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Low-frequency dielectric dispersion of brain tissue due to electrically long neurites
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The dielectric properties of brain tissue are important for understanding how neural activity is related to
local field potentials and electroencephalograms. It is known that the permittivity of brain tissue exhibits strong
frequency dependence (dispersion) and that the permittivity is very large in the low-frequency region. However,
little is known with regard to the cause of the large permittivity in the low-frequency region. Here, we postulate
that the dielectric properties of brain tissue can be partially accounted for by assuming that neurites are of
sufficient length to be “electrically long.” To test this idea, we consider a model in which a neurite is treated
as a long, narrow body, and it is subjected to a stimulus created by electrodes situated in the region external
to it. With regard to this electric stimulus, the neurite can be treated as a passive cable. Assuming adequate
symmetry so that the tissue packed with multiple cables is equivalent to an isolated system consisting of a single
cable and a surrounding extracellular resistive medium, we analytically calculate the extracellular potential of
the tissue in response to such an externally created alternating-current electric field using a Green’s function
that we obtained previously. Our results show that brain tissue modeled by such a cable existing within a purely
resistive extracellular medium exhibits a large effective permittivity in the low-frequency region. Moreover, we
obtain results suggesting that an extremely large low-frequency permittivity can coexist with weak low-pass filter
characteristics in brain tissue.

DOI: 10.1103/PhysRevE.86.061911 PACS number(s): 87.19.rf, 87.85.dm, 87.50.C−

I. INTRODUCTION

The dielectric properties of brain tissue are important for
understanding how neural activity is related to local field
potentials (LFPs) and electroencephalograms (EEGs) and for
understanding how extracellular electric fields and transcranial
current stimulation affect neuronal activity. It has not yet been
established whether or not the permittivity of brain tissue
is negligible with regard to neural activity in the frequency
range 1 Hz–1 kHz. It has been reported that the permittivity
of biological tissue exhibits a strong frequency dependence,
referred to as dielectric dispersion [1–7]. Schwan measured
the dielectric constant of various types of biological tissue
over a wide range of frequencies and identified three major
dispersion regions: α dispersion (105–106 in the range 10 Hz–
1 kHz), β dispersion (102–105 in the range 1 kHz–1 MHz),
and γ dispersion (below 102 in the GHz range). Taking
these observations into account, it has been argued that the
capacitive effects of biological tissue in the 1 Hz to several kHz
range are negligible [8] and that a macroscopic mass of tissue
subjected to an oscillating electric field in this range behaves as
a purely resistive material. In line with this argument, Logoth-
esis et al. measured the impedance spectrum in cortical tissue
of the brain of a monkey in vivo and reported that the amplitude
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of the impedance drops by only 1.9 dB as the frequency
increases from 1 Hz to 5 kHz. They concluded that cortical
tissue possesses the properties of a simple ohmic conductor [9].
However, Gabriel et al. reported higher values of the permittiv-
ity in brain tissues: 107–108 in the 10–100 Hz frequency range
[10–12]. If this actually is correct, it may not be valid to con-
sider brain tissue as an ohmic conductor. However, there is yet
no theory that accounts for such unusually high permittivity in
the low-frequency range [13,14]. The Maxwell-Wagner-Sillars
theory describes β dispersion, but the dielectric increment
predicted by this theory is far too small to account for the large
permittivity at low frequency. Counterion polarization theories
describe α dispersion, but in the case of long neurites these
theories only account for the dispersion at frequencies lower
than 1 Hz [15]. In order to determine whether we can safely
ignore capacitive properties of brain tissue and other types of
biological tissue, we need to better understand the mechanisms
of low-frequency dielectric dispersion.

Recently, we reported theoretically that a significant amount
of secondary current flows axially along a cable when it
is subjected to a direct-current (dc) electric field [16]. This
study was carried out in an attempt to account for the
response of the membrane potential of hippocampal pyramidal
neurons to a dc electric field [17,18]. Recent experimental
and numerical studies suggested that the membrane resistivity
of the distal apical dendrites of cortical and hippocampal
pyramidal neurons may be significantly lower than that of
the proximal dendrites and the soma [19–22]. In the previous
work, the inhomogeneous membrane resistivity of dendrites
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was modeled by assuming that its effect can be approximated
by the effect of the shunt conductance attached to the uniform
cable at one end, and we analytically solved cable equations for
finite cylindrical cables with and without a leak conductance
attached to one end. Then, we showed that spread speeds of
the secondary longitudinal current in a cable with a shunt
conductance attached to one end are slower than those in a
cable with both ends sealed (see Fig. 6 in Ref. [16]). Here, we
conjecture that the abundance of electrically long neurites,
i.e., dendrites and axons, might cause the low-frequency
dielectric dispersion of brain tissue, noting that the secondary
longitudinal current in the neurites might provide the slow
polarization necessary to yield low-frequency dispersion. To
test this idea, here we analytically calculate the membrane
potential and the extracellular potential of a passive cable in
cases with and without a shunt conductance attached to one
end, in the presence of an alternating-current (ac) electric field.
First, we model brain tissue as a purely resistive extracellular
medium and multiple cables aligned in the same direction,
and under assumptions of symmetry described below, we
prove that the tissue model packed with multiple cables is
equivalent to an isolated system consisting of a single cable and
a surrounding extracellular resistive medium. Thus, under the
symmetry assumptions, the electrical behavior of the tissue can
be described with a set of equations for the membrane potential
and the extracellular potential of such a single cable. To solve
the equation for the ac electrical field, we use the Green’s
function we obtained in a previous study [16]. By choosing
physiologically reasonable values for the diameter, length,
and the capacitance of the membrane, the resistivity of the
membrane, the intracellular space, and the extracellular space,
we calculate the membrane potential and the extracellular
potential for the ac field with the frequency in the range 1 Hz–1
MHz. Then, from the extracellular potential, we calculate the
effective permittivity and the conductance of the tissue.

Our calculation shows that the effective permittivity of the
tissue for the direction parallel to the cable can be greater than
108 at low frequency if the cable is sufficiently long, but the
tissue does not possess low-pass filtering characteristics. We
conjecture that a very large effective permittivity of brain tissue
in the low-frequency region may result from the existence of
long, cablelike structures, and the magnitude of the capacitive
current in the tissue may be comparable to the magnitude of the
resistive current even in the low-frequency region. Moreover,
we obtain results suggesting that extremely large permittivity
and capacitive current in the low-frequency region can coexist
with weak low-pass filter characteristics in the tissue.

II. METHOD

A. Mean field model of brain tissue consisting of N identical
passive cables and a purely resistive extracellular medium

Brain tissue is dense with elongated neurites aligned in the
same direction, as shown in Fig. 1(A). In this paper, we aim to
analytically describe the electric response of an extracellular
medium to extracellular stimuli created by an anode and a
cathode placed in the extracellular space [Fig. 1(A)]. Brain
tissue subjected to an electric field is described by a model
consisting of N cables and a three-dimensional extracellular
space filled with a purely resistive medium. For the purpose of

mathematical tractability and simplicity, we assume that all of
the N cables are identical and aligned in the same direction,
the extracellular resistive medium is spatially uniform, and the
currents in the intracellular and the extracellular spaces flow
longitudinally and are uniformly distributed over the cross
sections of the respective structures. Under these symmetry
assumptions, the three-dimensional extracellular resistive ex-
tracellular space can be described by a single one-dimensional
resistive extracellular space and the tissue can be described
by a mean field model in which the N identical cables are
mutually coupled only through the one-dimensional resistive
extracellular space as shown in Fig. 1(B) [23].

