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Induced spiral motion in cardiac tissue due to alternans
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Spiral wave meander is a typical feature observed in cardiac tissue and in excitable media in general.
Here, we show for a simple model of excitable cardiac tissue that a transition to alternans—a beat-to-beat
temporal alternation in the duration of cardiac excitation—can also induce a transition in the spiral core motion
that is related to the presence of synchronization defect lines (SDLs) or nodal lines. While this is similar to
what has been predicted and indeed observed for complex-oscillatory media close to onset, we find important
qualitative differences. For example, single straight SDLs rotate and induce an additional nonresonant frequency
characterizing the core motion of the attached spiral. We analyze this behavior quantitatively as a function of
the steepness of the restitution curve and show that the velocity and the directionality of the core motion vary
monotonically with the control parameter. Our findings agree with recent observations in rat heart tissue cultures
indicating that the described behavior is of rather general nature. In particular, it could play an important role in
the context of potentially life-threatening cardiac arrhythmias such as fibrillation for which alternans and spiral
waves are known precursors.
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I. INTRODUCTION

Rotating spiral waves in (quasi-) two-dimensional reaction-
diffusion systems with local excitable or simple oscillatory
dynamics have been investigated extensively both theoretically
and experimentally because of their relevance for a variety
of physical, chemical, and biological processes [1–3]. One
particular feature of spiral waves in excitable media is that
they can undergo core instabilities [4]. The classic example
is the meander instability, which leads to flowerlike tip
trajectories [5–7]. While this instability is well understood
theoretically, this is not the case for other instabilities of spiral
waves in excitable media. Progress in this direction is crucial
since spirals—called reentries in the cardiac context—are
known to play a key role in the genesis of abnormally rapid
life-threatening heart rhythm disorders [8,9].

Recently, it was found that spiral waves in in vitro tissue
cultures of neonatal rat ventricular myocytes can undergo an
instability such that the spirals exhibit alternans behavior [10].
Alternans is an oscillation in the duration of the action potential
(AP) or pulse duration such that short and long APs alternate
while the average period remains constant. This behavior
typically occurs when the time interval between subsequent
APs is sufficiently short and it has been extensively studied in
the context of paced cables and tissue (see Refs. [11–13] and
references therein). While alternans is widely acknowledged
as a precursor of the development of cardiac fibrillation,
leading to sudden cardiac death [14–16], its occurrence in and
interaction with spiral waves, corresponding to tachycardia,
remains largely unexplored.

Spiral waves exhibiting alternans or period-two behavior
in general have not only been observed in excitable media
but were indeed first reported in complex-oscillatory media
[3,17–19]. One generic feature of any period-two spiral waves
is the existence of synchronization defect lines (SDLs) or nodal
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lines. These correspond to points in the medium where the
dynamics is locally period 1 and each SDL separates domains
of different oscillation phases. Spirals with attached SDLs
were first observed in numerical model studies of complex-
oscillatory media [17] and subsequently in experiments on
the Belousov-Zhabotinsky reaction in a comparable regime
[20–25]. The bifurcation from a regular or period-one spiral
to a period-two spiral was later put on a solid mathematical
foundation by Sandstede et al. [26] and identified as a 2 : 1
resonant Hopf bifurcation for models of complex-oscillatory
media. One of the important implications of their analytical
findings is that period-two spirals drift with a finite velocity.
This induced ballistic motion of the spiral core and its
implications for multispiral patterns were studied in detail in
Ref. [27]. In particular, it was found for the Rössler model,
a paradigmatic model for complex-oscillatory media, that the
drift velocity increases as a power law from onset and that
the direction of the drift is determined by the SDLs attached
to the core. Close to onset the angle between the direction of
the drift and the straight SDLs is 180 degrees and this angle
decreases monotonically to a minimum of about 90 degrees
far from onset.

