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Anharmonic dynamics of intramolecular hydrogen bonds driven by DNA breathing
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We study the effects of the anharmonic strand-separation dynamics of double-stranded DNA on the infrared
spectra of the intramolecular base-pairing hydrogen bonds. Using the extended Peyrard-Bishop-Dauxois model
for the DNA breathing dynamics coupled with the Lippincott-Schroeder potential for N − H· · ·N and N − H· · ·O
hydrogen bonding, we identify a high-frequency (∼96 THz) feature in the infrared spectra. We show that this
sharp peak arises as a result of the anharmonic base-pair breathing dynamics of DNA. In addition, we study
the effects of friction on the infrared spectra. For higher temperatures (∼300 K), where the anharmonicity
of DNA dynamics is pronounced, the high-frequency peak is always present irrespective of the friction
strength.

DOI: 10.1103/PhysRevE.86.061913 PACS number(s): 87.14.gk, 87.64.K−, 07.05.Tp, 78.30.Er

I. INTRODUCTION

The structural stability and flexibility of biomacro-
molecules, which play important roles in biological function
[1–3], are primarily governed by hydrogen bonds (H bonds)
[4]. Since the H bonds are much weaker than covalent bonds,
biomacromolecules experience slow conformational motion
resulting from inherent thermal fluctuations at biological
temperatures. The double-stranded DNA molecule thereby
experiences thermal motions that spontaneously induce large
[5] openings and reclosings of the double helix (viz., “DNA
breathing” [6] or “DNA bubbles” [7]). Cellular proteins exhibit
similar conformational motions [8]. Many biologically impor-
tant processes require such openings, which are characterized
by local stretching or even disruption of intramolecular H
bonds. For example, reading the genetic information encoded
in DNA (transcription) or making copies of the DNA in the cell
(replication) are processes that require local openings of the
double helix [9,10]. Thus, the biomolecular H bonds are sub-
ject to strongly anharmonic dynamics of ubiquitous and funda-
mental relevance to our understanding of biological systems.

Hydrogen bonds are formed by the localized attractive
interaction between a hydrogen donor and an adjacent acceptor
group [see Fig. 1(a)]. One widely used tool for studying
H bonds in biological macromolecules is infrared (IR) and
far-infrared (FIR) spectroscopy [11]. However, at biological
temperatures, the spectra are complicated by the fact that the
proton motion is coupled with the stochastic intramolecular vi-
brations, caused by the surrounding thermal bath. Of particular
importance for DNA is the localized large-amplitude breathing
motion, caused by the thermal fluctuations of the surrounding
water. This motion creates local openings (“bubbles”) of the
double helix, which leads to slow stochastic anharmonic
variations of the length, R(t) [Fig. 1(a)], of the H bonds
between complementary base pairs and thereby affects the
corresponding proton vibrations.

Because of the complexity of the problem, realistic models
of biomacromolecular spectra, accounting for the surrounding
water and temperature, require application of the sophisticated
and numerically involved machinery of all-atoms molecular
dynamics and quantum-chemical ab initio methods (see

Ref. [11] and the works cited therein). However, to disentangle
the result of such studies in the absence of a clear physical
picture is challenging. Therefore, it is often desirable to
consider simpler, phenomenological models, which allow
some of the important issues to be addressed at much lower
theoretical and computational cost. Although simplistic, such
models can be useful in identifying the basic physics of
biological macromolecules.

As a first step towards characterizing the effects of
biomolecular breathing dynamics on H-bond IR spectra, we
develop a phenomenological model of a single intramolecular
H bond embedded in a short DNA molecule. We separate the
H-bond system into a quantum proton subsystem and classical
acceptor/donor (i.e., base pair) motion in a stochastic bath;
recently, similar approaches have been used in Refs. [12,13].
To treat the proton part, we use the Lippincott-Schroeder
potential [14]. This strongly anharmonic potential has been
extensively used as a phenomenological model of H bonds and
has shown its reliability for various molecular systems [15,16].
We couple the proton system to the strongly anharmonic
breathing of a short DNA chain in a thermal environment.
The DNA breathing is modeled by the nonlinear extended
Peyrard-Bishop-Dauxois (EPBD) model [17,18] of DNA
dynamics. The EPBD model was originally constructed to
describe the stretching modes of complementary base pairs in
double-stranded DNA and has been shown to be quantitatively
consistent with an array of experimental observations [19].

