gated ion channels, hysteresis can occur when the
time period of the oscillating external voltage is comparable
to the characteristic relaxation time of the conformational
transitions between conducting and nonconducting states
[23–26]. The channel hysteresis has biological relevance; for

*gautam@bose.res.in

example, it plays an important functional role in regulating
physiological phenomena and is also a governing factor
in maintaining the action of a neuron pacemaker [25]. A
detailed theoretical description of hysteresis in ion channel
for oscillating voltage was given by Pustovoit et al. [26]
by considering a simple two-state model. Recently, Ander-
sson described the hysteresis of ionic conductance [27] for
oscillating voltage by considering the analysis of Pustovoit
et al. [26] and then they have extended the study of the
channel gating schemes for multiple states with independent
as well as cooperative gating. Their studies [26,27] reveal
that the probability-voltage as well as the current-voltage
hysteresis is dynamic in nature. The hysteresis loop area
vanishes at the low and high frequency limits of the external
oscillating voltage due to the wide time scale separation. Now,
particularly for time-dependent external voltage, the system
can go arbitrarily far away from equilibrium. Hence, along
with the kinetic properties, the nonequilibrium thermodynamic
features of the ion channel must also be explored. In this
perspective, we have raised the following questions. (i) Are
these low and high frequency limiting situations equivalent
from the thermodynamic viewpoint or does the vanishing of an
out-of-equilibrium phenomenon like hysteresis ensure that the
system is at thermodynamic equilibrium? (ii) At NESS, how is
the supplied energy utilized for the production of ionic current?
To address the above issues coherently, we present a detailed
nonequilibrium thermodynamic analysis of a voltage-gated
Shaker potassium ion channel. The ion channel kinetics is
described by a master equation constructed on the basis of
the best-suited Markov process proposed in an experimental
work [14]. Starting from a model consisting of five states,
we have discussed about how the stochastic conformational
states are connected with the essential features of a traditional
Hodgkin-Huxley equation at a constant voltage. We then have
explored the nonequilibrium thermodynamic features due to
oscillating voltage.

The paper is organized as follows. In Sec. II A, we describe
the kinetic scheme which is efficient to describe the ion channel
kinetics both for constant and oscillating voltages [14]. For
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the constant-voltage case, we discuss the Hodgkin-Huxley
equation for the probability of the ion-conducting state. In
Sec. II C, the case of time-dependent voltage is considered,
where we give the analytical expression of the probability of
the ion-conducting state. Expressions of total, medium, and
system entropy production rates are given in Sec. II D for the
nonequilibrium characterization of the system. In Sec. III we
determine the various entropy production rates as well as the
ionic current for constant and oscillating voltages and study
the hysteretic behavior to characterize the nonequilibrium
response properties of the system. In the discussion section we
have extended the kinetic results of the single ion channel for a
finite number of ion channels. Finally, the paper is concluded
in Sec. IV.

II. MARKOV MODEL OF A VOLTAGE-GATED
POTASSIUM ION CHANNEL: ENTROPY PRODUCTION

OF THE CHANNEL KINETICS

In this section, first, we provide the master equation
describing the voltage-gated potassium ion channel kinetics.
For the constant-voltage case, the connection of the master
equation with the Hodgkin-Huxley equation and results of
the probability of ion-conduction are discussed. The time-
dependent solution of the ion-conducting state probability
is then given for oscillating voltage for a five-state model
with one conducting and four nonconducting states. The
corresponding expressions of the system, medium, and total
entropy production rates then are provided.

A. Kinetic scheme of potassium ion channel
and the master equation

Various experimental results reveal that a potassium ion
channel is composed of four independent homologous subunits
[28–30], where each subunit remains in several conformational
states. For simplicity, we consider only two conformational
states of each subunit, i.e., inactive and active [31–33]. The
dynamics of the potassium channel can be described in terms
of the number of subunits in active state at a particular instant
of time. An optimum kinetic scheme of the activation of a
voltage-gated potassium ion channel [6,14] can be written as

C0

4 k 1(V (t))−−−−−⇀↽−−−−−
k−1(V (t))

C1

3 k1(V (t))−−−−−−⇀↽−−−−−−
2 k−1(V (t))

C2

2 k1(V (t))−−−−−−⇀↽−−−−−−
3 k−1(V (t))

C3

k1(V (t))−−−−−−⇀↽−−−−−−
4 k−1(V (t))

C4,

(1)

where Cn represents the n-th conformational state of the
ion channel with n number of subunits in active state with
n = 0,1, . . . 4. The number of subunits in the active state can
increase or decrease by one unit due to the occurrence of a
forward or a backward reaction with voltage-dependent rate
constants, k1(V (t)) and k−1(V (t)), respectively. Here V (t) is
the time-dependent external voltage. The rate constants are
explicitly defined as [14]

k1(V (t)) = k1(0)exp

[
q+V (t)

kBT ′

]

and

k−1(V (t)) = k−1(0)exp

[
q−V (t)

kBT ′

]
, (2)

where q± are the gating charges associated with each forward
and backward transition, respectively. k1(0) and k−1(0) are the
forward and backward rate constants at zero voltage, T ′ is
the absolute temperature, and kB is the Boltzmann constant.
During the time evolution, the number of subunits in the active
state becomes a fluctuating quantity [34–36] for a single ion
channel. Therefore, the system performs a one-dimensional
random walk along these dynamical states [34,35]. The state
C4 is considered the ion-conducting state where all the subunits
are simultaneously in the active state. To describe the time
evolution of the single ion channel, we have constructed a
stochastic master equation [32,36–38] in terms of the number
of subunits in active state at a particular instant of time, t . The
master equation can be written as

dPn(t)

dt
=

∑
μ=±1

[wμ(n − νμ|n)(t)P(n−νμ)(t)