Motivated by the above-mentioned experimental observa-
tion of spirals exhibiting alternans behavior in rat heart tissue
cultures [10], recent theoretical investigations have started to
focus on period-two spirals and SDLs in models of excitable
cardiac tissue [13,28,29]. While some questions related to the
number of SDLs attached to a spiral [28] and the shape of
SDLs [13] have already been addressed, this is not the case
for the motion of period-two spirals in such systems. Here,
we address exactly this open problem focusing especially
on spirals with single SDLs attached to them. For a simple
conceptual model of excitable cardiac tissue, we find that the
transition from period-one to period-two spirals also induces a
meandering transition in the core motion but with nonresonant
features. The second frequency characterizing the meandering
motion is much smaller than the spiral frequency leading to
inward petals. Moreover, the drift velocity associated with this

061908-11539-3755/2012/86(6)/061908(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.061908
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second frequency increases monotonically from onset and is
directed at a well-defined angle from the SDL, which rotates
with the same frequency. Interestingly, the angle increases
monotonically from onset which is opposite to what has been
observed for the Rössler model.

II. MODEL

To investigate the motion of period-two spirals, we consider
a simple model of excitable cardiac tissue first proposed in
Ref. [30]. This model has been shown to exhibit stationary
discordant alternans under periodic pacing as well as period-
two spirals with SDLs [28]. An advantage of this model is that
for weakly excitable parameter regimes the spirals do not have
to be pinned in order to have a single SDL attached to them. We
focus on this case here in order to perform a direct comparison
with the experimental findings of Ref. [10] for cardiac tissue,
and models of complex-oscillatory media [27], both of which
observe spirals with single SDLs attached to the cores.

The model equations are based on the standard wave equa-
tions for cardiac tissue and can be written in the following form,

∂E

∂t
= γ�E + τ−1

E f (E,n), (1)

∂n

∂t
= τ−1

n g(E,n), (2)

where the two variables E and n, refer to the dimensionless
transmembrane voltage and the slow current gate, respectively.
The rest state of the membrane corresponds to E = 0 and
n = 0. γ is a constant describing the speed of propagation of
disturbances in E, while τE and τn set the time scales of the
dynamics in E and n, respectively. The functions f (E,n) and
g(E,n) are given by

f (E,n) = −E + [E∗ − D(n)][1 − tanh(E − Eh)]
E2

2
, (3)

g(E,n) = R(n)θ (E − En) − [1 − θ (E − En)]n, (4)

where θ is the Heavyside step function and E∗, En, and Eh are
constants. The restitution function, R(n), and the dispersion
function,D(n), need to be defined to fully describe the behavior
of the model. Restitution refers to the relationship between the
diastolic interval—the interval between two subsequent action
potentials—and the next action potential duration. Dispersion
refers to the dependence of the speed of the front end of a pulse
or action potential on the preceding diastolic interval. The
functions we use are the same as in Ref. [30], and are given by

R(n) = 1 − [1 − e−Re]n

1 − e−Re
, (5)

D(n) = nM, (6)

with parameters Re and M . See Ref. [30] for a detailed
discussion of the underlying assumptions and the different
parameters. Table I summarizes the parameter values we used
in this study. The only parameter that is significantly different
from the value given in Ref. [30] was τn. It was decreased
from 250 ms to 15 ms in order to make the model weakly
excitable and generate spirals with one SDL as observed first
in Ref. [28]. We obtain qualitatively equivalent results if we
increase τe instead. The control parameter in this study is Re,

TABLE I. Values of the model parameters (see text for details)
used in this study.

τe 2.5 ms
τn 15 ms
M 4.3
Re 1.04 to 1.15
γ 0.0011 cm2/ms
En 1.0
Eh 3.0
E∗ 1.5415

which controls the steepness of the restitution curve. Increasing
Re makes the tissue more susceptible to alternans, however
increasing it too far makes spirals unstable. While this model
is clearly a simplified description of the dynamics of cardiac
tissue, it allows for precise, long-term computer simulations
[31] that are not feasible in many realistic electrophysiological
models [32,33]. For our numerical simulations, we consider
two-dimensional tissue on circular domains with no-flux
boundaries as well as on rectangular domains with periodic
boundaries. In the former case, the focus is on single spirals
while the latter is better suited for studying multiple spirals.

III. RESULTS

Spirals were initialized by generating a plane wave, then
resetting half of the wave’s voltage E to zero. Initially, single
spirals were simulated on circular tissues at varying Re values.
Focusing on Re values in the interval [1.02,1.16], we found
that normal period-one spirals become unstable giving rise
to period-two spirals with single SDLs at Re ≈ 1.0525. At
Re ≈ 1.125, the medium begins to continuously create and
annihilate SDLs similar to the turbulent SDL regime observed
in models of complex-oscillatory media [27]. Increasing Re
further, breakup of period-two spirals occurs at Re ≈ 1.1475.
Examples of the three main regimes can be seen in Fig. 1,
while plots of the spiral period and action potential duration
(APD) as a function of Re can be seen in Fig. 2.