We calculate the IR spectra of such H-bond systems, and
in particular of the fundamental N − H stretching vibrations,
within the framework of linear response theory, in terms of
Fourier transformation of the quantum dipole time correlation
function in non-Condon approximation. The derived spectra
display a number of interesting features due to the strongly
nonlinear nature of both subsystems. Specifically, we identify
a sharp high-frequency peak and show that it arises as a result
of the anharmonic base-pair breathing of DNA. We also study
the effects of the friction and temperature on the spectra. In
particular, we demonstrate that at high temperatures (∼300 K),
where the anharmonicity of DNA breathing is pronounced, this
peak is always present in the IR spectrum, irrespective of the
friction strength.
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FIG. 1. (Color online) (a) Schematic representation of the donor,
D, and acceptor, A. r(t) is the proton and H the coordinate; R(t) is
the length of the hydrogen bond. (b) The intramolecular hydrogen
bonds, N − H· · ·N, and N − H· · ·O, between complementary bases
in the DNA molecule; adenine-thymine (AT) and guanine-cytosine
(GC). (c) Illustration of the proton potential as a function of the proton
coordinate r . The ground-state wave function ψ(r) is illustrated in
the potential.

II. MODELS AND METHODS

The intramolecular H bonds in DNA base pairs [i.e.,
adenine-thymine (AT), and guanine-cytosine (GC)] are of two
types: N − H· · ·N and N − H· · ·O [see Fig. 1(b)], both of
which are asymmetric. Numerous experimental and theoretical
observations [20] have established that the potential-energy
surface of the proton in such H bonds can be adequately
represented by a double-minimum potential [see Fig. 1(c)].
This double-well structure has important consequences, such
as the large polarizability of the H bond [21], which is mainly
driven by the proton tunneling between the two minima. Such
polarizability can be drastically influenced by the presence of
even a small external field (the effect is strongest for symmetric
potentials, but it is also present for asymmetric potentials) and
can be orders of magnitude larger than in systems (e.g., free
water) where the main contribution is due to electrons [22].
Therefore, the direct influence of the external field on the
electrons can reasonably be neglected in the treatment of
biomolecular H bonds.

As discussed above, at biological temperatures, an im-
portant feature of the intramolecular DNA dynamics is the
localized large-amplitude breathing motion, caused by the
thermal fluctuations. At these temperatures the dynamics of
the H bonds between complementary bases [Fig. 1(c)] can be
qualitatively understood as a result of the anharmonic coupling
of two distinct [fast (quantum) and slow (classical)] modes.
To treat this coupling, we utilize the Born-Oppenheimer
approximation, in which the slow mode is represented as
a classical and stochastic vibrational displacement of the
acceptor-donor pair, i.e., the transverse stretching of the
hydrogen bond. This slow mode is coupled to the fast and
intrinsically quantum mode, associated with the motion of the
proton in the potential created by the two nucleotides forming
the DNA base pair.

For a single (quasi-one-dimensional) hydrogen bond, the
proton Hamiltonian is

Ĥproton = − h̄2

2mp

∂2

∂r2
+ V (r,R). (1)

At biological thermal and solvation conditions, the length of
the H bond R is a parameter in Ĥproton. Due to the large masses
of the nucleotides and their slow conformational motion,
this problem is well posed within the Born-Oppenheimer
approximation, and the back-reaction of the quantum motion
on the classical vibration can be neglected. The proton
couples to the classic motion due to changes in the base-pair
displacement, which modulates the shape of V (r,R). For the
proton potential we use the strongly nonlinear Lippincott-
Schroeder (LS) potential [14]

VLS(r,R) = V1(r) + V2(r,R) + V3(R) + V4(R). (2)

Here, V1 represents the donor-proton interaction and V2 the
proton-acceptor interaction, and V3 and V4 represent the
repulsive and attractive interactions between the donor and
acceptor groups and are functions only of the acceptor-donor
distance, R(t). These potentials have the form

V1 = D
[
1 − e− ν

2r
(r−r0)2]

, (3)

V2 = D∗[1 − e
− ν∗

2(R−r) (R−r−r∗
0 )2] − D∗, (4)

V3 = Ae−bR, (5)

V4 = −B/Rm. (6)

In Eqs. (3)–(6) D and r0 are the dissociation energy and
equilibrium distance of the donor-proton bond, respectively;
D∗ and r∗

0 are similar parameters for the proton-acceptor bond.
The parameter ν = κr0/D, where κ is the force constant for the
stretching vibration of the non-hydrogen-bonded donor-proton
group; similarly, ν∗ = κ∗r∗

0 /D∗. The parameters A and B can
be determined at the equilibrium base-pair distance R0 (for
estimates, see, for example, Ref. [23]), at which we require
(∂VLS/∂R) = 0. This condition has to be evaluated at the
equilibrium proton position r , determined from (∂VLS/∂r) = 0
(for details see Ref. [14]). The numerical values of the
parameters are given in Ref. [24].

