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The denaturation transition of circular DNA is studied within a Poland-Scheraga-type approach, generalized
to account for the fact that the total linking number (LK), which measures the number of windings of one strand
around the other, is conserved. In the model the LK conservation is maintained by invoking both overtwisting
and writhing (supercoiling) mechanisms. This generalizes previous studies, which considered each mechanism
separately. The phase diagram of the model is analyzed as a function of the temperature and the elastic constant
κ associated with the overtwisting energy for any given loop entropy exponent c. As in the case where the two
mechanisms apply separately, the model exhibits no denaturation transition for c � 2. For c > 2 and κ = 0 we
find that the model exhibits a first-order transition. The transition becomes of higher order for any κ > 0. We
also calculate the contribution of the two mechanisms separately in maintaining the conservation of the linking
number and find that it is weakly dependent on the loop exponent c.

DOI: 10.1103/PhysRevE.86.061904 PACS number(s): 87.15.Zg, 36.20.Ey

I. INTRODUCTION

The thermal denaturation of DNA, whereby the two strands
of the molecule separate upon heating, has been thoroughly
investigated both experimentally and theoretically in the last
half century. This process is relevant for experiments such
as polymerase chain reaction (PCR) [1,2], and for biological
processes such as those taking place within a thermophilic
bacteria [3,4]. The fraction of bound base pairs vs temperature
(the melting curve) can be measured by means of UV absorb-
tion [5,6]. Fluorescence techniques are also used for measuring
the melting curve [7] and the lifetime of denatured loops [8–11]
in short DNA structures such as hairpins and primers.

A typical melting curve of chains of the order of thousands
of base pairs is composed of a sequence of discrete steps,
interpreted as indicating a series of sharp, first-order phase
transitions corresponding to the local melting of regions with
successively increasing GC content.

One of the dominant approaches adopted in studies on DNA
denaturation is the use of simplified models, which probe the
gross, hopefully universal, features of the transition. Over
the years, essentially two models have enjoyed widespread
acceptance: the Poland-Scheraga (PS) model [12] and the
Peyrard-Bishop (PB) model [13,14]. These models are not
meant to provide a detailed theoretical description of the
melting curve for any specific DNA molecule, although
such extensions can and have been developed (see, for
example, Refs. [15,16]). Rather, by being exactly soluble, they
contribute to our understanding on a fundamental level by
yielding universal features (such as the order of the transition,
the role of self-avoidance, the size distribution of large loops,
etc.) which are expected to be shared by more detailed and
realistic microscopic models. A review of recent progress in
the field can be found in Ref. [17].

The present paper investigates thermal denaturation in
circular DNA within the framework of the PS model. In the PS
model, and for the case of a homopolymer DNA, the molecule
is represented by an alternating sequence of rigid bound
segments and flexible denatured loops. Their contribution to

the partition function are energetic and entropic, respectively.
The entropy S(l) of a loop of length l is of the form

eS(l) ≡ �(l) = A
sl

lc
,

where A and s are constants and c is the loop exponent
depending only on dimensionality and constraints imposed on
the DNA chain such as excluded volume interactions. In the
framework of the PS model, the nature of the transition is set by
the value of c: for c � 1 no transition takes place and melting is
just a gradual process in which the fraction of bound base pairs
is nonzero at all temperatures; for 1 < c � 2 the transition is of
second order; for c > 2 it is of first order (i.e., the melting curve
is discontinuous at the melting temperature Tc). It was shown
relatively recently [18] that the excluded volume corrections
in three dimensions yield c ≈ 2.12. Therefore, the PS model
predicts a first-order melting transition.

The DNA is a double helix and in order to open a denatured
loop the region in which it is embedded must be unwound.
This has no consequence for a linear DNA chain in thermal
equilibrium, where the ends of the molecule are free to rotate.
On the other hand, in circular DNA (such as plasmids) and
in DNA with rotationally fixed ends the total linking number
(LK), which measures the number of windings of one strand
about the other, is conserved. In such cases the unwinding
of one region must be compensated by the overwinding of
another region.

Two mechanisms have been suggested to absorb the extra
linking number in the overwound regions: (a) increasing of
twist (Tw), or overtwisting, in which the change in the average
stacking angle accounts for the extra windings [19,20], and
(b) increasing of writhe (Wr), or supercoiling, where the
backbone assumes a nonplanar shape that accommodates a
nonzero LK [21–25]. The Călugăreanu-White-Fuller theorem
implies that, during the melting process one has LK=Tw+Wr
[26–29]. It has been shown that the two mechanisms have
similar effects on the melting behavior: For c � 2, the melting
process becomes a smooth crossover with no phase transition.
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For c > 2, there is a phase transition of high order, where
the singular part of the free energy scales with the reduced
temperature t ≡ (T − Tc) as Fsing ∼ |t |(c−1)/(c−2). Thus the
order of the transition diverges as c approaches 2 from
above, and it becomes second order for c � 3. Unlike the
full denaturation of DNA with free ends, the high-temperature
phase here is composed of a critical fluid of microscopic loops
coexisting with a single macroscopic loop [25].