Periodic alternations in action potential duration indicative
of alternans are clearly visible in Fig. 1(b) if one follows
successive wave fronts out radially from the center of the
spiral. This is further highlighted by Fig. 1(d), which shows
a space-time plot of the voltage along the cut indicated in
Fig. 1(b). Because the spiral wave is one continuous entity,
there must be a transition from short to long action potentials
or vice versa at certain points on the wavefront at any given
moment in time. Thus, these points do not show alternans
but exhibit period-one dynamics. The set of all these points
constitutes the SDLs. In Fig. 1(b), by looking at where the
wavefronts change thickness, a single SDL can be observed
pointing down.

In order to detect and visualize SDLs, points in the medium
where these period-one dynamics are present need to be
identified. There are multiple ways this can be done [10,28].
The method used in the experiments on cardiac tissue [10]
involves evaluating the following integral,

�(�x,t) = 1

τ

∫ τ

0
|E(�x,t + t ′) − E(�x,t + τ + t ′)|dt ′. (7)
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FIG. 1. Snapshots of the voltage field for spirals in three regimes
relevant to this study: (a) Re < 1.05, (b) 1.05 < Re < 1.125, and
(c) Re > 1.15. These images were taken of circular domains with a
radius of 2.62 cm and a no-flux boundary. (d) shows a space-time plot
along the indicated radial cut (thick line) from the spiral core in (b),
clearly exhibiting alternans.

Here, τ refers to the duration of a single period-one oscillation,
and locations where �(�x,t) evaluates to zero lie on the SDL.
While it is computationally expensive, this method allows one
to identify SDLs continuously in time provided that they do
not move too fast.

In contrast, the method typically used in the context of
alternans (see, for example, Refs. [13,28]) is effectively based
on a comoving reference frame attached to the wavefront or
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FIG. 2. (a) Average spiral rotation period, and (b) the average
action potential durationa, as functions of Re. After the period
doubling, both plots contain two branches, indicating the period-two
behavior of the spiral. The dashed line in the middle is an average
of the two branches. For the spiral rotation period in (a), this average
corresponds to half of the new period. For both spiral rotation period
and APD, each data point corresponds to a numerical estimate of the
asymptotic long-time average sufficiently far away from the spiral
core.
aFor this study, APD is defined as the length of time E � 2 as a
wavefront moves through.

action potential such that the evolution of SDLs can only be
observed in discrete time steps of length τ . Specifically, a local
beat number n(�x,t) is introduced. It is set to zero everywhere
in the medium initially and then incremented by one every
time an action potential passes though. To identify SDLs or
nodal lines, the following equation is evaluated:

a(�x,t) = (−1)nc(t)[D(�x,nc(t)) − D(�x,nc(t) − 1)]. (8)

Here, D(�x,n) is the local APD corresponding to the nth beat
and nc is defined as the largest common beat number to have
been recorded everywhere in the medium, nc(t) ≡ min�xn(�x,t).
SDLs are found to be the points where a(�x,t) = 0. While this
method has been very helpful to characterize alternans in paced
cables and pinned spirals, it is not well suited to deal with
moving spiral cores since the motion can significantly alter
the beat numbers close to the core [34]. Moreover, the method
is computationally expensive for the system sizes we consider
here since one has to store the local APDs for a large number
of beat numbers.

To avoid these issues and to have a more continuous picture
of the time evolution of SDLs similar to the method based on
Eq. (7), we propose a modified version of the above method.
Specifically, we modify Eq. (8) and define ã as

ã(�x,t) = |D[�x,n(�x,t)] − D[�x,n(�x,t) − 1]|. (9)

As before, points where ã(�x,t) = 0 are part of the SDL. Unlike
the method used in Ref. [28], this compares the APD for two
successive wavefronts without regard to common beat number.
This makes the method faster and simpler computationally
than the others. However, it introduces slight discontinuities
into the SDL similar to the method based on Eq. (7) [see
Fig. 3(d)]. This is because in a single instant, each wavefront
is tracing out a slightly different SDL due to spiral core motion.
Since in our case the SDL does not move significantly over
the time scale of a few spiral rotations, these discontinuities
do not interfere with the overall shape or orientation of the
SDL. Images generated using different SDL detection methods
(including the one used for this study) can be seen in Fig. 3.
Each method shows the same SDL pointing in the same
direction. Note that all results presented in the following do
not depend on the specific method used to identify SDLs.