Note that the use of the LS potential is not formally justified
for the specificity of the DNA intramolecular H bonds, since
this potential has primarily been designed and optimized for
bonds in much simpler molecules (e.g., water molecules).
Detailed comparison with quantum chemistry computations,
however, show that LS is a reasonable approximation for the
GC base pair [25]. Here, we are using the parameters justified
for GC base pair, as well as for AT base pairs, assuming that
the LS potential retains the most important qualitative features
present in the microscopic calculations and it will provide
at least qualitative insight into the problem. In the case of
N − H· · ·O bonds, there is the additional complication that the
NH stretching of the H bond is coupled to the NH2 stretching
vibration [26], which makes it intrinsically two dimensional.
For that reason, we concentrate on the N − H· · ·N mode.
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For the H-bond length, R(t), we have R(t) = R0 + yn(t),
where R0 is the equilibrium distance between two complemen-
tary nucleotides and yn(t) is the stochastic change of this length
(at the nth base pair) caused by the solvent. The stochastic
behavior of yn(t) at room temperature is often modeled
as a classical Ornstein-Uhlenbeck process that satisfies a
harmonic Langevin equation [27]. Here we will use instead the
stochastically driven EPBD model [18,28] of double-stranded
DNA in order to capture the nonlinear behavior of the DNA
breathing,

mÿn = −U ′(yn) − W ′(yn+1,yn) − W ′(yn,yn−1)

−mγ ẏn + η(n,t), (7)

where

U (yn) = Dn[exp (−anyn) − 1]2 (8)

represents the hydrogen bonding of the complementary bases
and

W (yn,yn−1) = kn,n−1

2

[
1 + ρe−β(yn+yn−1)

]
(yn − yn−1)2 (9)

represents the stacking energy between consecutive base pairs.
γ and η(n,t) are the drag and stochastic drive of the solvent
and obey the standard fluctuation-dissipation relationship. The
parameters Dn, an depend on the type of base pair (AT or GC)
[17]. The dinucleotide stacking force constants kn,n−1 depend
on the nature of the consecutive nucleotides (n,n − 1) [18].
The values β = 0.35 and ρ = 2 were determined based on
DNA melting experiments [29]. It is noteworthy that the base
pairs in a poly(G) sequence (containing only guanine bases in
the 5′ to 3′ strand) open significantly less than the base pairs
of a poly(A) sequence (containing only adenine bases in the
5′ to 3′ strand). Another important feature of the distribution
of R(t) is the long and slowly decaying tail, suggesting the
existence of large bubble openings in the sequence [the tail is
more pronounced for poly(A)].

We treat the anharmonic coupling between the fast quantum
and the slow classical modes in several steps. First, we
numerically solve the Schrödinger equation with the LS
potential for a broad range of values of R and obtain the
energy levels and the eigenstates of the proton. Specifically,
we solve the Schrödinger equation with the LS potential by
direct diagonalization for each value of R. To illustrate the
results, we show in Fig. 2 the energetic difference, ω01(R),
between the proton ground state and the first excited state
as a function of R. Note that due to the strong anharmonic
character of the LS potential, ω01(R) has a rather nontrivial
behavior. For R > 3.5 Å ω01(R) saturates at about 96 THz.
This saturation reflects the fact that for larger openings (viz.,
local disruption of the H bond) the LS potential has two distinct
and well-separated wells, and tunneling between these states
is practically impossible. Note that a similar effect should be
present for all realistic H-bond potentials that take into account
the DNA breathing, i.e., the local disruption of H bonds. Next,
from the classical (slow) time dependence of the R(t) we have
the time dependence of the dipole moment operator μ̂(R)
and the time dependence of the energy levels ω0k(R). We
calculate the time dependence of the dipole moment matrix el-
ements, μ0k(t), and the dipole-dipole autocorrelation function

FIG. 2. (Color online) The energy difference ω01 = (E1 − E0)/h̄
between the ground state E0 and the first excited state E1 (E0 and E1

are the first eigenvalues of Ĥproton) versus base-pair separation, R, of
the N − H· · ·N [solid (blue) line] and N − H· · ·O [dashed (red) line]
H bonds, as modeled by the Lippincott-Schroeder potential.