In this paper, we investigate the general scenario where
both mechanisms act simultaneously. We find that the nature
of the transition is the same as that found in either of the two
mechanisms separately. This observation is expected, although
it is not guaranteed by the fact that the two limits (supercoiling
or overtwisting alone) yield similar phase transition scenarios.
To probe the interplay between supercoils and overtwist we
also calculate the linking number absorbed by overtwist at the
critical point.

The paper is organized as follows: In Sec. II the model
is defined and analyzed with a formalism somewhat different
from earlier accounts. In Sec. III the results are presented,
first for simplified cases and then for the full model. We then
conclude in Sec. IV with a brief discussion of our results.

II. MODEL

In order to incorporate supercoils and overtwist, we extend
the PS model and assume that each configuration is composed
of an alternating sequence of bound segments, loops, and
supercoils, the latter being double-stranded chains, which
carry writhe. It is assumed that supercoils form only within
bound segments. Note that, localizing the writhe, inherently
a nonlocal quantity, into well-defined supercoil regions is
an approximation we employ here, in absence of an exact
treatment otherwise. In very recent experiments on stretched
DNA under torsional stress [30] localized supercoiled regions
have been observed. Such configurations have also been
used in recent theoretical studies of stretched DNA [31]. A
typical configuration for our model is sketched in Fig. 1. The
contribution of the three types of segments to the free energy
can be computed the following rules.

(i) A bound segment of length l contributes to the internal
energy Eb < 0 per unit length, and none to the entropy (due
to the large persistence length of the double-stranded DNA).

FIG. 1. A typical configuration of the model.

Hence, the associated Boltzmann weight is elβEb ≡ ωl with
β = 1/kBT .

(ii) A supercoil of length l contributes to the internal energy
Es < 0 per unit length with Es > Eb, yielding a Boltzmann
weight elβEs ≡ νl . It is assumed that like the bound segments,
these segments carry no internal entropy although they do
contribute to the overall entropy through their positional degree
of freedom.

(iii) A loop of size l has an entropic contribution given by
the Boltzmann weight �(l) = Asl

lc
. Here s is a geometry-

dependent constant and A is a constant, usually termed the
cooperativity parameter, reflecting both the normalization of
the entropic contribution and the enthalpic cost of initiating a
new loop.

In addition, we assume an overtwisting elastic energy cost
with an elastic constant κ .

The excess linking number residing on the double-stranded
DNA segments (bound segments and supercoils) is calculated
as follows: A unit length of a loop region increases LK by
1, while a supercoil segment of the same length decreases
LK by 1. We assume that all supercoils are uniform and
identical in this respect (i.e., that a supercoil stem is wound
uniformly around a central plectonemic axis and that the
winding rate of all supercoiled regions is the same). Both
of these assumptions have been used in past studies (see,
for example [32]). The 1 : 1 ratio is adopted for the sake of
simplicity, while considerations of universality suggest that the
results should remain qualitatively unaltered under different
choices. Denoting by Lb,Ls , and Ll the total length of the
bound segments, supercoils, and loops, respectively, the excess
LK in the double-stranded regions is simply Ll − Ls . This is
compensated by an increase in the average stacking angle
per unit length by �θ in the bound segments and supercoils
combined, hence �θ = Ll−Ls

Lb+Ls
[19]. Then, the elastic energy

cost due to overtwisting is κ(Lb + Ls)(�θ )2 = κ (Ll−Ls )2

Lb+Ls
,

yielding the Hamiltonian

H = Lbεb + Lsεs + κ
(Ll − Ls)2

Lb + Ls

.

Thus, for example, the Boltzmann weight of the configuration
depicted in Fig. 1 is given by

ωlb1,1νls1,1ωlb1,2νls1,2ωlb1,3�
(
ll1

)
ωlb2,1νls2,1ωlb2,2�

(
ll2

)

× e
−βκ

(ll1+ll2−ls1,1−ls1,2−ls2,1)2

L−ll1−ll2 .

It is worth noting that some of the previously studied PS-type
models can be formulated as special cases of the present model:
Ls = 0 corresponds to the case with overtwisting only [19];
Ls = Ll corresponds to the case with supercoils only [23,25]
and κ = 0 corresponds to a DNA with supercoils and no LK
constraint [23].

The canonical partition function can now be written as

Z(L) =
∑

Lb+Ll+Ls=L

Zκ=0(Lb,Ll,Ls)e
−βκ

(Ll−Ls )2

Lb+Ls , (1)

where Zκ=0(Lb,Ll,Ls) is the partition sum with given Lb,l,s

and κ = 0 (which is an ensemble more restricted than even
the microcanonical ensemble, as there may be different Lb,l,s
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triplets that have the same energy). The correspondence with
other models mentioned above can be obtained from Eq. (1) by
taking the appropriate limits: The PS model is recovered when
κ = 0 and ν = 0 (or Es = ∞ so that Ls = 0); taking ν = 0,
κ > 0 yields the partition sum for a model with overtwisting
only [19]; finally, substituting κ = ∞, ν > 0 recovers the case
with supercoils only [23].