−w−μ(n|n − νμ)(t)Pn(t)], (3)

where νμ is the stoichiometric coefficient of the μ-th reaction
and ν1 = 1 for the forward process and ν−1 = −1 for the
backward process. Pn(t) is the probability of having n number
of subunits in active state at time t where n runs from 0 to
nT . Here nT is the total number of subunits with nT = 4. The
forward process, say μ = 1, transforms the state (n − 1) to
n and the reverse process, μ = −1, transforms the state n to
(n − 1). The corresponding transition probabilities are defined
as

w1(n − 1|n)(t) = k1(V (t))[nT − (n − 1)]

and

w−1(n|n − 1)(t) = k−1(V (t))(n). (4)

Now putting the transition probabilities in Eq. (3), we obtain
the simplified form of the master equation as

dPn(t)

dt
= k1(V (t))(nT − n + 1)P(n−1)(t)

+ k−1(V (t))(n + 1)P(n+1)(t)

− k1(V (t))(nT − n)Pn(t) − k−1(V (t))nPn(t). (5)

B. Constant-voltage case: Hodgkin-Huxley results from
the master equation

Traditionally the ion channel kinetics is studied using the
voltage clamp technique, where the voltage is varied, say,
from one holding potential to another by matching the voltage
value to a variable control voltage [6–8,27]. Thereby the
ion channel conductance relaxes towards its new equilibrium
[27]. In the constant-voltage case, the solution of the master
equation described in Eq. (3) becomes a binomial probability
distribution function [32,34,35,39–42] given as

Pn(t) = nT !

n!(nT − n)!
Xn(Y )nT −n. (6)

Here

X(t) = k1(V )(1 − exp{−[k1(V ) + k−1(V )]t})
k1(V ) + k−1(V )

, (7)
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Y (t) = [1 − X(t)]

= k−1(V ) + k1(V )exp{−[k1(V ) + k−1(V )]t}
k1(V ) + k−1(V )

, (8)

assuming that, initially, all the subunits are in the inac-
tive state, C0 i.e, the n = 0 state. This solution is well
known for the independent conformational transitions of the
ion channel subunits [32,43]. So the overall dynamics of the
ion channel having nT = 4 number of independent subunits
can be expressed in terms of the dynamics of a single subunit
described by the variables X(t) and Y (t). This idea has been
put forward by a number of authors in the context of ion
channels [32], enzyme kinetics [40,41], and receptors [42,43].
The combinatorial factor appearing in front of Eq. (6) gives
the number of ways to choose n active states from nT .

The average number of subunits in the active state is
expressed as 〈n〉(t) = nT X(t) and the average number of
subunits in the inactive state is 〈nT − n〉(t) = nT Y (t). The
parameter X(t) satisfies the differential equation [3,32]

dX(t)

dt
= k1(V )[1 − X(t)] − k−1(V )(X(t)). (9)

This equation is identical to the equation for the “open proba-
bility” originally introduced by Hodgkin and Huxley to model
the potassium ion channel conductance [3,32]. However, they
did not consider the details of the conformational dynamics of
the channel subunits as described here in the master equation.

Furthermore, the probability of ion conducting state, PnT
(t)

(nT = 4), at steady state can be obtained from Eq. (6) as

P (ss)
nT

= [X(ss)]nT . (10)

Here X(ss) is the steady-state value of X(t) given from Eq. (7)
as X(ss) = k1(V )

k1(V )+k−1(V ) . Using the value of X(ss) in Eq. (10), we
get

P (ss)
nT

=
[

k1(V )

k1(V ) + k−1(V )

]nT

. (11)

Now substituting the expressions of k1(V ) and k−1(V ) from
Eq. (2) into Eq. (11), we finally obtain the steady-state
probability of the ion-conducting state [6],

P (ss)
nT

=
{

1

1 + Keq(0)exp
[−q(V )

kBT ′
]
}nT

, (12)

with q = (q+ − q−) and where Keq(0) is the equilibrium
constant defined as Keq(0) = [ k−1(0)

k1(0) ]. The above probability
is of the form of the Boltzmann distribution of power nT ,
usually used for calculating the probability of ion-conducting
state in voltage clamp experiments. There nT is taken as the
number of independent and identical transitions [6]. Therefore,
at constant voltage, the probability of ion-conducting state
becomes a powered Boltzmann distribution.

C. Solution of ion channel kinetics for oscillating voltage

Here we have described the kinetics of a single potassium
ion channel for oscillating voltage based on the reaction
scheme in Eq. (1). To get some analytical understanding,
we have expressed the overall reaction in terms of the ion-
conducting state, which is designated as C4 in the reaction

scheme. The probability rate equation for this state can be
easily obtained from Eq. (3) as

dP4(t)

dt
= k1(V (t))P3(t) − nT k−1(V (t))P4(t). (13)

By using the normalization condition
∑4

n=0 Pn(t) = 1, we can
rewrite Eq. (13) as

dP4(t)

dt
= χ (t) − K(t)P4(t), (14)

where χ (t) = k1(V (t))[1−{P0(t) + P1(t) + P2(t)}] and
K(t) = [k1(V (t)) + nT k−1(V (t))].

The solution of the above equation can be written as

P4(t) = P4(t0)exp

[
−

∫ t

t0

K(t ′)dt ′
]

+
∫ t

t0

χ (t ′)exp

[
−

∫ t

t ′
K(t ′′)dt ′′

]
dt ′. (15)

Using Eq. (15), one can write P4(t) for mT < t < (m + 1)T
as [26]

P4(mT + t) = P4(mT )exp

[
−

∫ t

mT

K(t ′)dt ′
]

+
∫ t

mT

χ (t ′)

× exp

[
−

∫ t

t ′
K(t ′′)dt ′′

]
dt ′, (16)

where T is the time period of the oscillating voltage and m

(= 0,1,2, . . . ) is the index of the oscillation period. Now, using
Eq. (15), one can write a recursion formula connecting the
probabilities P4(mT ) and P4[(m + 1)T ] as

P4[(m + 1)T ] = φP4(mT ) + �0, (17)

where φ and �0 are given by

φ = exp

[
−

∫ T

0
K(t)dt

]
(18)

and

�0 =
∫ T

0
χ (t ′)exp

[
−

∫ T

t ′
K(t ′′)dt ′′

]
dt ′. (19)