Brain tissue subjected to an electric field is described
by a model consisting of N cables and a three-dimensional
extracellular space filled with a purely resistive medium. For
the purpose of mathematical tractability and simplicity, we
assume that all of the N cables are identical and aligned
in the same direction, the extracellular resistive medium is
spatially uniform, and the currents in the intracellular and
the extracellular spaces flow longitudinally and are uniformly
distributed over the cross sections of the respective structures.
Under these symmetry assumptions, the three-dimensional
extracellular resistive extracellular space can be described
by a single one-dimensional resistive extracellular space
and the tissue can be described by a mean field model in which
the N identical cables are mutually coupled only through
the one-dimensional resistive extracellular space as shown in
Fig. 1(B) [23].

In the circuit illustrated in Fig. 1(B), Kirchhoff’s first law
yields the following equations for the intracellular potential
V k

in(x,t) of the cable k (=1,2, . . . ,N), and the extracellular
potential Vext(x,t):

1

rin

N∑
k=1

∂2V k
in(x,t)

∂x2
= − 1

r̃ext

∂2Vext(x,t)

∂x2
, (1)

1

rin

∂2V k
in(x,t)

∂x2
= cmem

∂
[
V k

in(x,t) − Vext(x,t)
]

∂t

+ 1

rmem

[
V k

in(x,t) − Vext(x,t)
]
. (2)

Here, rin and r̃ext are the intracellular resistance (�/cm) of each
identical cable and extracellular resistance (�/cm), and rmem

and cmem are the membrane resistance (� cm) and membrane
capacitance (F/cm) of each identical cable.

Because identical cables do not interact directly between
each other but only through the single one-dimensional
resistive extracellular space, N identical cables have the same
membrane potential as each other:

V k
in(x,t) = Vin(x,t). (3)

In this condition, defining Vmem(x,t) as Vin(x,t) − Vext(x,t),
Eqs. (1) and (2) can be rewritten as

rmemcmem
∂Vmem(x,t)

∂t
= rmem

rin + Nr̃ext

∂2Vmem(x,t)

∂x2

−Vmem(x,t), (4)

rmem

r̃ext

∂2Vext(x,t)

∂x2
= − rmem

rin + Nr̃ext

∂2Vmem(x,t)

∂x2
. (5)
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FIG. 1. A model of brain tissue dense with neurites. (A) Brain tissue is densely packed with neurites elongated along the same direction.
To model the dielectric properties of brain tissue, we derive an analytical description of the electric response of the extracellular medium
to extracellular stimuli created by an anode and a cathode situated in the extracellular space. Brain tissue subjected to an electric field is
described by a model consisting of N cables and an extracellular space filled with a purely resistive medium. (B) Mean field model consisting
of N identical cables mutually coupled only through a single one-dimensional resistive extracellular space. Under the assumption that all of
the N cables are identical and aligned in the same direction, the extracellular resistive medium is spatially uniform, and the currents in the
intracellular and the extracellular spaces flow longitudinally and are uniformly distributed over the cross sections of the respective structures,
the tissue packed with multiple identical cables can be exactly described by the mean field model. (C) Equivalent single cable model. Under the
symmetry assumptions described above, the mean field model is equivalent to an isolated system consisting of a single cable and a surrounding
extracellular resistive medium. The extracellular region is assumed to occupy the region between two coaxial cylinders of diameters d and dext

(dext > d), while the intercellular region (i.e., the cable) occupies the region inside the inner cylinder.

Thus, the mean field model is equivalent to a single cable
model. Note that Eq. (5) has the same form as the Poisson
equation, which is often used in current source density (CSD)
analysis.

B. Boundary conditions

We consider N identical cables of length of L (cm)
subjected to an ac electric field created by an anode and
cathode located in the extracellular space [16,24], as shown

in Fig. 1(A). Stuart and Spruston [19], Inoue et al. [20],
Golding et al. [21], Omori et al. [22], and Akiyama et al. [18]
reported that the membrane resistivity of the distal apical
dendrites of cortical and hippocampal pyramidal neurons may
be significantly lower than that of the proximal dendrites and
the soma. As in a previous work [16], the inhomogeneous
membrane resistance of dendrites is modeled by assuming
that its effect can be approximated by the effect of the shunt
conductance gL attached to the uniform cable at x = L.
In the mean field model, this situation is characterized by
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the following boundary conditions, which are straightforward
extensions of those used in Monai et al. [16]:

∂V k
in(x,t)

∂x

∣∣∣∣
x=0

= 0,

∂V k
in(x,t)

∂x

∣∣∣∣
x=L

= −ringL

[
V k

in(L,t) − Vext(L,t)
]
, (6)

(k = 1, . . . ,N),

∂Vext(x,t)

∂x

∣∣∣∣
x=0

= −r̃extĨstim(t),

∂Vext(x,t)

∂x

∣∣∣∣
x=L

= −r̃extĨstim(t)

+ r̃ext

N∑
k=1

gL

[
V k

in(L,t) − Vext(L,t)
]
. (7)

Here, Ĩstim(t) is a time-varying stimulus current created by the
anode and cathode located in the extracellular space. If gL = 0,
then the cable is sealed at both ends and symmetric with respect
to direction along its axis. In this case, there is no current flow
through either end. If gL �= 0, then at x = L, some current
flows between the intracellular and the extracellular media
through the shunt. As mentioned above, in the mean field
model, N identical cables have the same membrane potential
as each other. Applying Eq. (3) to those boundary conditions
and subtracting the boundary conditions for the intracellular
potential from those for the extracellular potential, we derive
the boundary conditions for the membrane potential:

∂Vmem(x,t)

∂x

∣∣∣∣
x=0

= r̃extĨstim(t),

(8)
∂Vmem(x,t)

∂x

∣∣∣∣
x=L

= r̃extĨstim(t) − (rin + Nr̃ext)gLVmem(L,t).

Using the definition of the membrane potential, we can rewrite
the boundary conditions for the extracellular potential as

∂Vext(x,t)

∂x

∣∣∣∣
x=0

= −r̃extĨstim(t),

(9)
∂Vext(x,t)

∂x

∣∣∣∣
x=L

= −r̃extĨstim(t) + Nr̃extgLVmem(L,t).

Generally, it is difficult to solve differential equations
with such time-varying boundary conditions. To avoid this
difficulty, we consider a physically equivalent system in which
the complicating time dependence of the boundary conditions
is removed and the same effect is accounted for through the
introduction of the following current density existing in both
the intercellular and extracellular media:

Ĩcd(x,t) = Ĩstim(t)[δ(x − �x) − δ(x − L + �x)]. (10)

Here, δ(t) is the Dirac δ function and �x is an infinitesimal
distance along the cable. A detailed description of this
mathematical manipulation is given in our previous paper
[16]. The leak current through the shunt conductance at
x = L represented in the extracellular boundary conditions
[Eq. (9)] is also replaced by a current density given along the
extracellular medium as δ(x − L + �x)gLVmem(L,t). With
these mathematical manipulations, Eqs. (3) and (4) are now

replaced with the following equations for the membrane
potential and the extracellular potential:

rmemcmem
∂Vmem(x,t)

∂t
= rmem

rin + Nr̃ext

∂2Vmem(x,t)

∂x2
− Vmem(x,t)

− rmem

rin + Nr̃ext
r̃extĨcd(x,t), (11)

rmem

r̃ext

∂2Vext(x,t)

∂x2
= − rmem

rin + Nr̃ext

∂2Vmem(x,t)

∂x2

− δ(x − L)rmemgLVmem(L,t)

− rmem

rin + Nr̃ext
rinĨcd(x,t). (12)

For this system, the boundary conditions are

∂Vmem(x,t)

∂x

∣∣∣∣
x=0

= 0,

(13)
∂Vmem(x,t)

∂x

∣∣∣∣
x=L

= −(rin + Nr̃ext)gLVmem(L,t),

∂Vext(x,t)

∂x

∣∣∣∣
x=0

= 0,
∂Vext(x,t)

∂x

∣∣∣∣
x=L

= 0. (14)

Equation (13) specifies a reflecting boundary condition at x =
0 and a leaky boundary condition at x = L, while Eq. (14)
specifies reflecting boundary conditions at both ends.