A. Free energy

We begin by calculating Zκ=0(Lb,Ll,Ls). This is conve-
niently done by first evaluating the grand canonical partition
sum by means of a z transform of Zκ=0. The canonical
partition sum (expressed in terms of Lb,Ll , and Ls , or in
terms of the fractions mi ≡ Li/L, i = b,s,l) is then calculated
using the inverse transform. Introducing three fugacities, zb,zl ,
and zs , corresponding to the three length constraints, the
resulting grand canonical partition function Qκ=0(zb,zs,zl) can
be expressed in a closed form as

Qκ=0(zb,zs,zl) =
∑
Lb,s,l

Zκ=0(Lb,Ls,Ll)z
Lb

b zLs

s z
Ll

l

= 1 + Ṽ (zb,zs)U (zl)

+ Ṽ (zb,zs)U (zl)Ṽ (zb,zs)U (zl) + · · ·
= 1

1 − Ṽ (zb,zs)U (zl)
, (2)

with

U (zl) = A

∞∑
l=1

slzl

lc
= A
c(szl), (3)

Ṽ (zb,zs) = V (zb) + V (zb)W (zs)V (zb) + · · ·
= V (zb)

1 − W (zs)V (zb)
, (4)

V (zb) =
∞∑
l=1

ωlzl
b = ωzb

1 − ωzb

, (5)

W (zs) =
∞∑
l=1

νlzl
s = νzs

1 − νzs

. (6)

The functions U (zl) and Ṽ (zb,zs) are the grand canonical sums
of single-stranded (loops) and double-stranded (bound and su-
percoiled) segments, respectively. Similarly, V (zb) and W (zs)
denote the grand sums for bound and supercoiled segments,
respectively. Here 
c(q) is the polylogarithm function of order
c, which is analytic everywhere except for a branch cut for
q � 1. The behavior of this function at q = 1 depends on c: If
c � 1, 
c(q) diverges as q → 1−. If c > 1, 
c(q → 1−) = ζc

where ζc is the Riemann ζ function [33]. The behavior of

c(q) near q = 1 determines the nature of the phase transition
investigated here, as will be shown below. In deriving Eq. (2)
we take Zκ=0(0,0,0) = 1 and assume that the chain contains
at least one loop and one bounded segment. This assumption
simplifies the numerator of the resulting expression in (2) and
it has no effect on the resulting thermodynamic properties of
the model.

The canonical partition function is found by inverting the z

transform using a Cauchy integral

Zκ=0(Lb,Ll,Ls) =
(

1

2πi

)3 ∮
Qκ=0(zb,zs,zl)

z
Lb+1
b z

Ls+1
s z

Ll+1
l

dzbdzsdzl.

(7)

All integration contours encircle the origin and contain no
other singularities. Using Eqs. (2)–(6) we find

Qκ=0(zb,zs,zl) =
[

1

ωzb

− 1

1 − νzs

− A
c(szl)

]−1

.

Qκ=0 has a simple pole in zb set by

1

ωzb

− 1

1 − νzs

− A
c(szl) = 0, (8)

yielding

z∗
b = 1

ω

[
1

1 − νzs

+ A
c(szl)

]−1

. (9)

Note that Eq. (8) is equivalent to Eq. (2) in Ref. [25]. The zb

contour in Eq. (7) can be deformed to encircle the pole given
by Eq. (9), yielding

Zκ=0(mb,ml) =
(

1

2πi

)2 ∮
e−LF̃κ=0(zs ,zl ,mb,ml )dzldzs (10)

with

F̃κ=0(zs,zl,mb,ms) = mb ln[z∗
b(zs,zl)] + ms ln(zs)

+ (1 − mb − ms) ln(zl) (11)

up to logarithmic corrections in L. Here we used the fact that
mb + ms + ml = 1. In the thermodynamic limit the integral in
Eq. (10) can be evaluated by considering the saddle point of
F̃κ=0 with respect to zl and zs ,

0 = ∂F̃κ=0

∂zs

= − mbν/(1 − νzs)

1 + (1 − νzs)A
c(szl)
+ ms

zs

, (12)

0 = ∂F̃κ=0

∂zl

= − mb(1 − νzs)A
c−1(szl)

zl

[
1 + (1 − νzs)A
c(szl)

]
+ 1 − mb − ms

zl

, (13)

where we used the identity d
dq


c(q) = 1
q

c−1(q). After some

algebra Eq. (12) yields

z∗
s = 1

ν

[
1 + 1 + x −

√
(1 + x)2 + 4xη

2η

]
, (14)

where we define

x ≡ mb

ms

, η ≡ A
c(szl). (15)

It can be seen (as x,η > 0) that z∗
s < ν−1, therefore the zs

integration contour can be deformed to pass through this saddle
point without encircling the singularity of F̃ at zs = ν−1.
Eq. (13) yields

1 + A
c−1(szl)
1

1−νz∗
s
+ A
c(szl)

= 1

mb

− 1

x
. (16)
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The LHS of Eq. (16) is monotonically increasing with zl (see
Appendix A). For c � 2 this equation has a solution, z∗

l , for
any value of mb and x due to the fact that 
c−1(szl) diverges at
szl = 1. However, for c > 2, the LHS reaches a finite value for
zl = s−1 [the branch point of 
c(szl)]. Therefore, for a given
value of x, there is no saddle point for values of mb below a
critical threshold m

(c)
b given by

m
(c)
b (x) =

[
1 + 1

x
+ Aζc−1

1
1−νz∗

s
+ Aζc

]−1

. (17)

Here z∗
s is obtained using Eq. (14) with η replaced by Aζc.