A. Morphology of SDLs

Unlike the strongly curved SDLs observed in the parameter
regime of normal excitability [13,28], the SDLs for weakly
excitable parameter regimes studied here are nearly straight as
Fig. 3 shows. While we chose this particular regime to mimic
the observation of single SDLs attached to spiral cores in rat
heart tissue cultures [10] as discussed above, they also found
SDLs to be rather straight in the experiments. Thus, the model
we study can successfully reproduce this feature as well.

It is known from Ref. [13] that models of cardiac tissue
with supernormal conduction can result in stable concordant
alternans in arbitrarily long-paced one-dimensional cables
and straight SDLs in two-dimensional tissue, while normal
conduction promotes discordant alternans and curved SDLs.
This is quite consistent with what we find for the model
studied here. In the parameter regime of normal excitability,
the model exhibits normal conduction [30] and curved SDLs
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FIG. 3. (a) Dimensionless voltage, (b) the associated SDL de-
tected using the method described in Ref. [28], (c) the method used
in Ref. [10], and (d) the method used in this study.a The images were
taken on a circular tissue with a radius of 5.24 cm and a no-flux
boundary.
aThe images seen in Figs. 3(b), 3(c), and 3(d) have had a nonlinear
map applied to them, enhancing the contrast between the SDL and
the rest of the image.

[28]. Changing the parameter τn to get into the regime
of low excitability as we do here, however, changes the
dispersion relation. In Fig. 4 we plot the conduction velocity
of a single stable pulse in a one-dimensional (1D) system
with periodic boundary conditions, corresponding to a ring
configuration, for varying system sizes. For each system
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FIG. 4. Conduction velocity of a single stable pulse or action
potential traveling on a ring with Re = 1.08 as a function of ring
length. The behavior is qualitatively the same for all Re we considered
(1.02 � Re � 1.16).
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FIG. 5. Period of rotation of a single SDL attached to a free
spiral in a circular domain with diameter 10.48 cm as a function of
Re. For low Re values, no alternans are present. After the appearance
of alternans, increasing Re increases the period of rotation. This
continues until a point where SDLs start to appear and disappear
constantly (turbulent SDLs). For even larger Re, the spiral simply
breaks up. The variation with the spatial resolution, �x, used for the
numerical integration gives a rough estimate of the uncertainties.

size, the conduction velocity corresponds to the numerically
measured asymptotic long-term average over time scales of
thousands of pulse trips around the ring. While the conduction
velocity is monotonically increasing corresponding to normal
conduction for sufficiently long lengths, clear deviations occur
for small ring lengths: The conduction velocity has a maximum
at very short lengths. This should lead to stable pulse pairs
and, thus, stable concordant alternans in arbitrarily long-paced
one-dimensional cables as for supernormal conduction [13] but
only if the pulses or action potentials are initially sufficiently
close. We have confirmed this by direct numerical simulations
(not shown). Thus, this behavior is consistent with the straight
SDLs we see providing further evidence for a direct connection
between stable concordant alternans in paced cables and
straight SDLs in two-dimensional tissue. Also corroborating
this observation are the results of Ref. [29], where it was
found that for an effective spiral model, nonmonotonic wave
dispersion as seen here results in spirals with one straight SDL.

B. Dynamics of SDLs

Focusing on the regime where a single SDL is attached
to the spiral core (1.05 � Re � 1.125), we observe that the
SDL rotates slowly over time in the same direction as and at
a much lower frequency than the spiral rotation. This is again
in agreement with the experimental results of Ref. [10], where
some spirals were found to posses rotating SDLs. As seen in
Fig. 5 , the SDL rotational period increases monotonically with
Re. The values shown in Fig. 5 seem to be independent of the
system size, as long as the system is sufficiently large [35].
This trend continues until Re > 1.12 where SDLs start to be
spontaneously created and annihilated, mostly at boundary
of the system but also inside the bulk. These additional
SDLs then frequently connect and reconnect to the core. This
turbulent SDL behavior is similar to what has been observed
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for complex-oscillatory media [19,27]. The turbulent behavior
becomes more pronounced with increasing Re.