C. An equivalent single cable model

Replacing Nr̃ext, Ĩstim(t)/N and Ĩcd(x,t)/N with rext,
Istim(t) and Icd(x,t) respectively, a system described by
Eqs. (11)–(14) becomes equivalent to a single cable model
with a shunt conductance attached to one end [Fig. 1(C)]
[16]. From Eq. (10), the newly introduced current density
Icd(x,t) becomes Icd(x,t) = Istim(t)[δ(x − �x) − δ(x − L +
�x)]. Nr̃ext can be mathematically interpreted as the resistivity
of one of N extracellular subspaces into which the extracellular
space of the mean field model is equally divided, and Ĩstim(t)/N
can be interpreted as the value of the stimulus current flowing
through one of the N extracellular subspaces. Therefore,
under the symmetric assumptions described above, the tissue
packed with multiple cables can be exactly described by an
isolated system consisting of a single cable and a surrounding
extracellular resistive medium, which is given by

τmem
∂Vmem(x,t)

∂t
= λ2

mem
∂2Vmem(x,t)

∂x2
− Vmem(x,t)

− λ2
memrextIcd(x,t), (15)

rmem

rext

∂2Vext(x,t)

∂x2
= −λ2

mem
∂2Vmem(x,t)

∂x2
− δ(x − L)rmemgL

×Vmem(L,t) − λ2
memrinIcd(x,t), (16)

where λmem and τmem are the space constant (cm) and time
constant (msec), defined by

λmem =
√

rmem

rin + rext
and τmem = rmemcmem.
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For this system, the boundary conditions are

∂Vmem(x,t)

∂x

∣∣∣∣
x=0

= 0,

(17)
∂Vmem(x,t)

∂x

∣∣∣∣
x=L

= −(rin + rext)gLVmem(L,t),

∂Vext(x,t)

∂x

∣∣∣∣
x=0

= 0,
∂Vext(x,t)

∂x

∣∣∣∣
x=L

= 0. (18)

In order to define the intracellular resistivity rint and
the extracellular resistivity rext, the extracellular region is
assumed to occupy the region between two coaxial cylinders of
diameters d and dext (dext > d), while the intercellular region
(i.e., the cable) occupies the region inside the inner cylinder
[see Fig. 1(C)]. With the equivalent system represented by
Eqs. (15)–(18), we can derive analytic solution for any wave
form of stimulus current Istim(t). This is demonstrated in the
following.

D. Derivation of analytical solution

1. Membrane potential

Equation (15) is equivalent to the cable equation used in
Monai et al. [16], from which the membrane potential can
be calculated independently of the extracellular potential, and
thus the theory developed there can be applied to this equation.
In this way, we obtain the following analytic solution of the
membrane potential in response to the extracellular stimulus
Istim(t):

Vmem(x,t) = rextλ
2
mem

τmem

∞∑
n=0

ϕn(L) − ϕn(0)

αn

ϕn(x)

×
∫ t

0
dt ′ exp

(
− t − t ′

κn

)
Istim(t ′), (19)

αn = L

2
+ ringL

2

(
ϕn(L)

μn

)2

. (20)

The set of eigenvalues {μn} and eigenfunctions {φn(x)} which
satisfy the boundary conditions appearing in Eq. (17) are given
by the expressions [16,25–28]

μn tan(μnL) = (rin + rext)gL; n = 0,1,2, . . . , (21)

ϕn(x) = cos(μnx), (22)

where the eigenvalues μn obey the transcendental equation
[Eq. (21)]. The time constants κn are given by

κn = τmem

1 + μ2
nλ

2
mem

(msec). (23)

When gL = 0 (sealed-end case), the eigenvalues and eigen-
functions given in Eqs. (21) and (22) become

μn = nπ

L
, ϕn(x) = cos

(
nπ

L
x

)
.

2. Extracellular potential

Here, we derive an analytic solution representing the
extracellular potential in response to the extracellular stimulus

created by the anode and cathode. A detailed description of
the derivation is given in the Appendix.

Generally, the extracellular potential in the cable model,
depicted in Fig. 1(B), is indefinite, because there is no explicit
definition of the ground to uniquely determine its value.
However, there is a special case: If stimuli induced by an
anode and a cathode, either the anode or the cathode can
be regarded as the ground electrode because the sum of the
stimulus currents entering and exiting the circuit is zero. Thus,
in this case, the extracellular potential can be defined.

As mentioned above, the membrane potential can be calcu-
lated independently of the extracellular potential. Therefore,
the right-hand side term of Eq. (16), which consists of the
membrane potential and the stimulus current Istim(t), can
be regarded as the current density determined independently
along the extracellular medium. By convolving the right-hand
side, into which Eq. (19) is substituted, with the Green’s
function of the Poisson equation [Eq. (16)], we obtain the
analytic solution of the extracellular potential:

Vext(x,t) = −Istim(t)

2

rinrext

rin + rext
(2x −L) − rext

rin + rext
Vmem(x,t)

+ gL

r2
extλ

2
mem

τmem

∞∑
n=0

1

μ2
n

ϕn(L) − ϕn(0)

αn

ϕn(L)

×
∫ t

0
dt ′ exp

(
− t − t ′

κn

)
Istim(t ′). (24)

When gL = 0 (sealed-end case), this analytic solution takes
the simple form

Vext(x,t) = −Istim(t)

2

rinrext

rin + rext
(2x − L) − rext

rin + rext
Vmem(x,t).

(25)

E. Model parameters and numerical calculation method

In this paper, to model the low-frequency dielectric dis-
persion of brain tissue, we focus on the case in which
there is a large amount of secondary current flowing axially
along the cable when it is exposed to electric field [16].
That there can exist a large amount of secondary current
was discovered in studies that attempted to account for the
observed responses of the membrane potential of hippocampal
CA1 pyramidal neurons subjected to a dc field [17,18]. To
realize a consistency with those works, we use the parameter
values previously reported for the hippocampal CA1 pyramidal
neuron: a specific membrane capacitance of Cmem = 1.5
(μF/cm2) [20], a specific membrane resistivity of Rmem =
30 (k� cm2) [20,29,30], and a specific intracellular resistivity
of Rin = 200 (� cm) [30,31]. Also, the diameter of the
cable is d = 1.2 (μm) [31], and the length of the cable is
L = 700 (μm) [31], except in the case considered in Fig. 5. In
cases depicted in Figs. 2–4, we used a shunt conductance of
gL = 880 (pS), as in our previous paper [16]. As mentioned
above, the extracellular space is assumed to be a cylinder
filled with a purely resistive medium. The diameter of the
extracellular space was set to dext = 1.2 × d (μm) (Figs. 2–5),
except in the case of Fig. 6. The specific extracellular resistance
was set to Rext = 100 (� cm). The parameter values used for
determining the electric characteristics per unit length of the
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cable and the extracellular media were calculated according to
the following:

rmem = Rmem

πd
, rin = Rin

π
(

d
2

)2 ,

rext = Rext

π
((

dext
2

)2 − (
d
2

)2) , and cmem = Cmemπd.

It is impossible to numerically solve Eqs. (15) and (16)
under the boundary conditions [Eqs. (17) and (18)], due to
the indefiniteness inherent in solving the Poisson equation
[Eq. (16)] under the reflecting boundary condition. Instead,
employing an implicit method, we numerically solved an ex-
tended model consisting of a passive cable and an extracellular
medium connected to a ground with very small conductance
(see Fig. 8). We found that the numerical computations give
values that are close to the analytic solution obtained in this
paper (see Fig. 9). A detailed explanation of the extended
model is given in the Appendix.