The above recursion relation gives the value of P4(mT ) as

P4(mT ) = φmP4(0) + 1 − φm

1 − φ
�0, (20)

where P4(0) is the initial probability of the ion-conducting
state. When m → ∞, the probability P4(mT ) approaches its
asymptotic value,

lim
m→∞ P4(mT ) = �0

1 − φ
. (21)

By substituting the above equation into Eq. (16) and taking
the asymptotic long time limit of the probability, P4(mT + t),
which is denoted as P

(ss)
4 (t), we obtain

P
(ss)
4 (t) = lim

m→∞ P4(mT + t) = �(t)

1 − φ
. (22)

Here the function �(t) is given by

�(t) =
∫ t+T

t

χ (t ′)exp

[
−

∫ t+T

t ′
K(t ′′)dt ′′

]
dt ′. (23)
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At a very low frequency limit when T → ∞, φ defined in
Eq. (18) vanishes. Therefore, P (ss)

4 (t) in Eq. (22) can be written
as

P
(ss)
4 (t) =

∫ T

0
χ (t − t ′)exp

[
−

∫ t ′

0
K(t − t ′′)dt ′′

]
dt ′. (24)

As χ (t ′) and K(t ′) are slowly varying functions in the low
frequency limit, we can take the following approximation:

χ (t − t ′) ≈ χ (t) − t ′χ̇ (t ′),K(t − t ′′) ≈ K(t) − t ′′K̇(t ′′)

and

exp

[
−

∫ t ′

0
K(t − t ′′) dt ′′

]
≈

[
1 + 1

2
K̇(t)t ′2

]
exp[−K(t)t ′].

(25)

Neglecting the term proportional to the product χ (t)K(t), we
obtain

P
(ss)
4 (t) ≈ Q(t) − Q̇(t)

K(t)
, (26)

where Q(t) = χ (t)
K(t) . Then, for slowly varying voltage, P

(ss)
4 (t)

finally becomes

P
(ss)
4 (t) = χ (t)

K(t)
. (27)

Similarly, in the high frequency limit when T → 0, φ

defined in Eq. (18) can be written as

φ = 1 − T 〈K〉. (28)

Here 〈f 〉 = 1
T

∫ T

0 f (t)dt , where f can be χ (t) or K(t). Hence,

P
(ss)
4 (t) in Eq. (22) takes the form

P
(ss)
4 (t) = 1

T 〈K〉
∫ t+T

t

χ (t ′)exp

[
−

∫ t+T

t ′
K(t ′′)dt ′′

]
dt ′.

(29)

In the high frequency limit, we can take the following
approximation:

exp

[
−

∫ t+T

t ′
K(t ′′)dt ′′

]
≈ 1 −

∫ t+T

t ′
K(t ′′)dt ′′. (30)

Using this approximation, Eq. (29) can be written as

P
(ss)
4 (t) =

∫ t+T

t
χ (t ′)dt ′ − ∫ t+T

t
χ (t ′)dt ′

∫ t+T

t ′ K(t ′′)dt ′′∫ t+T

t
K(t ′)dt ′

= 〈χ (t)〉
〈K(t)〉 − δ(t). (31)

Here we define δ(t) = ξ∫ t+T

t
K(t ′)dt ′

, where ξ =∫ t+T

t
χ (t ′)[

∫ t+T

t ′ K(t ′′)dt ′′]dt ′. Here the limit t ′ varies
in the range t � t ′ � t + T and t ′′ varies in the range
t ′ � t ′′ � t + T . In the double integration, ξ in the limit
of T → 0, one can approximate [

∫ t+T

t ′ K(t ′′)dt ′′] as
(T + t − t ′)K(t ′), where 0 � (T + t − t ′) � T . This makes

ξ ≈ T
∫ t+T

t
χ (t ′)K(t ′)dt ′ and, consequently, δ(t) → 0 in the

high frequency limit. This ensures that, in the high frequency
limit, P

(ss)
4 (t) in Eq. (31) becomes

P
(ss)
4 (t) = 〈χ (t)〉

〈K(t)〉 . (32)

The fact that the value of δ(t) tends to 0 with increase in
frequency is also supported by the direct numerical evaluation
of P

(ss)
4 (t) and 〈χ(t)〉

〈K(t)〉 . One must also note that although the
equations (27) and (32) give the steady-state ion-conducting
probability, P

(ss)
4 (t) in compact form, it is not possible to

evaluate it analytically as χ (t) depends on P0(t), P1(t), and
P2(t). To determine these probabilities, we resort to numerical
solution of the general master equation [Eq. (3)] with time-
dependent transition probabilities for oscillating voltage. The
numerically determined time-dependent probabilities, Pn(t),
are used to obtain the ionic current and entropy production
rates for further studies. The details are given in Sec. III.

D. Entropy production rates: Nonequilibrium characterization
of ion channel

To explore the nonequilibrium thermodynamic features
of the potassium ion channel, here we discuss the entropy
production rates due to the channel kinetics. We start from the
definition of the entropy of the system in terms of the Shannon
entropy as [35,44,45]

Ssys(t) = −kB

∑
n

Pn(t)lnPn(t). (33)

Using the master equation, Eq. (3), we get the system
entropy production rate (epr) as

Ṡsys(t) = 1

2

∑
n,μ=±1

[wμ(n − νμ|n)(t)P(n−νμ)(t)

−w−μ(n|n − νμ)(t)Pn(t)]ln

[
P(n−νμ)(t)

Pn(t)

]
, (34)

where we set the Boltzmann constant, kB = 1. Here the
voltage-dependent transition probabilities are functions of time
due to the explicit time dependence of the voltage as given in
Eq. (4). We have assumed ideal reservoir (surroundings) with
no inherent entropy production except through the boundaries
of the system. The system epr can be split as [44–49]

Ṡsys(t) = Ṡtot(t) − Ṡm(t). (35)

Here the first term in the right-hand side of Eq. (35) gives the
total epr and the second term denotes the medium epr due to
the entropy flux into the surroundings. They are defined as