〈μ(0)μ(t)〉 =
∑

k

〈|μk0(0)|2e−i
∫ t

0 dτω0k(τ ))
〉
, (10)

whose Fourier transform

I (ω) = 1

2π

∫ ∞

−∞
dte−iωt 〈μ(0)μ(t)〉 (11)

is related to the IR absorption coefficient

α(ω) = 4π2ω

3Vh̄cnref(ω)
(1 − e−βh̄ω)I (ω). (12)

Here V is the system volume, nref(ω) the refractive index at
frequency ω, c is the speed of light, and β = 1/kBT , with kB

the Boltzmann constant and T the temperature.

III. RESULTS AND DISCUSSION

There are two distinct limits of the time dependence of the
dipole moment autocorrelation function [Eq. (10)] that can be
discussed separately. In the limit of large friction the classical
system becomes overdamped and the stochastic averaging in
Eq. (10) can be performed by using the probability distribution,
P (R), for the classical variable, R(t). This statistical approach
was pioneered by Bratož et al. [30] (see also Ref. [31]). In this
limit the dipole-dipole autocorrelation function simplifies to

〈μ(0)μ(t)〉 =
∑

k

∫ ∞

0
P (R)μ2

0k(R)e−iω0k (R)t dR. (13)

Generally, in this limit we expect the spectrum to consist
of peaks associated with the proton transitions at the most
probable R = Rm, broadened by the variation of the transi-
tion frequencies ω0k(R(t)) with R (through its distribution
function). In the opposite limit of low friction the classical
system is underdamped and we can think of the system
as two coupled strongly anharmonic oscillators (dynamical
approach) [27]. In this case the frequency ω01(R(t)), although
with a stochastic nature, demonstrates certain periodicity in
time, and we expect the coupling to produce satellite peaks,
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FIG. 3. (Color online) Equilibrium distributions P (R) of the
base-pair separation, R [R(t) = R0 + yn(t)], at T = 300 K for
poly(A) [solid (red) line] and poly(G) [dashed (black) line] sequences
as generated by 1-μs EPBD Langevin dynamics. In order to highlight
the long tails of the distributions the inset shows the same distributions
in a semilogaritmic scale.

shifted by the frequency of the classical slow motion: �, of
the main proton transitions (see Ref. [27], which presents an
extensive discussion of the relevant energy/time scales and
gives precise definitions of the limits of “low” and “high”
friction).

We begin with the high friction limit that will provide
us with important insights into the general problem. For
simplicity, we will, from now on, only consider transitions
to the first excited state (n = 1). In order to obtain the equi-
librium distributions P (R), we performed Langevin dynamics
simulations of the EPBD model. Specifically, we generated
1000 independent trajectories, each of 1-ns duration, which
subsequently are binned at 1-fs resolution to create P (R).
Figure 3 shows the distributions for poly(A) and poly(G)
sequences, respectively. We can now use these distributions
in the described statistical approach formalism, Eq. (13).
The resulting IR spectra are shown in Fig. 4. In Fig. 4(a)
the spectra for both poly(A) and poly(G) at low temperature
(T = 77 K) are shown. The central peak is due to the proton
transition from the ground state to the first excited state, and
the broadening results from the thermal fluctuations of the
classical coordinate, R(t). The differences in broadening and
the peak maximum position for the two sequences can be
traced to the different features in the probability distribution
of P (R). The inset in Fig. 4(a) shows the room-temperature
spectra for the same sequences. We can see that the shape of
the IR absorption has changed dramatically as a result of the
increase of temperature. The low-temperature peak has been
reduced [for poly(G)] and completely smeared [for poly(A)],
while a new sharp peak has emerged at higher frequencies.
The appearance of such a sharp feature at high temperatures
at first seems puzzling but is, in fact, a natural consequence
of the strong anharmonicity of both the classical and quantum
subsystems. At room temperatures, because of its nonlinearity,
we expect the EPBD model to produce a significant density of

FIG. 4. (Color online) IR spectra of a N-H..N bond calculated
by the statistical approach, Eq. (13). A) Low temperature T = 77K

spectra for poly(A) (solid (red) line) and poly(G) (dashed (black) line)
sequences. Inset shows the spectra at T = 300K . B) Temperature
dependence of poly(G) spectra. Dash-dotted (black) line shows T =
77K , dashed (blue) line T = 280K , and solid (red) line T = 300K .
Inset shows the temperature dependence of poly(A) sequence. C)
Comparison of results from statistical approach (solid (red) line) and
dynamical approach (black squares) derived in high friction limits,
γ = 2000ps−1.