The analytic solution derived here has the form of a
Fourier series expansion in the eigenfunctions {φn(x)} and
{cos(nπx/L)}, as shown in Eqs. (19), (24), and (25). This
Fourier series must be calculated numerically. The infinite
series contained in these equations were truncated at n = 1000,
and the eigenvalues μn, satisfying Eq. (21), were calculated
with this truncated Newton’s method [32]. In the shunt-end
case, the deviation of the results obtained from this truncated
Fourier series from those obtained in the numerical simulations
is 0.382% at the steady state when applying a dc stimulus.

III. RESULTS

A. Response to dc extracellular stimulus

First, we consider the case of a dc step current stimulus,
Istim(t) = I0 × u(t), where I0 is the amplitude of the dc step
current and u(t) is a dc step current defined as follows:

u(t) =
{

1 (t � 0),

0 (t < 0).

From Eqs. (19) and (24), we find that the membrane potential
and the extracellular potential in response to the dc step
stimulus are

Vmem(x,t) = I0
rextλ

2
mem

τmem

∞∑
n=0

ϕn(L) − ϕn(0)

αn

ϕn(x)κn

×
[

1 − exp

(
− t

κn

)]
, (26)

Vext(x,t) = −I0u(t)

2

rinrext

rin + rext
(2x − L) − rext

rin + rext
Vmem(x,t)

+ I0gL

r2
extλ

2
mem

τmem

∞∑
n=0

1

μ2
n

ϕn(L) − ϕn(0)

αn

ϕn(L)κn

×
[

1 − exp

(
− t

κn

)]
. (27)

When gL = 0 (sealed-end case), these solutions take the
simple forms

Vmem(x,t) = I0
rextλ

2
mem

τmem

∞∑
n=0

cos(nπ ) − cos(0)
L
2

× cos

(
nπ

L
x

)
κn

[
1 − exp

(
− t

κn

)]
, (28)

Vext(x,t) = −I0u(t)

2

rinrext

rin + rext
(2x − L) − rext

rin + rext
Vmem(x,t).

(29)

Figure 2 plots the time dependence of the membrane
potential [Figs. 2(A) and 2(C)] and the extracellular potential
[Figs. 2(B) and 2(D)] in response to the dc step stimulus. As
seen there, the membrane potential exhibits slow hyperpolar-
ization after rapid depolarization (i.e., a biphasic change) at
the shunt end, as previously reported [16–18,22,28], while the
extracellular potential changes monotonically at both ends of
the cable, even in the shunt-end case.

B. Frequency response

Next, we consider the case of an ac stimulus, Istim(t) =
I0 exp(jωt), where I0 is the amplitude of the current and ω

is the angular frequency. From Eqs. (19) and (24), we find
that the membrane potential and the extracellular potential in
response to this ac stimulus are

Vmem(x,ω) = I0
rextλ

2
mem

τmem

∞∑
n=0

ϕn(L) − ϕn(0)

αn

ϕn(x)
1

1
κn

+ jω
,

(30)

Vext(x,ω) = −I0

2

rinrext

rin + rext
(2x − L) − rext

rin + rext
Vmem(x,t)

+ I0gL

r2
extλ

2
mem

τmem

∞∑
n=0

1

μ2
n

ϕn(L) − ϕn(0)

αn

×ϕn(L)
1

1
κn

+ jω
. (31)

When gL = 0 (sealed-end case), we have

Vmem(x,ω) = I0
rextλ

2
mem

τmem

∞∑
n=0

cos(nπ ) − cos(0)
L
2

× cos

(
nπ

L
x

)
1

1
κn

+ jω

= rext

2

I0λmem

jω
√

1 + jωτmem

sinh
(√

1+jωτmem

λmem

2x−L
2

)
cosh

(√
1+jωτmem

λmem

L
2

) ,

(32)

Vext(x,ω) = −I0

2

rinrext

rin + rext
(2x − L) − rext

rin + rext
Vmem(x,ω).

(33)

Note that the frequency response of the membrane potential
can be rewritten in terms of hyperbolic functions, as reported
previously [16,24,33].
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FIG. 2. Response to direct-current (dc) extracellular stimulus. (A), (C) The membrane potential in response to a dc stimulus
in the cases gL = 0 [pS] (without a shunt) and gL = 880 (pS) (with a shunt). (B), (D) The extracellular potential in response to a dc
stimulus in the cases gL = 0 (pS) (without a shunt) and gL = 880 (pS) (with a shunt). In each panel, the solid curves represent the analytical
solutions. The dc stimulus is applied from 20 (msec) to 120 (msec) in the case depicted in the inset and from 20 (msec) to 80 (msec) in
another case. The open diamonds denote the numerical solutions of the cable equations. The resistor sticking out of the cable at the x = L

end represents the shunt conductance gL, and the cone with a resistor inside it represents a recording electrode. The diameter of the cable is
d = 1.2 (μm), and the diameter of the extracellular space is dext = 1.2d .

Figures 3(A) and 3(B) display the amplitude-frequency
response and Figs. 3(C) and 3(D) display the phase-frequency
response. As reported previously [16], only the membrane
potential at the shunt end (x = L) of the cable in the gL �= 0
case exhibits a frequency preference, and the phase advances
[Figs. 3(A) and 3(C)]. In contrast to the frequency preference
of the shunt end, the amplitude response of the membrane
potential at the sealed end of the cable with and without
the shunt decreases monotonically, approaching zero, and the
phase approaches −π/4 as the frequency of the stimulus
increases. Contrastingly, the amplitude of the extracellular
potential at both ends of the cables in both cases with and
without the shunt drops by only 1.7 dB as the frequency of the
stimulus increases from 1 to 400 Hz, and the phase is almost
constant as the frequency of the stimulus increases [Figs. 3(B)
and 3(D)].

C. Effective permittivity and conductivity

We now calculate the effective conductivity and permit-
tivity, thereby elucidating macroscopic properties of the bulk
brain tissue from the frequency responses. The longitudinal
extracellular electric field is obtained from the extracellular

potentials at both ends of the cable as

E(ω) = −Vext(L,ω) − Vext(0,ω)

L
. (34)

From the definition of the longitudinal extracellular electric
field, the effective conductivity σ (ω) and permittivity ε(ω) of
the extracellular medium are related as

σ (ω) + jωε(ω) = I0

E(ω)
, (35)

where I0 is the amplitude of the ac stimulus current.
Figures 4(A) and 4(B) plot the effective conductivity (S/m)

and relative permittivity (·) of the cable in cases without
and with the shunt conductance, respectively. As seen there,
the relative permittivity in the case with a shunt [Fig. 4(B);
gL = 880 (pS)] is slightly larger than that in the case without
[Fig. 4(A); gL = 0 (pS)].

Figure 4(C) plots the time constant τ (ω) characterizing the
dielectric relaxation of the bulk brain tissue, defined by

τ (ω) = ε(ω)

σ (ω)
. (36)
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FIG. 3. Weak low-pass filtering characteristics of the extracellular medium. (A), (B) Amplitude-frequency response of the membrane
potential and the extracellular potential. (C), (D) Phase-frequency response of the membrane potential and the extracellular potential. The
broken and solid curves in each panel represent analytic solutions in the cases gL = 0 (pS) (without a shunt) and gL = 880 (pS) (with a shunt),
respectively. The open diamonds denote the numerical solutions of the cable equations. It is seen that the amplitude of extracellular potential
drops by only 1.7 dB as frequency increases from 1 to 400 Hz, and the phase of extracellular potential is almost constant over the entire range
of frequencies. The diameter of the cable is d = 1.2 (μm), and the diameter of the extracellular space is dext = 1.2d .

The dielectric relaxation time constant in the case with the
shunt is approximately 4 (msec), while that in the case without
is approximately 3 (msec) in the low-frequency region.