C. Spiral core motion

To quantify the motion of the spiral core, we use its
definition as a phase singularity in terms of the concept of
topological charge [36–38]. Topological charge is defined as

q(�x,t) = 1

2π
lim
R→0

∮
|�x ′−�x|=R

�∇′φ(�x ′,t) · d�l′, (10)

where φ(�x,t) is the phase field. In our case, the local phase can
be defined as

φ(�x,t) = arctan

(
n(�x,t) − n0

E(�x,t) − E0

)
. (11)

Here, (E0,n0) is a point inside the local limit cycles in phase
space. We chose (1.2, 0.9). If the above integral is taken
around a single-armed spiral core, q(�x,t) will evaluate to
either 1 or −1. The sign refers to the spiral direction, while
the absolute value refers to the number of spiral arms. If
it is not taken around a core, q(�x,t) = 0. Evaluating q(�x,t)
numerically for all points of the discrete lattice allows one to
identify the location of spiral cores over time and construct
their trajectories.

In the regime where no alternans or SDLs are present, the
spiral core moves on a small circle with a frequency identical
to the spiral rotation frequency as expected. This is shown
in Fig. 6(a). The transition to alternans, however, seems to
coincide with a meandering transition introducing a second
frequency. Figure 6(b) shows a plot of the core trajectory for
Re = 1.08. The small orbits seen in the absence of alternans
are still present, though a slower rotation is observed on top of
that leading to inward petals. The period of this slower rotation
is equal to the SDL rotation period. Because of this, it appears
as though this slow rotation of the core is directly related
to the rotation of the SDL, which has a finite periodicity at
onset (see Fig. 5). This behavior suggests that the normal form

proposed in Ref. [26]—identical to the one for the standard
meandering transition—characterizes the spiral transition to
alternans. Yet, in contrast to models of complex-oscillatory
media, the transition itself does not seem to be a resonant 2 : 1
Hopf bifurcation but rather a nonresonant one since the former
would lead to a straight drift of the core [26].

The two frequencies capture the most prominent features
of core motion, but they are not sufficient to fully characterize
the motion, at least away from onset. There also appear to
be harmonics in the core motion with a period of about eight
times the spiral rotation period. This is seen in Fig. 6(c), where
running averages of different lengths were applied to a part
of Fig. 6(b). The running average over one spiral rotation
eliminates the smaller circles corresponding to the highest
frequency motion, but leaves a trajectory that still loops around
on relatively short time scales. These loops disappear only
when a running average over eight times the spiral rotation
frequency is applied. These harmonics do not affect the motion
over large time scales.

As one would expect, the radius of the circle related
to the second frequency increases with Re. However, this
increase in radius is not completely due to the increase in the
rotation period of the SDL. As seen in Fig. 7, the associated
speed increases monotonically with Re as well. It is the
combination of variable SDL rotation period and drift speed
that modifies the size of the circles traced by the moving core.
The confluence of these two phenomena make the drift not
as apparent for Re values close to the onset of alternans and
does not allow us to test the hypothesis of a nonresonant Hopf
bifurcation more precisely.

The slow drift of a spiral core correlating with an SDL
has been observed before in complex-oscillatory media [27].
While the core speed also increased monotonically from
onset, the angle between the direction of the drift and the
orientation of the single SDL decreased monotonically with
the control parameter from 180 to 90 degrees. Surprisingly,
the opposite behavior is seen for the model we study here. The
instantaneous direction of the core drift increases monotoni-
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FIG. 6. (Color online) Spiral core trajectories for (a) Re = 1.02 over 493 ms, (b) Re = 1.08 over 13493 ms, and (c) a zoomed in portion
of (b). Both of the core trajectories have had running averages applied over 6.25 ms in order to smooth out the trajectories, while (c) has had
different running averages applied. The red (light gray) trajectory seen in (c) is the result of a running average of 25 ms (one spiral rotation),
while the blue (dark gray) trajectory is the result of a running average of 200 ms (eight spiral rotations). For Re = 1.02, alternans have not yet
set in, the only motion present is a circular orbit. In the alternans regime for Re = 1.08, a slowly rotating SDL is present introducing a second
frequency and causing the core to exhibit inward petals.
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FIG. 7. (Color online) Drift speed (solid triangles) and the angle
between the direction of the drift and the orientation of the SDL, θ

(open circles), as functions of Re. For Re < 1.07 numerical accuracy
is insufficient to obtain a clear drift trajectory, and subsequently
neither a drift velocity or a drift-SDL angle could be measured for
Re = 1.06.

cally with Re, approaching 180 degrees close to breakup, see
Fig. 7.