bubble states representing the breathing dynamics of the DNA
molecule. This leads to an extended tail in the distribution
P (R) (Fig. 3). As already explained, however, all the states
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with R > 3.5 Å results in a frequency response around 96 THz,
and this bubble density of states produces the new sharp peak.
Hence, the larger and more frequent the bubbles are, the more
intense is this peak. Note that as the temperature increases
the most probable value Rm also increases, producing a blue
shift of the peak, associated with proton transitions for Rm.
As a result of this shift, the two peaks essentially merge in the
poly(A) case and produce a single, intense, and sharp peak,
with a broad shoulder on the low-frequency side. In the case of
poly(G) the two features are still well separated and about equal
in intensity. We can also follow the temperature dependence of
the high-frequency peak for the poly(G) [shown in Fig. 4(b)].
Note how it appears and grows without moving in energy or
changing its width, which is consistent with our interpretation.
The low-temperature peak, in contrast, undergoes a (small)
blue shift and also becomes broader, as expected.

Now we turn to the dynamical approach. We treat it by
using the EPBD model to numerically generate representative

FIG. 5. (Color online) IR spectra of a N − H· · ·N bond calculated
by the dynamical approach in the low friction limit γ = 0.05 ps−1.
(a) Poly(G) sequence for T = 77 K [dashed (black) line] and T =
300 K [solid (red) line]. (b) Poly(A) sequence for T = 77 K [dashed
(black) line] and T = 300 K [solid (red) line].

trajectories for R(t) and use these to calculate I (ω). First,
we compare results from the dynamical approach derived in
the limit of high friction with that obtained by the statistical
approach. We see that the two calculations give essentially
identical results [Fig. 4(c)]. Turning to the case of low friction,
γ = 0.05 ps−1, we expect the classical frequency � to enter the
spectrum of the quantum system producing additional peaks in
the vicinity of the peaks ascribed to the proton transitions at the
most probable R. At low temperatures, in the case of a poly(G)
sequence, we see one central sharp peak, accompanied by
two much weaker peaks at roughly ω ± �, where ω/� is the
quantum (classical) frequency [Fig. 5(a)]. Similar structures
have been observed in previous calculations, even for the much
simpler case of coupled harmonic oscillators [27,32]. The
case of the poly(A) sequence differents markedly [Fig. 5(b)].
Here we observe several peaks, at approximately ω ± n

2 �,
where n is an integer. The occurrence of subharmonics in
the classical system and the fact that the intensity of several
of the central peaks is comparable is a clear signature of
the strongly anharmonic dynamics of the poly(A) sequence.
With increasing temperature, the respective structures survive
(albeit broader and less intense) but are again dwarfed by
a peak around 96 THz at room temperatures [Fig. 5(b)]. Its
origin is exactly the same as in the case of large friction—
the huge density of bubble states corresponding to this
frequency, which become increasingly pronounced with the
temperature.

IV. CONCLUSION

We have reported effects of the anharmonic strand-
separation dynamics of double-stranded DNA on the infrared
spectra of the intramolecular base-pairing H bonds. We
have used the well-established EPBD model to characterize
anharmonic dynamics of DNA sequences. This dynamics was
coupled to Lippincott-Schroeder potentials for N − H· · ·N
and N − H· · ·O H bonds and linear response calculations
were performed to determine infrared spectra. A new high-
frequency feature at about 96 THz was identified to arise
as a direct result of the anharmonic breathing dynamics,
i.e., as a result of the already-observed [6,7] base flipping
(H-bond disruption) from the DNA stack. We show that this
feature dominates the NH line in bulk water irrespective of
the dissipation environment, at least at high temperatures
(∼300 K), where the DNA dynamics is highly anharmonic and
should not be very sensitive to the particulars of the H-bond
models that can take into account local and temporal disruption
of the H bond. While experimental observations of this novel
spectral feature may be hampered by absence of bulk water, or
by spectral interference from infrared signatures arising from
the solvent, e.g., from OH stretching absorption of surrounding
water and from NH2 stretching absorption as well from the
absorption of the H bonds of the rest of the base pairs in
the sequence, its existence could present an intriguing new
path to quantify and characterize the anharmonic dynamics
of double-stranded DNA. In particular, the observation and
detailed experimental interrogation of this feature may lead
to an efficient submillimeter molecular spectroscopy method
for the study of low-frequency nonlinear dynamical proper-
ties of nucleic acids and even of other complex biological
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molecules. As it has becoming increasingly clear that large-
amplitude motions of biological molecules play a significant
role in important biological processes such as transcription
and protein-DNA interactions [19] experimental methods to
characterize and even control [33] these motions will become
increasingly important.
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