Finally, we calculate the storage factor, defined by

capacitive current

resistive current
= ωε(ω)

σ (ω)
. (37)

As shown in Figs. 4(A), 4(B), and 4(D), points at which the
storage factor is maximized coincide with the corner frequen-
cies of the relative permittivity in both the cases with and
without the shunt conductance. The maximum value of the
storage factor in the case with a shunt is approximately 0.15,
and that in the case without is approximately 0.25 [Fig. 4(d)].

D. Effect of cable length and extracellular space size
on low-frequency dielectric dispersion

The results of our calculations for the relative permittivity
and the storage factor, using various values of the length of
the cable (L) are plotted in Fig. 5(A). As shown in Figs. 5(B)
and 5(C), the relative permittivity at 1 Hz increases with the
cable length in accordance with a power law, and in Fig. 5(C),
the storage factor at low frequency (less than a few Hz)
also increases as a function of the cable length. As shown
in Figs. 5(B) and 5(C), the corner frequencies of the relative
permittivity coincide with the values at which the storage factor

is maximized, which decrease as the cable becomes longer. By
contrast, the maximum values of the storage factor are almost
constant for any length of the cable.

The results of our calculations for the relative permittivity
and the storage factor using various diameters of the extra-
cellular space (dext) are plotted in Fig. 6(A). As shown in
Figs. 6(B) and 6(C), the relative permittivity at 1 Hz decreases
with the diameter of the extracellular space in accordance
with a power law, and the value at which the storage factor
is maximized decreases as the diameter of the extracellular
space increases. By contrast, the corner frequencies of the
relative permittivity, which coincide with the points at which
the storage factor is maximized, are almost constant for any
diameter.

IV. DISCUSSION

We have shown theoretically that multiple passive long
cables packed in a purely resistive extracellular medium
may exhibit a large low-frequency dielectric dispersion by
analyzing the equivalent single cable model using the Green’s
function method. We found that the relative permittivity in
the low-frequency range depends strongly on the length of
the cable. These results are consistent with our conjecture
that the secondary longitudinal current in the cable might
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FIG. 4. Extremely large permittivity and capacitive current in the extracellular media. (A) Effective conductivity σ (ω) (S/m) and effective
relative permittivity ε(ω) in the case gL = 0 (pS) (without a shunt). (B) Those in the case of gL = 880 (pS) (with a shunt). (C) Time constant
of dielectric relaxation τ (ω), defined as ωε(ω)/σ (ω). (D) The storage factor (i.e., the capacitive-to-resistive ratio) defined as ωε(ω)/σ (ω). In
each panel, the solid curves and broken curves denote the values in the cases gL = 880 (pS) and gL = 0 (pS), respectively. The extracellular
medium has a large relative permittivity of approximately 108 in the low-frequency region, and attaching a shunt at one end of the cable only
slightly enhances the permittivity. The maximum value of the storage factor is approximately 0.25 when gL = 0 (pS). The diameter of the cable
is d = 1.2 (μm), and the diameter of the extracellular space is dext = 1.2d .

cause slow polarization that induces low-frequency dispersion.
The results of our theoretical analyses support the hypothesis
that brain tissue has a very large effective permittivity in the
low-frequency region due to the presence of long neurites and
they suggest that the magnitude of the capacitive current in
the tissue may be comparable to that of the resistive current
in the low-frequency region, despite weak low-pass filtering
properties of brain tissue.

A. Effective extracellular space

When one discusses diffusion of chemicals, the term
“extracellular space” would be used as a synonym for
interstitial space. Many studies reported that the interstitial
space in brain tissue is 10–30% of the volume [34–36].
The term “extracellular space,” however, means something
different when one discusses the spread of electric current
in biological tissues. It is an abstract concept, an imaginary
apparent space in which current either generated by cells
or provided by external mechanisms flow. The entity of the
extracellular space depends on the frequency of the current. In
the case of a current with very high frequency, the current can
flow across cell membranes as capacitive current. Therefore
the extracellular space in this situation would be the entire
space including interstitial space, intracellular space, and
the membrane. Low-frequency current would not flow across
the membrane as capacitive current and the resistive mem-
brane current would be small because of the high resistivity
of cell membranes. In this situation, the interstitial space

constitutes the extracellular space [37]. Other than these
extreme situations, the extracellular space in electrical sense
means an imaginary effective space comprised of the contri-
butions due to the membranes and the intracellular space of
nearby cells, including glial cells, in addition to the interstitial
space. The electrical properties of the effective space as
dielectrics can be described by the effective permittivity and
conductance. They are different from those of the interstitial
space, intracellular space, and the membrane. In this study,
we have shown that the morphology of the cell can be an
important factor that determines the effective permittivity and
conductivity.

The volume fraction of astroglia cells in the cortical tissue
has been reported to be 10–20% (5% in stratum radiatum of rat
hippocampal area CA1 [38]) of the neuropile [39,40]. Since
the membrane resistivity of the astroglia is lower than that of
neurons and astroglias may be connected by gap junctions,
glial cells may contribute to the effective permittivity and
conductivity partly by constituting the interstitial space and
partly by behaving as nearby cables. Considering the volume
fraction of average interstitial space and glial cells, we set
the extracellular volume fraction as 44% in most of the
calculations such as are shown in Figs. 2–5 and Fig. 6(A-b). In
Fig. 6(A-a), the volume fraction was set to 10.25%, which is
close to the smallest value of the previously reported volume
fraction, that of rat hippocampal CA1 region. In both cases,
we obtained qualitatively similar results as shown in Fig. 6(B),
and a smaller extracellular volume fraction gave rise to more
pronounced low-frequency dispersion.
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FIG. 5. Effect of cable length on the low-frequency dielectric dispersion. (A) Cables with various lengths, L = (a) 1.2 (μm), (b) 2.4 (μm),
(c) 12 (μm), (d) 120 (μm), (e) 700 (μm). In all cases, the diameter of the cable is d = 1.2 (μm), and the diameter of the extracellular space
is dext = 1.2d , and there is no shunt. (B) The relative permittivity for each length of the cable. Inset: The relative permittivity as a function of
the length of the cable at 1 Hz. (C) The relative permittivity for each length of the cable. The bold curves (e) in (B) and (C) have the same
identifications as broken curves in Figs. 4(A) and 4(D). The relative permittivity at 1 Hz increases with cable length in accordance with a power
law.

B. Our model is an extreme case of Maxwell-Wagner dispersion

Our model is essentially an extension of the inter-
facial polarization theory (Maxwell-Wager-Sillars theory)
[7,13] developed to understand β dispersion. The interfacial
polarization theory accounts for the dielectric dispersion of
suspensions of particles or cells as a phenomenon due to
charging at the interface between materials with different
permittivities, not due to the properties of the bulk phase of
the materials. Although that theory was intended to model
β dispersion, i.e., dispersion in the range 1 kHz–1 MHz,
Takashima extended it and has shown that the dispersion of
a suspension of ellipsoid particles depends on the axial ratio,
finding that the permittivity in the low-frequency range in-
creases with this ratio (pp. 162–168 in Ref. [13]). In that study,
he solved the Laplace equation in ellipsoidal coordinates with
several assumptions and found only a modest change in the
permittivity due to a modest change in morphology. In line with
this calculation, Asami has shown by numerical calculations
that the permittivity of a cell suspension in the low-frequency
region increases as the cells become increasingly elongated
[14]. The present study is an attempt to elucidate the electrical
properties of tissue in which an extremely elongated cell

is surrounded by an extracellular medium by solving cable
equations for a cable of finite length. Thus, our model is an
extreme case of Maxwell-Wagner dispersion.