Ṡtot(t) = 1

2

∑
n,μ=±1

[wμ(n − νμ|n)(t)P(n−νμ)(t)

−w−μ(n|n − νμ)(t)Pn(t)]

× ln

[
wμ(n − νμ|n)P(n−νμ)(t)

w−μ(n|n − νμ)Pn(t)

]
(36)
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and

Ṡm(t) = 1

2

∑
n,μ=±1

[wμ(n − νμ|n)(t)P(n−νμ)(t)

−w−μ(n|n − νμ)(t)Pn(t)]

× ln

[
wμ(n − νμ|n)

w−μ(n|n − νμ)

]
. (37)

Using the values of forward and backward transition
probabilities from Eq. (4) into Eq. (36) and considering the
boundary conditions P(n−1) = 0 for n = 0 and P(n+1) = 0 for
n = nT , we finally obtain the expression of Ṡtot(t) for ion
channel as

Ṡtot(t) =
nT −1∑
n=0

[k1(V (t))(nT − n)Pn(t) − k−1(V (t))(n + 1)

×P(n+1)(t)]ln

[
k1(V (t))(nT − n)Pn(t)

k−1(V (t))(n + 1)P(n+1)(t)

]
. (38)

In the case where the system attains equilibrium, the total epr
becomes zero. When the system reaches a NESS [35,36,50–
52] it is characterized by a nonzero total epr [35,36,53].

III. NUMERICAL STUDY OF THE VOLTAGE-GATED
SHAKER POTASSIUM ION CHANNEL

In this section, using the numerical solution of the master
equation given in Eq. (5) for ion channel kinetics with time-
dependent voltage, we determine the ionic current (described
below) as well as the various entropy production rates with
dynamical hysteresis phenomenon. Equation (5) is numeri-
cally solved using Heun’s algorithm with constant time steps.
We have taken the rate parameters from the experimental
work of Kargol et al. [14] on the Shaker potassium ion
channel expressed in mammalian cells, tsA 201. The rate
constants at zero voltage are taken as k1(0) = 124.8 s−1 and
k−1(0) = 4.74 s−1. The gating charges associated with both
forward and backward transitions rates are q+ = 0.66e and
q− = −0.64e, respectively. The temperature is taken as 12 ◦C.
The externally applied oscillating voltage is considered here
as sinusoidal.

In this paper our main aim is to study the case of
oscillating voltage. However, for completeness of the study
and as a theoretical support of a physiologically important
experimental system [14], we first briefly discuss the case
of constant voltage where the master equation is analytically
solvable.

A. Kinetics and thermodynamics at constant voltage

Experimentally, kinetic description is usually carried out
by measuring the ionic current, I (t), which is calculated using
the expression

I (t) = g0g(V )(V − Vr )P4(t). (39)

Here g0 is the overall scaling factor representing the cell
expression rate taken as g0 = 1.013 [14]. The functional
form of the nonlinear conductance, g(V ) (in microsiemens,
μS), is taken from the experimental paper of Kargol
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FIG. 1. (Color online) (a) Ionic current, I (t), in nanoamperes
(nA) plotted against time (in s) at constant depolarizing voltages,
V = −15, −30 and −45 mV, respectively. In (b) and (d), the
steady-state ionic current, I (ss), and probability of ion-conducting
state, P

(ss)
4 , are plotted as a function of voltage at steady state. In (c),

the total entropy production rate(epr), Ṡtot(t), is plotted as a function of
time at depolarizing voltages, V = −30 and −45 mV, respectively.
At constant voltage, system reaches equilibrium characterized by
vanishing total epr.

et al. [15] and given as g(V ) = 1.340 × 10−9(V )3 − 7.30 ×
10−8(V )2 − 3.35 × 10−5(V ) + 4.470 × 10−3.Vr is the rever-
sal potential at which no ionic current can pass from the
cell and taken here as Vr = −90 mV. From Fig. 1(a) it is
observed that the ionic current, I (t), first increases with time
and then saturates at a constant value. The magnitude of I (t)
increases with increase in constant (depolarizing) voltage, V .
The variation of conductance, g(V ), as a function of voltage, V ,
is given by an inverted basin passing through a maximum. The
probability of ion-conducting state at steady state, P (ss)

4 , shows
a sigmoidal rise with increasing depolarizing voltage and goes
to saturation at high (positive) voltage values as is evident
from Fig. 1(d). The current at steady state, I (ss), shows similar
behavior; however, at high (positive) depolarizing voltages it
exhibits a small decay as shown in Fig. 1(b). This is due to the
nonlinear voltage dependence of the conductance, g(V ). The
nature of the current-voltage curve at steady state follows a
similar qualitative trend as that of the experimental results of
Kargol et al. for the voltage clamp study.

To investigate the thermodynamic nature of the steady
state at constant voltage, we have calculated the total entropy
production rate, Ṡtot(t), from Eq. (38). Substituting the time-
dependent probability value, Pn(t), from Eq. (6) into Eq. (38),
we obtain

Ṡtot(t) = [k1(V )〈nT − n(t)〉− k−1(V )〈n(t)〉]ln
[

k1(V )Y (t)

k−1(V )X(t)

]
.

(40)

Using Eqs. (7) and (8), we obtain the steady-state val-
ues of X(t) and Y (t) as X(ss) = [ k1(V )

k1(V )+k−1(V ) ] and Y (ss) =
[ k−1(V )
k1(V )+k−1(V ) ]. It then follows easily from Eq. (40) that Ṡtot(t)

becomes zero at equilibrium for a constant external voltage.
The analytical result is supported by the numerical result
shown in Fig. 1(c).

061915-5



DAS, BANERJEE, AND GANGOPADHYAY PHYSICAL REVIEW E 86, 061915 (2012)

0 0.04 0.08 0.12
time (s)

0

0.1

0.2

0.3

0.4

0.5
I 

(t
) 

(n
A

)

0.04 0.08 0.12
time (s)

0

50

100

150

200

250

300

S
to

t

.