For values mb < m
(c)
b (x) the zl integral is equal to the value

of the integrand at the branch point zl = s−1, as in the
canonical treatment of the PS model [34]. The integration
procedure involves more than simply evaluating the integrand
at the singularity closest to the origin. Details are given in
Appendix B.

To calculate the canonical partition function Z(L) given in
Eq. (1) the overtwist term should be added to the free energy,
yielding

F̃ (zs,zl,mb,ms) = mb ln[z∗
b(zs,zl)]

+ms ln(zs) + (1 − mb − ms) ln(zl)

+βκ
(1 − mb − 2ms)2

mb + ms

. (18)

This full free energy needs to be minimized with respect to all
of its arguments. The minimization with respect to zs and zl is
the same as for F̃κ=0 and the results are given by Eqs. (14) and
(16). The minimization with respect to mb and ms is discussed
in the next section.

In summary, the fugacities zs,zl in the thermodynamic
limit (denoted by z∗

s and z∗
l ) as functions of the bound and

supercoiled segment fractions, mb and ms , are given by
Eqs. (14) and (16). Hence we can express the Landau free
energy, Eq. (18), as a function of the densities mb and ms only.
In what follows it will be occasionally more convenient to
express the dependence on ms through the fraction x = mb/ms

as defined in Eq. (15). Then the Landau free energy can be
written as

F (mb,ms) = Fκ=0(mb,x) + βκ
(1 − mb − 2ms)2

mb + ms

, (19)

Fκ=0(mb,x) = F̃κ=0[mb,ms,zl(mb,x),zs(mb,x)]

= mb ln[zb(zs,zl)] + mb

x
ln[zs(x,zl)]

+
(

1 − mb

x + 1

x

)
ln(zl), (20)

where zb is given by Eq. (9), zs is given by Eq. (14) and zl =
zl(mb,x) is given by Eq. (16). Note that unlike other Landau
free energies, which are analytic in the order parameter, here
Fκ=0(mb,x) is a nonanalytic function of mb and x along the line
defined by m

(c)
b (x). We shall denote this line of singularities

by �. In the mb − ms plane the expression for � is

(mb,ms) =
(

m
(c)
b (x),

m
(c)
b (x)

x

)
, x ∈ (0,∞). (21)

For points to the left of � [i.e., those for which mb < m
(c)
b (x)

so that zl = s−1] and for a given x the free energy is linear
in mb, while for points above � it has a more complicated
form, hence Fκ=0(mb,ms) is singular along �. Below we will
explore this nonanalyticity in more detail and show that it is
closely related to the nonanalytic behavior of the free energy
as a function of temperature at the transition point.

III. RESULTS

After introducing the Landau free energy F (mb,ms) and
arguing that it is singular on a line (�) in the (mb,ms) plane,
we move on to study the nature of the phase transition for
different values of κ . Three cases are of interest.

(i) κ = 0: Here overtwisting has no cost and the chain
is equivalent to a linear chain with supercoils freely spread
within, with no linking number constraint. We will see that in
this case the transition (which exists only for c > 2) is first
order as in the standard PS model.

(ii) κ = ∞: Here overtwisting is forbidden. This is the case
with supercoils only, which was analyzed in Ref. [25] and
found to exhibit a continuous transition of order 	 c−1

c−2
 with
a singularity in the free energy, which scales as ∼ t (c−1)/(c−2).
Here we will outline the derivation of this result within the
current approach.

(iii) 0 < κ < ∞: In this case supercoiling and overtwisting
coexist, yielding a different free-energy minimum. Yet, it is
shown that the nature of the transition remains the same as for
κ = ∞.

To quantify the interplay between supercoiling and over-
twisting, we calculate the fraction of the linking number
accommodated by overtwist at the transition point

r(κ) ≡ mlc − msc = 1 − mbc − 2msc. (22)

Clearly, r(κ = ∞) = 0 as no overtwist is allowed in this limit.
Below we derive an explicit formula for r(κ = 0) and calculate
r(0 < κ � ∞) numerically.

Throughout the paper the parameters used in the figures are
Eb = −3, Es = −2, s = 5, A = 0.1.