The model used in the present study is too simplistic to
estimate effective permittivity and conductivity of real tissue
because there are mixtures of neurites with different length
and orientations in real brain tissue and the electric field may
not necessarily be parallel to the axis of the major neurites.
Some of the neurites may not be as long as the model cable
used in this study and the electric field may be perpendicular to
the neurites. Recently, Bedard et al. proposed mechanisms for
low-frequency dispersion [41–43]. Their theory is a synthesis
of the interfacial polarization theory and the counterion
polarization theory [15,44,45]. Making several assumptions,
they attempted to find parameter values that would account
for the experimental dispersion data reported by Gabriel et al.
in the range of α dispersion. According to Grosse and Foster,
the time constant of the dispersion, τ (=ε/σ ), is related to the
radius R and the diffusion coefficient of the responsible ion D

as

τ = R2

D
. (38)
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FIG. 6. Effect of the diameter of the extracellular space on the low-frequency dielectric dispersion. (A) The extracellular space with various
diameters, dext = (a) 1.05d (μm), (b) 1.2d (μm), (c) 2d (μm), (d) 5d (μm), (e) 10d (μm). In all cases, the diameter of the cable is d = 1.2 (μm),
and there is no shunt. (B) The relative permittivity for each diameter. Inset: The relative permittivity as a function of the diameter at 1 Hz.
(C) The relative permittivity for each diameter. The bold curves (b) in (B) and (C) have the same identifications as the broken curves in
Figs. 4(A) and 4(D). The relative permittivity at 1 Hz decreases with diameter of the extracellular space in accordance with a power law.

For R = 1 (μm), τ given by this relation is 1 (msec), while for
R = 100 (μm), it is 10 (sec). On the basis of those results, it
appears that the counterion polarization theory may be useful
for modeling the dielectric dispersion in the range 1 Hz–1 kHz
for the direction perpendicular to the neurites, but the time
constant is much too large to account for the dispersion in the
direction parallel to the neurites. Although our model does not
take the diffusion of ions into consideration, it yields results
consistent with the experimental dispersion data obtained by
Gabriel et al. Because brain tissue is dense with neurites with
various length and orientation, both the counterion polarization
mechanism and polarization due to long passive cables may
be necessary to understand the electrical properties of the bulk
brain tissue.

C. A large permittivity and a non-negligible capacitive current
may be consistent with weak low-pass filter characteristics

Figure 3(B) elucidates the filtering characteristics of our
model. It is seen that in both the cases of a passive uniform
cable and of a cable with a shunt at one end there are weak
low-pass characteristics, but the amplitude drops by only
1.7 dB as the frequency increases from 1 Hz to 0.5 kHz.
This value is comparable to that reported in Logothesis et al.,
specifically, a 1.9 dB drop in the cortical resistance as the

frequency increases from 10 Hz to 5 kHz [9]. Based on this
experimentally measured frequency dependence of cortical
resistance, Logothesis et al. concluded that “the cortical tissue
has the properties of a simple ohmic conductor.” In our study,
however, we found that the capacitive component of the
extracellular current can be significant in comparison with
the resistive component in the frequency range 1 Hz–1 kHz,
yet the tissue possesses only weak low-pass filtering char-
acteristics (Fig. 3). We now argue that these features are
consistent with the strong dielectric dispersion. Let us consider
the situation in which there exists only a single relaxation
process. Then the permittivity and the conductivity should
depend on the frequency in accordance with the following
Debye equations [46]:

ε = ε0 + εs − ε0

1 + ω2τ 2
, (39)

σ = (εs − ε0)ω2τ

1 + ω2τ 2
. (40)

If we choose εs = 1013 × ε0 and τ = 4 (sec), we obtain fre-
quency dependencies of the permittivity and the conductance
that are similar to those of the system in the model in our
study [Fig. 7(A)]. As shown in Figs. 7(A) and 7(B), in both
models the impedance exhibits no low-pass filtering properties,
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FIG. 7. Comparison between dielectric relaxation of a cable and simple Debye relaxation. (A) Simple Debye relaxation. (a) Relative
permittivity (·) and conductivity (S/m). (B) Impedance per unit length (�/m). (c) Storage factor (·). (B) Dielectric relaxation of the cable.
The curves marked “a,” “b,” and “c” represent those of the cable. With εs = 1013 × ε0 and τ = 4 (sec), the Debye equation gives frequency
dependencies of the permittivity and the conductivity similar to those of the cable, and it exhibits weak low-pass filter characteristics. In both the
models, an extremely large permittivity and capacitive current in the low-frequency region can coexist with weak low-pass filter characteristics.

despite the significant magnitude of the capacitive current in
the low-frequency range. The counterion model developed by
Bedard et al. predicts low-pass filtering characteristics that are
stronger than those observed by Logothesis et al., who found
a weak frequency dependence of the impedance in the brain
tissues of monkey. Bedard et al. attributed this discrepancy
to the saturation of the voltage at the electrodes used in the
measurements. By contrast, our model does not predict such
strong low-pass filtering characteristics. Thus, it allows for
the simultaneous existence of a very large permittivity, a
non-negligible capacitive current, and weak low-pass filter
characteristics without the need for any kind of auxiliary
arguments. These kinds of arguments are not necessary in
our model because we think that very large permittivity and a
non-negligible amount of capacitive current can be consistent
with weak low-pass filter characteristics.

D. CSD analysis taking tissue permittivity into account

The current source density (CSD) analysis was developed
[47,48] for analyzing the LFP. It has been used to estimate the
location and timing of the source of the membrane current that
generates the field potentials. In conventional CSD analysis,
the extracellular space is assumed to be purely resistive. We
have recently derived a general formula for the CSD analysis
by which CSD in biological tissue [ICSD(x,ω)] with frequency-
dependent permittivity [ε(x,ω)] and conductivity [σ (x,ω)] can
be obtained from the extracellular potential [Vext(x,ω)] [49].

The formula is as follows:

ICSD(x,t) = (2π )
∫

∇ · [σ (x,ω) + jωε(x,ω)]

× [−∇Vext(x,ω)]ejωtdω. (41)

If the capacitive-to-resistive ratio of the current (i.e., the
storage factor, 2πf ε/σ ) is small enough, then we can
ignore the capacitive component in the formula to obtain the
conventional formula for CSD analysis. If the ratio is not
small in the frequency range of interest, however, we need
to take the permittivity into account in the CSD analysis. In
practical measurements of LFP in performing CSD analysis,
the distances between the recording points are usually 100–
200 microns and the distances between sink and source are
typically 100–300 microns. In Fig. 5, the model with the
cable length of 120 microns shows high effective permittivity
in the low-frequency range and significant capacitive-to-
resistive ratio in the frequency range relevant in physiological
measurements suggesting that permittivity of tissue may need
to be considered in analyzing the sink-source pair with a
distance as short as 120 microns. Because the frequency range
the neuroscientists are interested in most is the range in which
the permittivity is high and the capacitive-to-resistive ratio
can be significant, we should not hastily ignore extracellular
capacitive current.
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APPENDIX: DERIVATION OF ANALYTICAL SOLUTION

Generally, the extracellular potential in the mean field
model, depicted in Fig. 1(B), is indefinite, because the
extracellular medium is not connected to a ground. However,
if the stimuli are induced by an anode and a cathode, either
electrode can be regarded as the ground because the sum of
the stimulus currents entering and exiting the circuit is zero.
Thus, the extracellular potential can be defined in this case.

To derive analytic solutions of the extracellular potential,
we go through the following steps. In the first step, to
avoid the indefiniteness of the extracellular potential in
general situations, we extend this mean field model to a
model consisting of N identical cables mutually coupled only
through a single one-dimensional resistive extracellular space
connected to a ground with conductance g̃D [Fig. 8(A)]. When
g̃D = 0, this extended model is equivalent to the original mean
field model. The extended mean field model can be exactly
reduced to a single cable model connected to the ground with
conductance g̃D/N [Fig. 8(B)]. When g̃D = 0, this equivalent
single cable model becomes equivalent to the single cable
model depicted in Fig. 1(C). In the next step, we derive an

approximate analytical solution to a single cable model that is
equivalent to the extended mean field model in response to an
extracellular stimulus created by the anode and the cathode.
This approximate solution approaches an exact one when g̃D is
sufficiently small. In the final step, we confirm that in the limit
g̃D → 0, the extracellular potential can be defined if stimuli
are created by the anode and the cathode. In conclusion, we
obtain analytical solutions for the extracellular potential in the
original mean field model shown in Fig. 1(B).