0

Va = 45 mV

ω/2π = 100 Hz

(a) (b)

(t
)

FIG. 2. (Color online) The ionic current, I (t), and entropy
production rate, Ṡtot(t), are plotted as a function of time. The bold
line in (b) denotes the mean value of Ṡtot(t) at NESS.

B. Nonequilibrium behavior for oscillating voltage:
Dynamic entropy hysteresis

Now we come to the more interesting case of the time-
dependent external voltage. We take a sinusoidal voltage
variation, V (t) = V0 + Vasinωt , with mean V0, amplitude Va ,
and frequency ω. We numerically solve the master equation,
Eq. (5), to get the probability of the ion-conducting state,
P4(t). The ionic current, I (t), and various entropy production
rates are then determined using this probability. The ionic
current, I (t), is calculated according to Eq. (39) by considering
the time-dependent voltage variation. For oscillating external
voltage, the ionic current reaches a time-periodic steady value,
I (ss)(t). The steady state is actually a NESS characterized by a
nonzero total epr, Ṡtot(t), shown in Fig. 2(b). Ṡtot(t) oscillates
around a nonzero mean value, which is indicated in the figure
with a bold line.

In Figs. 3(a) and 3(b), I (ss)(t) vs voltage and P
(ss)
4 (t) vs

voltage plots are shown for three different frequency values

-40 -20 0 20 40
V(t)

0

0.2

0.4

-40 -20 0 20 40
V(t)

0.4

0.8

-40 -20 0 20 40
V(t)

0

100

200

300

-40 -20 0 20 40
V(t)

-200

0

200

I 
 (

t) P 4

S m. S sy
s

.

(a) (b)

(c) (d)

ω = 0.1 Hz
= 100.0 Hz

= 5000.0 Hz
ω

ω

(s
s)

(t
)

/2
/2

/2

π
π

π

(s
s)

(t
)

(s
s)

(t
)

(s
s)

(n
A

)

FIG. 3. (Color online) In (a)–(d), ionic current, I (ss)(t), probabil-
ity of ion conducting state, P

(ss)
4 (t), medium entropy production rate,

Ṡ(ss)
m (t), and system entropy production rate, Ṡ(ss)

sys (t), are plotted against
oscillating voltage (sinusoidal) with frequency ω/2π = 0.1,100.0,
and 5000.0 Hz, respectively, at NESS over a time period. In all
cases, hysteretic behavior is observed which vanishes at low and high
frequency domains.

(low, medium, and high) of the external voltage at steady
state over a period. The hysteresis is evident in both cases
and tends to vanish at very low and at very high frequencies
with the hysteresis loop area disappearing in these two limits.
We want to point out the nature of the P

(ss)
4 (t)-voltage plot

specifically at the two limiting situations; at low frequency of
the external voltage, P

(ss)
4 (t) oscillates significantly, whereas

at high frequency, the amplitude of the oscillation is much
smaller and P

(ss)
4 (t) deviates the most from its instantaneous

steady state (equilibrium) value, i.e., the value P
(ss)
4 (t) will

take if the time-dependent voltage is frozen at the value taken
at that instant.

A similar kind of hysteretic behavior is present in the
medium epr, [Ṡ(ss)

m (t)]-voltage, and the system epr, [Ṡ(ss)
sys (t)]-

voltage, plots as shown in Figs. 3(c) and 3(d) at the nonequi-
librium steady state for the same frequency values. Apart from
the vanishing hysteresis loop area at the limiting situations of
low and high frequencies, one can see from these plots that
the values of both Ṡ(ss)

m (t) and Ṡ(ss)
sys (t) tend to zero as ω → 0

(shown here with ω/2π = 0.1 Hz). However, at the high
frequency limit, these quantities have finite values although
the corresponding hysteresis disappears. The Ṡ(ss)

m (t)-voltage
plot becomes highly asymmetric in this limit, whereas the
Ṡ(ss)

sys (t)-voltage plot is almost symmetric. This amounts to a
finite value of total epr, implying that the steady state is a
NESS. This is also true for any intermediate frequency value
of the external voltage. All the entropy production rates tend
to zero and the NESS tends to equilibrium only at the ω → 0
limit. It is quite obvious that, in the low frequency limit, P (ss)

n (t)
tends to its equilibrium value. In this case, the condition of
detailed balance is satisfied as in the case of constant voltage.
Therefore, at steady state, the total entropy production rate,
Ṡ

(ss)
tot (t), becomes zero in the low frequency limit.

For a thorough analysis, we have plotted the total epr,
[Ṡ(ss)

tot (t)] vs voltage, at the NESS in Fig. 4 at the frequencies
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FIG. 4. (Color online) Total entropy production rate, Ṡ
(ss)
tot (t), is

plotted against oscillating voltage, V (t), at low, medium, and high
frequency values at steady state over a time period, depicted in (a),
(b), and (c), respectively. In (d), the normalized hysteresis loop area,
Ah, of the current-voltage and Ṡ

(ss)
tot (t)-voltage curves is plotted, which

passes through a maximum, indicating that hysteresis is dynamic in
nature.
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mentioned in Fig. 3. At the low frequency case with the
vanishing hysteresis loop area, Ṡ(ss)

tot (t) becomes almost zero at
the extremum points of the voltage, Ve = ±Va(= ±45 mV) as
shown in Fig. 4(a). Hence, at these two points the system is only
infinitesimally away from the equilibrium. Now at very low
frequency with extremely slow voltage variation, the system
can always adjust to the instantaneous value of the voltage.
Hence, one can roughly picturize the points Ve = ±45 mV as
the classical turning points of a simple pendulum where the
pendulum becomes stationary momentarily. With the increase
in the frequency of V (t), the response of the system to
the external driving starts to lag behind. This is reflected in
the plot with ω/2π = 100 Hz in Fig. 4(b), where Ṡ

(ss)
tot (t)

becomes close to zero at points 0 < |Ve| < Va . At ω → ∞,
the system totally fails to sense the ultrafast voltage variation
and sees only the average voltage value, V0. In this limiting
case, the two points mentioned above merge at Ve = V0 = 0
mV as shown in Fig. 4(c) for ω/2π = 5000 Hz. We have
also shown the variation of the hysteresis loop area, Ah for the
Ṡ