The core motion undergoes another transition for Re >

1.12, as the system enters the turbulent SDL regime. As
mentioned above, in this regime SDLs spontaneously appear
and disappear. These new SDLs frequently connect with each
other and with the spiral core, strongly influencing the motion
of the core. The connection and reconnection of SDLs to the
core occur rapidly such that only a single SDL is connected to
the core for extended periods of time. As in the nonturbulent
regime, the orientation of the SDL determines the direction
of the slow core drift. Other SDLs present either form closed
loops detached from any spiral core, often called bubbles, or
are attached to the boundary with both ends. During the time
intervals between subsequent reconnections to the core, the
attached SDL moves rather erratically back and forth over
short distances but does not rotate. This leads to the core
exhibiting almost straight line motion over such a period, with
the drift direction at an angle of about 180 degrees with respect
to the SDL. In addition to this angle, the speed of the core drift
is also consistent with the behavior directly before onset of
turbulent SDLs. For increasing Re, the system becomes more
turbulent and reconnection events occur faster leading to more
frequent changes in the direction of the core motion making it
effectively diffusionlike.

D. Multispiral patterns

To test to which extent the dynamics of single spirals with
attached SDL described above carries over to the case of
multiple spirals, which are typical for sufficiently large systems
and have been observed in the experiments on heart tissue [10],
we focus on spiral pairs first. In the nonturbulent regime of
alternans, both spiral cores are connected by an SDL. We find
that provided that the initial distance between the two spirals
is sufficiently large, the SDLs rotate with the same period as in
the single spiral case and the rotation direction is also linked

(a) (b)

(c) (d)

(e) (f)

FIG. 8. Images of the voltage field with SDLs overlaid for two
spirals in a periodic tissue of size 20.96 cm by 10.48 cm and Re =
1.08. Images were taken at (a) 3450 ms, (b) 5750 ms, (c) 7950 ms,
(d) 10550 ms, (e) 11100 ms, and (f) 13650 ms, respectively. The
SDLs of each spiral both rotate, and are connected to each other at
all times. Notice also how another SDL disconnects and lies on the
shock line for part of the rotation.

to the rotation direction of the spiral. A typical rotation is seen
in Fig. 8 for periodic boundary conditions. Close to the spiral
cores the SDLs are almost straight as before, yet they bend,
sometimes dramatically, close to the shock lines (locations
where different wavefronts meet and annihilate) separating the
spirals. In particular, the SDL periodically splits into two such
that the additional SDL lies completely on one of the shock
lines before they reconnect later. In addition to the rotation of
the SDL, the motion of the spiral cores is also analogous to
the case of a single spiral.

The case of two spirals also provides additional evidence
that the direction of the spiral core motion is determined by the
attached SDL. Specifically, if the two spirals are sufficiently
close but not too close [39], the connecting SDL does not
rotate and the cores drift apart with a constant direction and
speed as expected based on the single-spiral case for the
given Re value. Once their separation is sufficiently large, the
SDLs start rotating and the spiral cores meander as described
above.

In situations with multiple spirals, many of the features
described above survive. Figure 9 shows an example of the
dynamics for such a multispiral pattern in the nonturbulent
alternans regime for periodic boundary conditions. Spirals
have a strong tendency to be grouped in pairs, mostly of
opposite orientation or sign, connected by an SDL. Due to the
periodic boundary conditions, there must be an equal number
of “positive” (clockwise) and “negative” (counterclockwise)
spirals [40]. Just as in the spiral-pair case, the SDLs are seen
to be straight close to the spiral cores, but bend dramatically
near shock lines. The SDLs then lie along these shock
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(a) (b)

(c) (d)

FIG. 9. Snapshots the voltage field with SDLs overlaid from a
simulation of many spirals with Re = 1.08. The simulation was run
on a square periodic tissue of length 20.96 cm. Snapshots show (1)
nonrotation of some SDLs, (2) rotation of others, and (3) reconnection
between SDLs. (4) Four tiny spirals can be seen inside the shock lines
in the upper right corners of the images. Snapshots were taken at times
(a) 20 s, (b) 22 s, (c) 24 s, and (d) 26 s.

lines before bending again to connect straight to another
core.