A. κ = 0

The densities ms and mb are found by minimizing
F (mb,x) ≡ Fκ=0(mb,x). This is equivalent to minimizing
F̃ (zs,zl,mb,ms) with respect to all of its arguments, as F is
obtained from F̃ by minimizing it with respect to the fugacities
zs and zl . Using Eq. (20) and minimizing F (mb,ms) yields

zs(mb,x) = zl(mb,x) = zb(mb,x), (23)

i.e., the system is described by a single fugacity. This is ex-
pected, since for κ = 0 the grand canonical partition function
of the full model could have been derived with a single fugacity
corresponding to the single constraint Lb + Ls + Ll = L.

Substituting Eq. (23) in Eq. (20) one finds

F (T ) = ln{zl[mb(T ),x(T )]},
where mb, ms and zl can be calculated by solving Eqs. (9), (14),
and (16) using Eq. (23). Hence the nonanalytic behavior of zl

results in a singularity in F . As mentioned above, for c � 2,
zl(mb,ms) is an analytic function, therefore there is no phase

061904-4



DENATURATION OF CIRCULAR DNA: SUPERCOILS AND . . . PHYSICAL REVIEW E 86, 061904 (2012)

transition in the system. For c > 2, zl increases monotonically
from zero with temperature as long as T < Tc, where using
Eq. (9) the critical temperature Tc is given by

1

ω(Tc)

[
1

1 − ν(Tc)/s
+ Aζc

]−1

= 1

s
.

For T > Tc, zl = s−1 is a constant and hence F (mb,x) is
constant, independent of T . As T → Tc from below, the
free energy approaches the transition point with a nonzero
slope, hence the transition is first order. This can be seen
by differentiating Eq. (9) with respect to T ∼ ln(ω) using
relation (23).

The equilibrium values of mb and ms as a function of T

define a trajectory in the mb − ms plane, as depicted in Fig. 2.
The starting point of this trajectory at T = 0 is to the right
of the singular line � since mb > m

(c)
b (x). As T increases,

mb decreases. At T = Tc where the trajectory intersects �,
the singular line defined above, a phase transition takes
place.

The fact that the transition is first order can be verified
as follows: the intersection of the trajectory with � takes
place at a certain xc = mbc/msc where mbc and msc are the
critical fractions of the bound segments and the supercoils
on �, respectively. Since the minimum of the Landau free
energy at the critical temperature is obtained at (mbc,msc),
the slope of this free energy vanishes in all directions [i.e.
∂F (mbc,xc) = 0]. As stated above and can been seen by

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

m
b

m
s

 

 

Γ
κ=0
κ=1
κ=∞

FIG. 2. (Color online) The (mb,ms) trajectories as a function
of temperature of for κ = 0 (green full and dotted line), κ = 1
(red dashed line), and κ = ∞ (cyan dash-dotted line). For all lines
c = 2.5. At T = 0 the chain is totally bound, so mb = 1 and ms = 0
for all trajectories. As T increases mb decreases, intersecting at
T = Tc the singular line � [Eq. (21)], drawn above as a thick
black line. On the κ = 0 trajectory there is a coexistence between
a bound phase and a denaturated phase at T = Tc, along the dotted
green line, while for T > Tc the system is effectively unbound with
mb = ms = 0. For κ = 1 (and any κ > 0) the trajectory continues
smoothly across the singular line and reaches mb = ms = 0 only at
T = ∞. For κ = ∞ the trajectory is linear due to the simple relation
ms = 1

2 (1 − mb).

0 0.2 0.4 0.6

−1.6

−1.55

−1.5

m
b

F
(m

b,x
c)

 

 

(a) T/Tc=0.98
T/Tc=1
T/Tc=1.02

0 0.2 0.4 0.6

−1.6

−1.55

−1.5

m
b

F
(m

b,x
c)

 

 

(b) T/Tc=0.98
T/Tc=1
T/Tc=1.02

FIG. 3. (Color online) The Landau free energy F (mb,ms) as
defined in Eq. (19) along the line mb = xcms where xc = mbc

msc
, for

c = 2.5 and (a) κ = 0; (b) κ = 0.01. While the free energy at the
phase transition point for κ = 0 has a continuum of minima in the
interval 0 � mb � m

(c)
b (x), for κ = 0.01 (and for any κ > 0) there is

a unique minimum of the free energy at all temperatures.

inspecting Eq. (20), for points to the left of �, where mb < mbc

and T > Tc, the free energy F (mb,x) is linear in mb for fixed
x. Hence the slope of F (mb,xc) for mb < mbc must be 0.
This implies, in particular, that F (mbc,xc) = F (0,xc), namely
a phase coexistence between bound and unbound phases. Note
that there is no free-energy barrier between the two phases. As
depicted in Fig. 3(a) and can be verified by Eq. (20) above
Tc the slope of F (mb,xc) for mb < mbc is positive and hence
mb = ms = 0 is the minimal solution, so the system is in the
unbound phase. As will be discussed below, setting κ > 0
eliminates the coexistence and yields a unique free-energy
minimum at all temperatures [see Fig. 3(b)].

Let us now consider the overtwist linking number r(κ = 0).
The value of x = mb/ms at criticality can be calculated using
Eqs. (12) and (23)

x−1
c = νs−1/(1 − νs−1)

1 + (1 − νs−1)Aζc

.