(ss)
tot (t)-voltage as well as the current-voltage hysteresis plots in

Fig. 4(d) at the NESS. The Ṡ
(ss)
tot (t)-voltage and current-voltage

hysteresis loop areas are calculated numerically by integrating
the value of Ṡ

(ss)
tot (t) and I (ss)(t) over a complete period

of oscillating voltage, V (t) according to the formula [54]
Ah = ∮

α(V (t))dV. Here α is Ṡ
(ss)
tot (t) or I (ss)(t). It is clear

that the hysteresis loop areas for the two plots maximize at
close but different frequency values, whereas at ω → 0 as
well as at ω → ∞ limits, both the hysteresis loop areas go to
zero. Therefore, the hysteresis observed in Ṡ

(ss)
tot (t)-voltage and

I (ss)(t)-voltage curves are dynamic in nature. Interestingly,
a close inspection of the Ṡ

(ss)
tot (t)-voltage plot reveals that

these two frequency limits of vanishing hysteresis differ
thermodynamically, as evident from the variation of total epr
with V (t). For the ω → 0 limit, the amplitude of Ṡ

(ss)
tot (t) tends

to zero as already mentioned, whereas, in the ω → ∞ limit,
its amplitude tends to a finite value.

For more clarification of the above statement, we have
plotted the average total epr over a time period, 〈Ṡ(ss)

tot (t)〉,
in Fig. 5(a) at NESS as a function of the frequency of the
external voltage. Here the average is defined as 〈Ṡ(ss)

tot (t)〉 =
1
T

∫ T

0 Ṡ
(ss)
tot (t)dt . From the figure, one can see that the average

total epr increases steadily from zero at very low frequency to
saturation at high frequency values. Therefore, the nonequi-
librium steady state reached by the system is infinitesimally
close to equilibrium at the ω → 0 limit, whereas it is
farthest from equilibrium at the ω → ∞ limit for the given
parameters of the model system and the amplitude of the
external voltage. This plot clearly shows that the low and
high frequency limits associated with vanishing hysteresis are
indeed thermodynamically distinct. Furthermore, in Fig. 5(b),
we have plotted the average current over a period, 〈[I (ss)(t)]sc〉
versus frequency at different voltage amplitudes. Here the “sc”
superscript indicates that the ionic current is scaled with the
nonlinear conductance, g(v). The functional form of g(V )
is generally an experimentally determined equation that can
vary from experiment to experiment. So to obtain the general
behavior of the ionic current we have calculated the scaled
current. From Fig. 5(b), it is observed that the average ionic
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FIG. 5. (Color online) (a) Average entropy production rate over a
period, 〈Ṡ(ss)

tot (t)〉, is plotted against frequency, ω/2π , with amplitude,
Va = 15,30,45, and 60 mV. The value of 〈Ṡ(ss)

tot (t)〉 saturates at higher
frequency values. (b) 〈[I (ss)(t)]sc〉 indicates the ionic current over
a period scaled with g(v) and is plotted against frequency, ω/2π ,
with the same amplitudes. With increasing the amplitude values,
〈[I (ss)(t)]sc〉 becomes almost constant in the high frequency; however,
〈Ṡ(ss)

tot (t)〉 increases with increase in the value of amplitude, Va . We
have also plotted the values of 〈Ṡ(ss)

tot (t)〉 in the high frequency limit
(ω → ∞) obtained from Eq. (41) at various amplitudes denoted with
the label “theory” and compared with the numerical results.

current, 〈[I (ss)(t)]sc〉, increases to saturation with increase in
the frequency value. It can be seen from Fig. 5(b) that in the
high frequency limit, 〈[I (ss)(t)]sc〉 becomes almost independent
of amplitude. However, from Fig. 5(a) it is evident that the
high frequency limiting value of 〈Ṡ(ss)

tot (t)〉 increases sharply
with increasing amplitude. In Fig. 5(a) we have also shown
this limiting value of 〈Ṡ(ss)

tot (t)〉 in the high frequency limit
(ω → ∞) obtained from the analytical expression given below

Ṡ
(ss)
tot (t) = nT

[
k1(0)k−1(0)2sinh(V ′(t))

k1(0) + nT k−1(0)

]
2V ′(t). (41)

Here V ′(t) = xV (t) with x = q

kBT ′ . For details of the
derivation see the Appendix.

For a clear understanding of the amplitude dependence of
〈Ṡ(ss)

tot (t)〉 and 〈[I (ss)(t)]sc〉, we have plotted these quantities
as a function of V 2

a for low, medium, and high frequency
values at NESS, shown in Fig 6. For oscillating voltage,
V 2

a is proportional to the energy supplied to the system
and Ṡtot is a measure of dissipative flux from the system.
From Figs. 6(a) and 6(c) it is observed that, at low and
medium frequencies, 〈[I (ss)(t)]sc〉 increases with an increase
in the value of V 2

a after passing through a minimum. Such
behavior is generated due to the determination of the current
from Eq. (39). However, at the high frequency limit, this
tendency vanishes and 〈[I (ss)(t)]sc〉 saturates with increase in
the value of V 2

a which is shown in Fig. 6(c). In Figs. 6(b),
6(d), and 6(f), we have plotted 〈Ṡ(ss)

tot (t)〉 as a function of V 2
a at

low, medium, and high frequencies, respectively. From close
inspection, one can observe an interesting difference among
the variations of 〈[I (ss)(t)]sc〉 and 〈Ṡ(ss)

tot (t)〉 as a function of
V 2

a . In the low and medium frequency regions, 〈[I (ss)(t)]sc〉
continues increasing with V 2

a , whereas 〈Ṡ(ss)
tot (t)〉 increases to a

saturation. This is evident from Figs. 6(a)–6(d). However, in
the high frequency limit the situation gets reversed, as shown
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FIG. 6. In (a), (c), and (e), the average ionic current over a
period at steady state, 〈[I (ss)(t)]sc〉, is plotted against square of
the amplitude, V 2

a at low (ω/2π = 0.1 Hz), medium (ω/2π = 10
Hz), and high frequency (ω/2π = 1000 Hz), respectively. Average
entropy production rate over a period at steady state, 〈Ṡ(ss)

tot (t)〉, is
plotted against V 2

a with the same frequency values which are depicted
in (b), (d), and (f), respectively.

in Figs. 6(e) and 6(f). Here 〈Ṡ(ss)
tot (t)〉 increases nonlinearly with

V 2
a but 〈[I (ss)(t)]sc〉 ultimately saturates. So the steep rise of the

dissipation function with the input power is associated with a
limiting ionic current. On the other hand, when the dissipation
function gets saturated, the current increases almost linearly as
a function of input power. Hence, the fraction of input energy
that goes out from the system as unavailable energy governs
the efficiency of the ion conduction.