In Fig. 9, some SDLs are seen to be rotating, while others
are frozen. This coexistence is exactly what has been observed
in rat heart tissue cultures [10]. The cores with rotating SDLs
are typically farther away from shock lines than the cores
with nonrotating SDLs. This matches the results seen in the
spiral-pair system. The core motion also follows the exact same
behavior as in the single- and double-spiral cases: The cores
perform circular motion with an additional drift in a direction
determined by the SDL orientation. In the case of nonrotating
SDLs, this causes the cores to move away from the shock line,
similar to the case of two spirals sufficiently close together.
For rotating SDLs, the core meanders.

Inevitably, the pattern rearranges over time due to the
rotation of the SDLs and the associated motion of the spiral
cores. Reconnections are seen to occur between SDLs such
that cores exchange partners frequently. A specific example
of this is labeled as 3 in Fig. 9. Another feature of these
multispiral patterns is the presence of spirals with wave fields
that are confined to tiny areas. These “passive” spirals still have
SDLs, which can attach to other spiral cores. However, their
cores move under different dynamics than the larger spirals
resembling passively advected entities.

Varying Re has the same effect as in the case of single
spirals. Higher Re values lead to faster SDL rotation and higher
drift speeds as well as larger angles between the direction

of the drift and the SDL. In the turbulent SDL regime for
Re > 1.2, the spontaneous creation and annihilation of SDLs
leads to more frequent reconnections and increasingly erratic
motion of SDLs and spiral cores. Spiral cores with three SDLs
attached to them for extended periods of time also occur more
frequently.

IV. DISCUSSION

Despite the fact that the model of cardiac tissue we study
here is very simple and rather a conceptual model, it reproduces
all the major observations in experiments on in vitro tissue
cultures of neonatal rat ventricular myocytes [10]: In the alter-
nans regime, single and almost straight SDLs are connected
to spiral cores. Stationary SDLs coexist with rotating SDLs
and the latter rotate very slowly in the same direction as
the rotation of the spiral wave. Our findings suggest that this
coexistence is due to the interaction of multiple spirals. While
no spiral core motion has been reported in the experiments,
this does not mean that such motion is absent. In particular, our
analysis shows that the motion can be very minimal and barely
detectable especially close to onset of the alternans regime. Our
model also provides evidence that nonmonotonic conduction
is essential to reproduce the experimental findings, supporting
other model studies [13,29,41]. To our best knowledge, the
model studied here is currently the only one that can reproduce
all the experimental features described above.

Some of the features we observe in the regime of low
excitability, also hold if we chose the model parameters in
the regime of normal excitability (τn = 250 ms). Despite
the fact that three fast-rotating and strongly curved SDLs
are attached to a single spiral core in the alternans regime
[28], simulations show that the core motion also exhibits a
meandering transition to inward petals. These inward petals
become more pronounced for larger values of Re indicating an
increase in the speed associated with the second frequency
as for low excitability. These qualitative similarities prove
that low excitability and nonmonotonic conduction are not
necessary conditions to observe these particular features.
While our simple model study is not directly applicable to
human arrhythmias, the robustness of these features indicates
that they could also play a role in some cardiac arrhyth-
mias. Certainly, much more work is necessary to establish
whether this is true and, if yes, to what extent. Possible
venues include studies of more realistic heart models like
those in Refs. [8,13,42–44], which are still computationally
tractable.

Finally, while our analysis has focused on excitable media,
rotating SDLs in combination with spiral core meander
have also been observed in chemical experiments of the
Belousov-Zhabotinsky reaction in a regime where the under-
lying dynamics is complex-oscillatory [21,23]. This indicates
that such a behavior is rather general and not specific to
excitable media or cardiac tissue. Interestingly, in these
chemical experiments the SDL motion can even undergo
another Hopf bifurcation making the overall motion even more
complicated—a phenomenon we do not observe here but could
be observable in other models as, for example, the ones in
Refs. [8,12,13,45].
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