Solving Eq. (17) and msc = mbcx
−1
c for mbc and msc, we obtain

the overtwist linking number at Tc as

r(κ = 0) = Aζc−1(1 − νs−1)2 − νs−1

1 + (1 − νs−1)2(Aζc + Aζc−1)
.

Depending on parameters in this expression, r(κ = 0) can be
either positive or negative. Specifically, for the parameters used
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in Fig. 2 the value is r(κ) = −0.26343 < 0, implying that,
the length of the supercoiled regions at the phase transition
point exceeds the length needed to compensate for the linking
number released by the loops, resulting in undertwisted bound
segments.

B. κ = ∞
When κ = ∞, overtwisting is forbidden. The conservation

of the linking number now implies ms = ml , therefore ms =
1−mb

2 . Minimizing Eq. (18) with respect to mb and using the
linking number constraint yields the relation

zb = √
zszl, (24)

which implies that two fugacities are needed, accounting
for the two constraints on the linking number and the total
chain length. Indeed, in previous accounts of this model
the derivation was conducted using two fugacities [23,25].
Inserting Eq. (24) into Eq. (11) yields

F = 1
2 ln(zs) + 1

2 ln(zl) = ln(zb). (25)

In Ref. [25] this case was analyzed and the transition was found
to be of order 	 c−1

c−2
, which diverges as c → 2+, decreases as
c increases and yields a second-order transition for c � 3.
This can be seen by expanding Eqs. (12), (13), and (24) near
the critical temperature, where szl = 1. Setting t ≡ Tc − T ,
δmb ≡ mb − mbc, δzl ≡ zl − s−1 and δzs = zs − zsc, where
mbc and zsc are the values of mb and zs at Tc, and using
the identity 
c(1 − δ) ≈ ζc − δc−1 yields below the critical
temperature (t > 0)

δmb ∼ δzs ∼ δzc−2
l ∼ t.

Hence δzl ∼ t
1

c−2 . Expanding Eq. (25) to appropriate order in
t and δzl yields

F = F (Tc) + αt + βδzc−1
l + O(t2)

∼ F (Tc) + αt + βt
c−1
c−2 + O(t2). (26)

Above the critical temperature (t < 0) δzl = 0 and hence
the 	 c−1

c−2
th derivative of F diverges (or is discontinuous) at
T = Tc, constituting a phase transition of the same order. The
fact that the transition becomes more pronounced (of lower
order) as the loop exponent c increases can be appreciated by
inspecting Fig. 4 which shows mb as function of temperature
for c below and above 3.

C. 0 < κ < ∞
In this case, as for κ = 0, both mb and ms are set

by minimizing the Landau free energy given in Eq. (19).
Here, however, there is no simple relation between the

0.5 1 1.5 2
0.2

0.4

0.6

0.8

1

T/T
c

m
b

 

 

κ=∞, c=2.5
κ=∞, c=3.5
κ=1, c=3.5

FIG. 4. (Color online) mb vs. T for various c and κ . The signature
of the second order transition is the non differentiability of the curves
at T = Tc when c > 3. For 2 < c < 3 the melting curve is smooth
with a higher order singularity at T = Tc. It can also be seen that the
transition sharpens as κ decreases.

fugacities

0 = ∂F

∂mb

= ln

[
zb

zl

]
− βκ

(1 − mb − 2ms)(1 + mb)

(mb + ms)2
(27)

0 = ∂F

∂ms

= ln

[
zs

zl

]
+

−βκ
(1 − mb − 2ms)(1 + 3mb + 2ms)

(mb + ms)2
. (28)

These equations, together with Eqs. (14), (16) for T � Tc, and
Eq. (14) and zl = s−1 for T � Tc, set the value of the order
parameter mb in the thermodynamic limit. Inserting Eqs. (27)
and (28) into Eq. (18) yields

F (T ) = ln[zb(mb,ms)] − βκ
(1 − mb − 2ms)2

(mb + ms)2
.

Repeating argument used for κ = ∞ shows that here, too, the
order of the transition is 	 c−1

c−2
.
We observe in Fig. 2 that the trajectories for κ = 0,1,∞

in the (mb,ms) plane intersect at a single point (m∗
b,m

∗
s ). In

fact, this special point is common to all such trajectories with
arbitrary κ: Let T ∗ be the temperature for which the minimum
of the free energy F (mb,ms) satisfies m∗

s = 1−m∗
b

2 for some
κ . Then, for any other κ , the minimum of the free energy at
T ∗ is also given by (m∗

b,m
∗
s ), because the κ-dependent part of

the free energy κ (1−mb−2ms )2

mb+ms
vanishes (and hence is minimal)

when ms = 1−mb

2 .
We now consider the overtwist linking number at criticality

for 0 < κ < ∞. This number, r = 1 − mbc − 2msc, cannot be
obtained analytically. In Fig. 5 we present the numerically
calculated r(κ)/r(0) ratio for two values of c. r(κ) depends
weakly on c and could be either positive or negative, depending
on the parameters of the model. However, for a given set of
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FIG. 5. (Color online) r(κ)/r(0), where r ≡ 1 − mbc − 2msc, for
different values of c. It can be seen that r(κ)/r(0) depends only
weakly on c, and that, as expected, it decays monotonically from 1
for κ = 0 to 0 at κ = ∞.