We report another intriguing observation. We have plotted
the ionic current, I (ss)(t), the total entropy production rate,
Ṡ

(ss)
tot (t), and V (t) at high frequency, ω/2π = 5000 Hz, over a

period at steady state in Fig. 7. From Fig. 7(b), it is observed
that in the high-frequency regime, Ṡ(ss)

tot (t) oscillates with a time
period which is half of the external voltage, V (t). However,
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FIG. 7. The ionic current, I (ss)(t), total entropy production rate,
Ṡ

(ss)
tot (t), and oscillating voltage, V (t), are plotted with time at ω/2π =

5000 Hz over an oscillation period at NESS. The time required to
complete an oscillation cycle is the same for I (ss)(t) but half for
Ṡ

(ss)
tot (t) compared to that of voltage, V (t).

the time period of ionic current, I (ss)(t), is the same as that of
the external voltage, which is depicted in Fig. 7(a). Now, from
Eq. (41), it can be easily shown that Ṡ

(ss)
tot (t) = Ṡ

(ss)
tot (t + T/2),

where T is the period of the external voltage. For a detailed
derivation see the Appendix. Hence, at the high frequency
limit, the total epr at NESS oscillates with a frequency which
is double of that of the external voltage.

Before concluding, we discuss how the single ion channel
results can be extended for LT number of Shaker channels.
In Eq. (1), we have already discussed the kinetic scheme of a
single ion channel, where an ion channel remains in any one of
the five conformational states (C0 to C4) at a particular instant
of time. For LT number of channels, the kinetic scheme can
be written as [9]

m0

W(m0|m1)(t)−−−−−−−⇀↽−−−−−−−
W(m1|m0)(t)

m1

W(m1|m2)(t)−−−−−−−⇀↽−−−−−−−
W(m2|m1)(t)

m2

W(m2|m3)(t)−−−−−−−⇀↽−−−−−−−
W(m3|m2)(t)

m3

W(m3|m4)(t)−−−−−−−⇀↽−−−−−−−
W(m4|m3)(t)

m4, (42)

where the transition probabilities are given as
W (mn|m(n−1))(t) = mnw−1(n|n − 1)(t) and W (m(n−1)|mn)
(t) = m(n−1)w1(n − 1|n)(t). Here w−1(n|n − 1)(t) and
w1(n − 1|n)(t) are defined as in Eq. (4). Here mn specifies the
number of channels in the Cn conformational state (n varies
from 0 to 4) at time t with

∑4
n=0 mn = LT . The corresponding

master equation can be written as [9]

∂Q(m,t)

∂t

=
4∑

n=1

(mn + 1)w−1(n|n − 1)(t)Q(m(n−1) − 1,mn + 1,t)

+ (m(n−1) + 1)w1(n − 1|n)(t)Q(m(n−1) + 1,mn − 1,t)

−mnw−1(n|n − 1)(t)Q(m,t) − m(n−1)w1(n − 1|n)(t)

×Q(m,t). (43)

Here Q(m,t) is the probability of having the population state
vector m at time t where m ≡ (m1,m2,m3,m4) with m0 =
LT − ∑4

n=1 mn. For analytical simplicity, we have considered
the two-state Markov model instead of a five-state one by
assuming that all the ion channels are in either the inactive or
active state. Therefore, for the two-state Markov model, the
kinetic scheme can be written as

closed
k1(V (t))−−−−−⇀↽−−−−−

k−1(V (t))
open. (44)

These “closed” and “open” states are similar to the
conformational states m0 and m4 in Eq. (42), where all the
subunits in an ion channel remain in inactive and active states,
respectively. For this two-state case, the master equation can
be constructed in terms of the number of channels in the open
state at a particular instant of time as

dQ(m,t)

dt
= k1(V (t))(LT − m + 1)Q(m − 1,t)

+k−1(V (t))(m + 1)Q(m + 1,t)

− k1(V (t))(LT − m)Q(m,t) − k−1(V (t))m

×Q(m,t). (45)
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Here Q(m,t) is the probability of having m number of channels
in the open state at time t where the total number of channels,
LT is arbitrary. The master equation described in Eq. (45) looks
similar to that in Eq. (5) for a single ion channel consisting
of five conformational states. At constant voltage, solution
of Eq. (45) becomes a binomial distribution as described in
Eq. (6) and the average number of channels in open state is
given by 〈m(t)〉 = LT X(t), where X(t) is defined similarly
as in Eq. (7). At steady state, the value of X(t) becomes
X(ss) = k1(V )

k1(V )+k−1(V ) and the probability distribution becomes

Q(ss)(m) = LT !
m!(LT −m)! (X

(ss))m(Y (ss))LT −m. If LT is very large

and X(ss) is very small, LT !
(LT −m)! becomes (LT )m and (1 −

X(ss))(LT −m) ≈ exp(−X(ss)LT ). The probability distribution
then becomes Poissonian,

Q(ss)(m) = (LT X(ss))m

m!
exp(−X(ss)LT ), (46)

where X(ss)LT is the average number of ion channels in the
open state. At a particular time, t , the ionic current can be
calculated as

I (t) = g0g(V )(V − Vr )〈m(t)〉 = g0g(V )(V − Vr )LT Qo(t),

(47)

where Qo(t) is the open state probability of a single channel
for the two-state case and the other parameters carry similar
meanings, as described in Sec. III A. From the numerical
analysis of Eq. (45), we can also obtain the total epr, Ṡtot(t),
and other nonequilibrium thermodynamic quantities.