1. Extracellular medium connected to ground

We extend the mean field model, depicted in Fig. 1(B) to
a model in which the N identical cables are mutually coupled
only through a single one-dimensional resistive extracellular
space connected to a ground with conductance g̃D as shown
in Fig. 8(A). By connecting the extracellular medium to the
ground, we can uniquely define the extracellular potential
relative to the ground.

Kirchhoff’s first law yields the following equations for the
intracellular potential V k

in(x,t) of cable k (k = 1, . . . ,N) and
the extracellular potential Vext(x,t):

1

rin

N∑
k=1

∂2V k
in(x,t)

∂x2
= − 1

r̃ext

∂2Vext(x,t)

∂x2
+ g̃DVext(x,t),

(A1)

1

rin

∂2V k
in(x,t)

∂x2
= cmem

∂
[
V k

in(x,t) − Vext(x,t)
]

∂t

+ 1

rmem
[V k

in(x,t) − Vext(x,t)],

(k = 1, . . . ,N). (A2)
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FIG. 8. (A) Extended mean field consisting of identical passive cables and a purely resistive extracellular medium connected to the ground
with conductance g̃D . By connecting extracellular media to the ground conductance g̃D , we can determine the value of the extracellular potential
Vext relative to the ground. When g̃D = 0, this model is equivalent to the original mean field model shown in Fig. 1(B). (B) Single cable model
equivalent to the extended mean field model. When gD = 0, this model is equal to the single cable model equivalent to the original mean field
model [Fig. 1(C)].
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Because identical cables do not interact directly but only
through the single one-dimensional resistive extracellular
space, N identical cables have the same membrane po-
tential: V k

in(x,t) = Vin(x,t). Under this condition, defining
Vmem(x,t) as Vin(x,t) − Vext(x,t), Eqs. (A1) and (A2) can be
rewritten as

cmem
∂Vmem(x,t)

∂t
= 1

rin+Nr̃ext

∂2Vmem(x,t)

∂x2
− 1

rmem
Vmem(x,t)

+ r̃extg̃D

rin + Nr̃ext
Vext(x,t), (A3)

−∂2Vmem(x,t)

∂x2
= rin + Nr̃ext

Nr̃ext

∂2Vext(x,t)

∂x2
− g̃D

N
rinVext(x,t).

(A4)

The last terms on the right-hand side of Eqs. (A3) and (A4)
represent the effect of the connection to the ground. When
g̃D = 0, Eqs. (A3) and (A4) are equal to Eqs. (4) and (5).

In the extended model, we use the same boundary condi-
tions as Eqs. (6) and (7). As mentioned above, in the mean field
model, N identical cables have the same membrane potential.
Applying Eq. (3) to those boundary conditions and subtracting
the boundary conditions for the intracellular potential from
those for the extracellular potential, we obtain the boundary
conditions for the membrane potential and the extracellular
potential:

∂Vmem(x,t)

∂x

∣∣∣∣
x=0

= r̃extĨstim(t),

(A5)
∂Vmem(x,t)

∂x

∣∣∣∣
x=L

= r̃extĨstim(t) − (rin + Nr̃ext)gLVmem(L,t),

∂Vext(x,t)

∂x

∣∣∣∣
x=0

= −r̃extĨstim(t),

(A6)
∂Vext(x,t)

∂x

∣∣∣∣
x=L

= −r̃extĨstim(t) + Nr̃extgLVmem(L,t).

Here, Ĩstim(t) is a time-varying stimulus current created by the
anode and cathode pair located in the extracellular space. If
gL = 0, the cable is sealed at both ends and symmetrical with
respect to a direction along its axis.

Generally, it is difficult to solve differential equations
with such time-varying boundary conditions. To avoid this
difficulty, we consider a physically equivalent system in which
there is no complicated time dependence of the boundary con-
ditions but the effect is accounted for through the introduction
of current densities in the intracellular and extracellular media.
Through this mathematical manipulation, Eqs. (A3) and (A4)
can be rewritten as

rmemcmem
∂Vmem(x,t)

∂t
= rmem

rin + Nr̃ext

∂2Vmem(x,t)

∂x2
− Vmem(x,t)

+ rmemr̃extg̃D

rin + Nr̃ext
Vext(x,t)

− rmemr̃ext

rin + Nr̃ext
Ĩcd(x,t), (A7)

rmem

Nr̃ext

∂2Vext(x,t)

∂x2
− rin

g̃D

N

rmem

rin + Nr̃ext
Vext(x,t)

= − rmem

rin+Nr̃ext

∂2Vmem(x,t)

∂x2
− δ(x − L)rmemgLVmem(L,t)

− rmem

rin + Nr̃ext
rinĨcd(x,t), (A8)

where Ĩcd(x,t) = Ĩstim(t)[δ(x − �x) − δ(x − L + �x)]. δ(t)
is the Dirac δ function, and �x is an infinitesimal distance
along the cable. For this system, the boundary conditions are

∂Vmem(x,t)

∂x

∣∣∣∣
x=0

= 0,

(A9)
∂Vmem(x,t)

∂x

∣∣∣∣∣
x=L

= −(rin + Nr̃ext)gLVmem(L,t),

∂Ve(x,t)

∂x

∣∣∣∣
x=0

= 0,
∂Ve(x,t)

∂x

∣∣∣∣
x=L

= 0. (A10)

These are the same as Eqs. (13) and (14).

2. Equivalent single cable model within an
extracellular medium connected to ground

Replacing Nr̃ext, g̃D/N , Ĩstim(t)/N and Ĩcd(x,t)/N with rext,
gD , Istim(t), and Icd(x,t) respectively, the system described by
Eqs. (A7)–(A10) becomes equivalent to a model consisting
of a single cable and a surrounding extracellular medium
connected to the ground [Fig. 8(B)]. From Eq. (10), the
newly introduced current density Icd(x,t) becomes Icd(x,t) =
Istim(t)[δ(x − �x) − δ(x − L + �x)]. Nr̃ext can be mathe-
matically interpreted as the resistivity of one of N extracellular
subspaces into which the extracellular space of the extended
mean field model is equally divided, Ĩstim(t)/N can be
interpreted as the value of the stimulus current flowing through
one of the N extracellular subspaces, and g̃D/N can be
interpreted as the ground conductance equally divided into
N extracellular subspaces. Therefore, the extended mean field
model can be separated into N isolated elements, given by

τmem
∂Vmem(x,t)

∂t
= λ2

mem
∂2Vmem(x,t)

∂x2
− Vmem(x,t)

+ λ2
memrextgDVext(x,t)−λ2

memrextIcd(x,t),

(A11)

rmem

rext

∂2Vext(x,t)

∂x2
− λ2

memringDVext(x,t)

= −λ2
mem

∂2Vmem(x,t)

∂x2
− δ(x − L)rmemgLVmem(L,t)

− λ2
memrinIcd(x,t), (A12)

where λmem and τmem are the space constant (cm) and time
constant (msec), defined by

λmem =
√

rmem

rin + rext
and τmem = rmemcmem. (A13)

When gD = 0, Eqs. (A11) and (A12) are equal to Eqs. (15)
and (16).
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The boundary conditions Eqs. (A9) and (A10) become

∂Vmem(x,t)

∂x

∣∣∣∣
x=0

= 0,

(A14)
∂Vmem(x,t)

∂x

∣∣∣∣
x=L

= −(rin + rext)gLVmem(L,t),

∂Ve(x,t)

∂x

∣∣∣∣
x=0

= 0,
∂Ve(x,t)

∂x

∣∣∣∣
x=L

= 0. (A15)

These are the same as Eqs. (17) and (18).