parameters, the sign of r(κ) does not change with κ . In order
to demonstrate this point, consider the special point in Fig. 2
where all trajectories for different κ intersect at a shared tem-
perature T ∗ and note that this point is the borderline between
negative and positive r(κ) on each trajectory. Therefore, if
the parameters are such that the intersection is to the left of
the singular line �, then for a given κ the critical temperature
satisfies Tc < T ∗ and hence r(κ) < 0. If, on the other hand, the
intersection is to the right of the singular line then r(κ) > 0
for the same reason. In addition, if the parameters are such
that the intersection is to the left of the singular line, a
corollary follows that T ∗ = T (κ=0)

c , which in turn implies
T (κ>0)

c < T (κ=0)
c . Recalling that κ = 0 refers to the case with

no LK conservation, this is in agreement with the experimental
evidence that imposing circular topology reduces the melting
temperature [22]. There is no equivalent statement in the other
case in which the intersection is to the right of the singular line.

IV. CONCLUSION

In this paper we analyzed the thermal denaturation of
a circular DNA molecule, in which the linking number is
conserved. Within the framework of the Poland-Scheraga
model, we have considered the two possible mechanisms for
conserving the LK: writhing (forming supercoils) and over-
twisting. The denaturation transition is studied for arbitrary
values of the elastic constant κ associated with the overtwist
elastic energy. We found that the model exhibits no transition
for c � 2 and a high-order, continuous transition for c > 2,
κ > 0. The singular part of the free energy was found to scale
as t

c−1
c−2 with t = Tc − T , yielding a transition of order 	 c−1

c−2
.
The order of the transition diverges as c approaches 2 from
above, it decreases with increasing c and it becomes second
order for c � 3. The model with κ = 0 behaves differently,
exhibiting no transition for c � 2 and a first-order transition
for c > 2. Similar observations were reported before for the

limiting cases restricted to supercoils only [25] and overtwist
only [35].

The canonical analysis carried out here brings new insights.
For example, the first-order transition that takes place for κ = 0
and c > 2 is found to be rather special in that it does not have
a metastable region [see Fig. 3(a)]. This is true also for the
original PS model. In addition, the analysis of the (mb,ms)
trajectories unveiled a κ-independent special point (m∗

b,m
∗
s ),

which in return led to the prediction that T (κ>0)
c < T (κ=0)

c

(the melting temperature reduced by circular topology) for a
wide range of parameters, in line with an earlier experimental
observation.

The model considered in this paper corresponds to a
homogeneous circular DNA chain, while biological DNA
molecules are heterogeneous. However, through the Harris
criterion [36] we find that the disorder is irrelevant for κ > 0
and c < 3, where the specific heat exponent α = 2 − c−1

c−2 =
c−3
c−2 is negative. Therefore we do not expect the sequence
heterogeneity to change the nature of the phase transition and
the associated critical exponents. As the actual value of the
loop exponent was estimated to be c ≈ 2.12 [18], our analysis
should be valid for sufficiently long, real DNA chains.

Previous accounts on denaturation of circular DNA have
found that a macroscopic loop is formed above Tc, reminiscent
of Bose-Einstein condensation. Although not discussed here,
we expect a similar phenomenon in the combined model of
supercoils and overtwist, and it would be interesting to analyze
the linking number exchange between the macroscopic loop,
the microscopic loops, and the supercoiled and overtwisted
segments.
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APPENDIX A: MONOTONICITY OF THE RHS OF EQ. (16)

We wish to show that

f (zl) = A
c−1(szl)
1

1−νzs
+ A
c(szl)

is a monotonically increasing function for zl ∈ (0,s−1). Using
Eq. (14) we can write

g(η,x) ≡ 1

η

1

1 − νzs(zl,x)
= 2√

(1 + x)2 + 4xη − (1 + x)
,

where η = A
c(szl) increases and g(η,x) decreases with zl .
Hence we can write

f (zl) = 1

1 + g(η,x)
× 
c−1(szl)


c(szl)
,

where the first factor is an increasing function of zl . It is thus
sufficient to show that the second factor also increases with zl .
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To this end, we differentiate this term

d

dzl

[

c−1(szl)


c(szl)

]

=
[

c−2(szl)
c(szl)


c(szl)2
− 
c−1(szl)2


c(szl)2

]
.

Now we show that the numerator of the derivative, denoted
by �(zl) is positive, by expressing the polylogarithm function
explicitly as a power series of the variable y = szl ,

�(zl) =
∞∑

k,l=1

[
yl

lc−2

yk

kc
− yl

lc−1

yk

kc−1

]

=
∞∑

k,l=1

yl

lc−1

yk

kc
[l − k]

=
∞∑
k<l

yl+k[l − k]

[
1

lc−1

1

kc
− 1

kc−1

1

lc

]

=
∞∑
k<l

yl+k

lckc
[l − k]2 > 0.