IV. CONCLUSION

In view of the physiological significance of the hysteretic
response, here we have given a nonequilibrium thermody-
namic description of a voltage-gated potassium ion channel
using the stochastic master equation approach. Starting from
an experimentally proposed five-state Markov process of a
Shaker potassium ion channel, the traditional single-parameter
Hodgkin-Huxley equation is shown to be connected with the
master equation corresponding to the stochastic transitions
between the five conformational states at fixed voltage. The
powered Boltzmann distribution of the steady-state probability
of the ion-conducting state is also obtained from the master
equation in this case. Now from thermodynamic analysis it
is observed that, for constant external voltage, the system
reaches equilibrium, indicated by the vanishing total entropy
production rate.

For oscillating voltage, the current as well as the entropy
production rates show dynamic hysteresis with vanishing area
of hysteresis loop for very low and very high frequencies of
the external voltage. However, by analyzing the total entropy
production rate we have shown that the two limiting situations
differ thermodynamically. At the very low frequency limit,
the system remains close to equilibrium, whereas, at high
frequency, it goes far away from equilibrium, associated with
a finite amount of dissipation. To find the efficiency of the ion
current production, the NESS is characterized by the nonlinear
dependence of the dissipation function on the power of the
external field. A strong nonlinear variation of the unavailable

energy flux with the input power dictates that an optimum
limit of frequency of the oscillating voltage is necessary for a
reasonable steady ionic current to appear. Another intriguing
aspect is that the total entropy production rate oscillates at
NESS with half of the time period of the external voltage in the
limit of high frequency. We have also discussed the extension
of the present analysis to multiple ion channels, which is easier
to tackle experimentally. The nonequilibrium thermodynamic
analysis done here for a potassium ion channel is also
generically valid for other Markov processes of similar ion
conduction problems, namely sodium ion channels, ryanodine
receptor, and IP3 receptors [43].
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APPENDIX: ESTIMATION OF TOTAL ENTROPY
PRODUCTION RATE AT HIGH FREQUENCY LIMIT

AT NESS

Here we have estimated the entropy production rate in the
high frequency limit from Eq. (38) at NESS. From numerical
analysis it is observed that for the parameters k1(0) and
k−1(0) considered in the text, the steady-state values of P0(t),
P1(t), and P2(t) tend to zero. Therefore, χ (t) in Eq. (14)
can be written as χ (t) ≈ k1(V (t)) and Ṡ

(ss)
tot (t) in Eq. (38)

can be expressed in terms of the steady-state probability of
ion-conducting state, P

(ss)
4 (t), as

Ṡ
(ss)
tot (t) = [

k1(V (t))
(
1 − P

(ss)
4 (t)

) − k−1(V (t))nT P
(ss)
4 (t)

]
× ln

k1(V (t))
(
1 − P

(ss)
4 (t)

)
k−1(V (t))nT P

(ss)
4 (t)

. (A1)

In the high frequency limit, the steady-state value of Ṡ
(ss)
tot

can be easily calculated by substituting the value of P
(ss)
4 (t)

from Eq. (32) into Eq. (A1), whereby we get

Ṡ
(ss)
tot (t) = nT

[
k1(V (t))〈k−1(V (t))〉 − k−1(V (t))〈k1(V (t))〉

〈K(t)〉
]

× ln
k1(V (t))〈k−1(V (t))〉
k−1(V (t))〈k1(V (t))〉 . (A2)

Here K(t) = k1(V (t)) + nT k−1(V (t)). When ω → ∞,
〈k1(V (t))〉 and 〈k−1(V (t))〉 can be written as

〈k1(V (t))〉 = f1k1(0)

and

〈k−1(V (t))〉 = f−1k−1(0), (A3)

where f1 = 〈exp[x1V (t)]〉 with x1 = q+
kBT ′ and f−1 =

〈exp[x−1V (t)]〉 with x−1 = q−
kBT ′ . As in the main text, for the

value of q+ ≈ −q−, we have taken q+ = q− = q. So we can
write x1 = x and x−1 = −x. Therefore, f±1 can be written as

f±1 = 1 ± 〈xV (t)〉 + (〈xV (t)〉)2

2
± (〈xV (t)〉)3

3!
+ · · · ,
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where 〈xV (t)〉 = 1
T

∫ T

0 xV0sin(ωt)dt . When n is odd,
〈xV (t)〉n = 0 and for even values of n, 〈xV (t)〉n becomes
independent of frequency, ω. Hence, we can write 〈k1(V (t))〉 =
f k1(0) and 〈k−1(V (t))〉 = f k−1(0), where f±1 = f . Using
these relations, Eq. (A2) can be written as

Ṡ
(ss)
tot (t) = nT

[
k1(0)k−1(0)2sinh(V ′(t))

k1(0) + nT k−1(0)

]
2V ′(t), (A4)

where V ′(t) = xV (t) with x = q

kBT ′ .
It can be easily shown that in the high frequency limit,

Ṡ
(ss)
tot (t) oscillates with a time period which is half of that of

the external voltage, V (t). To prove this, first, we note that

V (t + T
2 ) = Vasinω(t + T

2 ) = −Vasinωt = −V (t) and, thus,
sinhV ′(t + T

2 )] = −sinh(V ′(t)). It then follows from Eq. (A4)
that

Ṡ
(ss)
tot

(
t + T

2

)
= nT

[
k1(0)k−1(0)2sinh

[
V ′(t + T

2

)]
k1(0) + nT k−1(0)

]

× 2V ′
(

t + T

2

)
= Ṡ

(ss)
tot (t). (A5)

Therefore, in the high frequency limit, Ṡ
(ss)
tot (t) versus the

time curve becomes symmetric and it completes a cycle
at T/2.
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