3. Approximate solution of the single cable model equivalent
to the extended mean field model

To derive an analytic solution to the single cable model
equivalent to the extended mean field model, we assume gD in
Eq. (A11) to be negligibly small and remove the third term on
the right-hand side in Eq. (A11):

τmem
∂Vmem(x,t)

∂t
= λ2

mem
∂2Vmem(x,t)

∂x2
− Vmem(x,t)

− λ2
memrextIcd(x,t). (A16)

Here, we derive a solution to Eqs. (A12) and (A16) under
the boundary conditions appearing in Eqs. (A14) and (A15).
This solution provides approximate values for the membrane
and the extracellular potentials in the extended model if gD is
sufficiently small.

Because the membrane potential can be calculated inde-
pendently from the extracellular potential under this approx-
imation, the right-hand side term of Eq. (A12), consisting of
the membrane potential Vmem(x,t) and the stimulus current
Istim(t), can be regarded as the current density independently
given along the extracellular medium

rmem

rext

∂2Vext(x,t)

∂x2
− λ2

memringDVext(x,t) = −IT (x,t), (A17)

IT (x,t) = λ2
memrinIcd(x,t) + λ2

mem
∂2Vmem(x,t)

∂x2

+ δ(x − L)rmemgLVmem(L,t). (A18)

By substituting Eq. (19) into Eq. (A18), we can express
IT (x,t) as a Fourier series expansion with eigenfunctions
{ϕn(x)} satisfying the leaky boundary condition appearing in
Eq. (A14):

IT (x,t) = λ2
memrinIcd(x,t) − λ2

mem

∞∑
n=0

Anμ
2
nϕn(x)

×
∫ t

0
dt ′ exp

(
− t − t ′

κn

)
Istim(t ′)

+ δ(x − L)rmemgL

∞∑
n=0

Anϕn(L)

×
∫ t

0
dt ′ exp

(
− t − t ′

κn

)
Istim(t ′). (A19)

The Green’s function of Eq. (A17) under the reflecting
boundary condition at both ends [Eq. (A15)] is

Ge(x,x ′,t,t ′) = δ(t − t ′)
2

L

∞∑
m=−∞

cos
(

nπ
L

x ′)
rmem
rext

(
mπ
L

)2 + λ2
memringD

× cos

(
nπ

L
x

)
, (A20)

where x and t are the observation point and time for an impulse
response, and x ′ and t ′ are the position and time of an impulse
input. This Green’s function has a form of Fourier series
expansion with the eigenfunctions {cos( nπx

L
)} satisfying the

reflecting boundary condition appearing in Eq. (A15).
Assuming that the initial condition of the extracellular

potential is Vext(x,0) = 0, by convolving Eq. (A19) with
Eq. (A20), we can derive an analytical solution of the extracel-
lular potential. This convolution operation requires taking the
inner products between two eigenfunctions satisfying different
boundary conditions:∫ L

0
dx cos

(
nπx

L

)
ϕk(x) =

{
μk cos(πn) sin(μkL)

μ2
k−( nπ

L )2 (gL > 0)
L
2 δnk (gL = 0)

,

where δnk is the Kronecker δ.
Finally, we obtain an approximate solution to the extracel-

lular potential in the extended model:

Vext(x,t) = λ2
memrinIstim(t)

2

L

∞∑
m=1

1 − cos(mπ )
rmem
rext

(
mπ
L

)2 + λ2
memringD

cos

(
mπ

L
x

)
+ rmemgL

2

L

∞∑
m=1

cos(mπ )
rmem
rext

(
mπ
L

)2 + λ2
memringD

× cos

(
mπ

L
x

) ∞∑
n=0

Anϕn(L)
(

mπ
L

)2

(
mπ
L

)2 − μ2
n

∫ t

0
dt ′ exp

(
− t − t ′

κn

)
Istim(t ′). (A21)

When gL = 0 (sealed-end case), this analytical solution takes a simple form:

Vext(x,t) = λ2
memrinIstim(t)

2

L

∞∑
m=1

1 − cos(mπ )
rmem
rext

(
mπ
L

)2 + λ2
memringD

cos

(
mπ

L
x

)

− λ2
mem

∞∑
m=1

Am

(
mπ
L

)2

rmem
rext

(
mπ
L

)2 + λ2
memringD

cos

(
mπ

L
x

) ∫ t

0
dt ′ exp

(
− t − t ′

κm

)
Istim(t ′). (A22)
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0=Dg

numerical solutions

approximate solutions

Dg

FIG. 9. Comparison between the analytical and the numerical solutions when gD �= 0. We plot the extracellular potential (mV) in steady state
when applying a direct-current (dc) stimulus as a function of gD varying from gD = 1.0 × 10−15 to 1.0 × 10−4 (S cm). The solid curves represent
the direct numerical solutions of the single cable model equivalent to the extended mean field model, which are obtained by employing the implicit
method for Eqs. (A11) and (A12) with the boundary conditions [Eqs. (A14) and (A15)]. The close diamonds represent values of the approximate
analytical solution represented by Eq. (A21) when gD �= 0, and the open diamonds denote values of the analytical solution represented by
Eq. (24) [i.e., Eq. (A21) when gD = 0]. The infinite series contained in Eq. (A21) were truncated at n = 1000.

Equations (A21) and (A22) are Fourier series expansions with
the eigenfunctions, {cos( nπx

L
)}. When the cable is stimulated

by the extracellular currents, Istim(t) and −Istim(t), that are cre-
ated by the anode and the cathode in the extracellular space, the
dc terms of the Fourier series in these equations become zero.

To verify the accuracy of the approximate solution, we
compared it with a direct numerical solution of Eqs. (A11)
and (A12) under the boundary conditions appearing in
Eqs. (A14) and (A15) (calculated by the implicit method). Fig-
ure 9 shows those solutions in the steady state when applying
a dc stimulus with various values of gD . As gD decreases, the
approximate solution approaches the direct numerical solution.

4. In the limit gD → 0

Finally, we confirm that in the limit gD → 0, the extra-
cellular potential can be defined if stimuli are created by the
anode and the cathode in the extracellular space. Generally,
the extracellular potential Vext(x,t) is indefinite when gD = 0,
because the extracellular medium is not connected to the
ground. It is impossible to derive a general solution to
the extracellular potential for any extracellular stimuli, because
the dc term of the Fourier series in the Green’s function

[Eq. (A20)] has a singular point at gD = 0, reflecting no
connection to the ground. However, as mentioned above, in
the case that the dc terms of a Fourier series in Eqs. (A21)
and (A22) become zero, the extracellular potential can be
defined in the limit gD → 0, and thus we can obtain the
analytical solution to the extracellular potential in the cable
model depicted in Fig. 1(C) and expressed in Eq. (24). In this
way, our derivation process is complete.

5. Numerical simulation

It is impossible to numerically solve Eqs. (15) and (16)
under Eqs. (17) and (18) because of the indefiniteness inherent
in solving the Poisson equation [Eq. (16)] under reflecting
boundary conditions. Instead, by employing an implicit
method, we can numerically solve the single cable model
equivalent to the extended mean field model, i.e., Eqs. (A11)
and (A12) under the boundary conditions [Eqs. (A14)
and (A15)]. As shown in Fig. 9, the numerical solutions of
the single cable model give values very close to the analytical
solutions of the single cable equivalent model when gD is
sufficiently small. In this paper, the ground conductance is set
to be gD = 1.0 × 10−15 (S cm).
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