This demonstrates that f (zl) is a monotonically increasing
function of zl .

APPENDIX B: BRANCH-CUT INTEGRATION

We wish to evaluate the integral for the partition function
with κ = 0 given in Eq. (10)

ψ(Lb,Ls,Ll) = 1

2πi

∮
e−LF̃κ=0(zs ,zl ,mb,ms )dzl,

with zs(x,zl) given by Eq. (14). Li satisfy Lb + Ll + Ls = L,
Lb/Ls = x and mi = Li/L (i = b,s). Defining y = szl yields

ψ(Lb,x) = sLl

2πi

∮ [
1

1−νzs
+ A
c(y)

]Lb

z
Lb/x
s yL−Lb

1+x
x

dy

= sLl

2πi

∮
I (y)Ldy.

Equation (17) defines the value of mb = Lb/L below which
the integrand has no saddle point, therefore the integral should
be evaluated by another method. The integration contour can
be deformed to the contour depicted in Fig. 6, composed of
the following segments:

(I) : [R − iε,1 − iε]

(II) :

{
1 − εeiθ :

π

2
< θ <

3π

2

}

(III) : [1 + iε,R + iε]

(IV) : {Reiθ : δ < θ < 2π − δ}, (B1)

where R → ∞ and tg(δ) = ε
R

. We wish to show now that
the only contribution comes from the vicinity of the branch
point: To see that the contribution of (IV ) is negligible we
note that for |y| → ∞,|
c(y)| → ln(y)c

�(c+1) [37]. From Eq. (14)

we see that for |y| → ∞zs → 1 and 1
1−νzs

→ √

c(y) so that

FIG. 6. The original contour of integration C1 can be deformed
to the contour, which is given by Eq. (B1) and is described in the text
of Appendix B. The branch point y = 1 is marked here by a filled
circle.

for large enough L and x < ∞,

lim
R→∞

[I (Reiθ )]L ∼ lim
R→∞

ln(R)cLb

RL−Lb
1+x
x

< lim
R→∞

1

R2
.

Hence segment (IV ) of the contour has no contribution. Along
segment (II ) the function I (y) is analytic and hence the
integral is of order ε and can be taken to be arbitrarily small.

I (y) can be written as a power series with only real coef-
ficients, and hence I (y∗)L = I ∗(y)L, where y∗ is the complex
conjugate of z. Integrating along segments (I ) + (III ) yields

ψ = sLl

2πi

∫
(I )+(III )

I (y)Ldy = sLl

π

∫ ∞

1
Im[I (y)L]dy.

Defining I (y) = �(y)ei�(y), where �(y) and �(y) are real
functions, we can write Im[I (y)L] =�(y)L sin[L�(y)]. As
�(y) is a smooth function for y > 1 in the thermodynamic
limit the oscillations in the sin() function average out to zero.
Therefore, the only contribution to the integral comes from
the vicinity of y = 1, where �(y) has a discontinuity in some
derivative.

The function I (y) has a pole at y = 0 where I (y →
0+) → ∞, so that I ′(y) < 0 near the origin. When c >

2, the fact that there is no saddle point for 0 < y < 1
implies that I ′(1) < 0 as well, and hence �′(1) < 0. For
δy ≡ y − 1 
 1 the imaginary part of the polylogarithm
function is approximately Im[
c(1 + δy)] ≈ aδyc−1 with
a = π/�(c), and therefore �(1 + δy) ≈ ãδyc−1 with ã =
[a/�(1)]) × ∂I/∂
c(y). Combining these observations yields
to leading order I (1 + δy) ≈ �(1) exp[−bδy + iãδyc−1] with
b = −�′(1)/�(1) > 0.

ψ ≈ sLl

π
�(1)L

∫
0
e−bLδy sin(Lãδyc−1)dδy.

The contribution to the integral comes from a region of size
δy ∼ 1

L
, so that the upper limit can be stretched to ∞ without

affecting the result. Rescaling by ỹ = bLδy we obtain

ψ ≈ sLl

π
�(1)L(bL)−1

∫ ∞

0
e−ỹ sin

(
ãỹc−1

bc−1Lc−2

)
dỹ .
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As c > 2, in the thermodynamic limit L → ∞ the argument
of the sin() function is small and it can be expanded.

ψ ≈ ã(bL)c−2

πL
sLl�(1)L

∫ ∞

0
e−ỹ ỹc−1dỹ

= ã(bL)c−2�(c)

πL
sLl�(1)L .

Substituting back zl = y/s yields

ψ(Lb,Ls,Ll) ≈ ã(bL)c−2�(c)

πL
e−LF̃κ=0(zl=s−1,zs ,mb,ms ),

where zs = zs(zl,x) is given in Eq. (14). Hence up to
logarithmic corrections the free energy is given by its value at
the branch point.
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[22] V. Vı́glaský, M. Antalı́k, J. Adamcı́k, and D. Podhradský,
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