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Theory of elastic interaction between arbitrary colloidal particles in confined nematic liquid crystals
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We develop the method proposed by Chernyshuk and Lev [Phys. Rev. E 81, 041701 (2010)] for theoretical
investigation of elastic interactions between colloidal particles of arbitrary shape and chirality (polar as well as
azimuthal anchoring) in the confined nematic liquid crystal (NLC). General expressions for six different types of
multipole elastic interactions are obtained in the confined NLC: monopole-monopole (Coulomb type), monopole-
dipole, monopole-quadrupole, dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole interactions. The
obtained formulas remain valid in the presence of the external electric or magnetic fields. The exact equations
are found for all multipole coefficients for the weak anchoring case. For the strong anchoring coupling, the
connection between the symmetry of the shape or director and multipole coefficients is obtained, which enables
us to predict which multipole coefficients vanish and which remain nonzero. The particles with azimuthal helicoid
anchoring are considered as an example. Dipole-dipole interactions between helicoid cylinders and cones are
found in the confined NLC. In addition, the banana-shaped particles in homeotropic and planar nematic cells are
considered. It is found that the dipole-dipole interaction between banana-shaped particles differs greatly from
the dipole-dipole interaction between the axially symmetrical particles in the nematic cell. There is a crossover
from attraction to repulsion between banana particles along some directions in nematic cells. It is shown that
monopoles do not “feel” the type of nematic cell: monopole-monopole interaction turns out to be the same in
homeotropic and planar nematic cells and converges to the Coulomb law as thickness increases, L → ∞.

DOI: 10.1103/PhysRevE.86.061703 PACS number(s): 61.30.−v, 42.70.Df, 64.70.pv, 47.57.J−

I. INTRODUCTION

The world of nematic liquid crystal (NLC) colloids is
much more diverse than the world of the usual isotropic
colloids. Particles suspended in a nematic liquid crystal host
distort the orientational nematic order on distances much
larger than their size. Distortions intersect and interact with
each other, giving rise to the effective elastic interactions
between colloidal particles. These anisotropic elastic interac-
tions resemble electrostatic interactions, but sometimes they
are very different. They never occur in isotropic hosts, and
they result in the formation of different colloidal structures
in liquid crystals. For instance, spherical water droplets in
the NLC may produce a hedgehog director configuration
which has asymptopic dipole director symmetry. The dipole
director symmetry causes effective dipole-dipole-type elastic
interaction between droplets and produces linear chains along
the average director field n0 [1–4]. At the same time, glycerol
spherical droplets with planar anchoring at the surface produce
director deviations with quadrupole symmetry which cause
aggregations of droplets into the incline chains [3,5–7].

The authors of [5] found that solid microspheres with
planar anchoring form chains directed at 30◦ to n0. Col-
loids suspended at the nematic-air interface produce director
deformations in the bulk and distort the surface of the
LC. This elastic-capillary coupling leads to the formation
of two-dimensional (2D) hexagonal structures with different
lattice constants [8,9]. Photochemical switching between those
structures induced by laser light was directly observed in
Refs. [10,11]. Transformation of the 2D colloidal hexagonal
lattice at the nematic interface into the chains under the action
of the magnetic field was found in Ref. [12].

One can obtain a rich variety of 2D crystals by laser
tweezer manipulations with colloids in thin nematic cells. In

particular, there are 2D hexagonal quadrupole crystals [13],
antiferroelectric-like 2D crystals of dipolar particles [13,14],
and mixed 2D crystals [15] sandwiched between cell walls.
The authors of [16] reported that similar superstructures were
possible in mixtures of small and large colloidal particles
as well. In such systems, small particles are arranged in
a matrix of topological defects produced by large colloids.
Another interesting issue is 1D structures bound by delocalized
topological defects. These so called colloidal wires could have
some applications as, for example, optical waveguides. The
possibility of their existence was confirmed in Ref. [17].
Two-dimensional colloidal crystals assembled from chiral
colloidal dimers in a twisted nematic cell were found in
Ref. [18]. Many experimental results were reproduced with
the Landau–de Gennes free-energy numerical minimization
[13–27] as well as by molecular-dynamics simulations [28].

A theoretical understanding of the matter in the bulk NLC
has deep analogy with classical electrostatics. Indeed, far from
the particle, the director field deviations are guided by the
Laplace equation and can be expanded in multipoles. This
fact became a starting point for a number of approaches
toward the theory of NLC colloids [29–34]. But only one
of them, [29], gives exact analytical quantitative results which
have been proven experimentally in the bulk nematic LC. The
authors of [4] measured directly the dipole-dipole interaction
between two spherical iron particles in a magnetic field and
found it to be in accordance with [29] within a few percent
accuracy. This allows us to justify the main assumptions
of [29] for spherical particles in the bulk nematic liquid
crystal. Recently, the authors of [25,26] developed a numerical
method which allows us to calculate the interparticle force
between two particles of different sizes. They found numer-
ical results in good agreement with their own experimental
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data as well as with the predictions of the electrostatic
analogy.

But in practice, liquid crystals are always confined with
some surfaces and their influence cannot be neglected. The au-
thors of [19,20] have found experimentally that the interactions
in the nematic cell are exponentially screened across distances
comparable to the cell thickness L (the so called confinement
effect). Qualitative theoretical investigations of the surface
effects on the elastic interaction between beads in the confined
NLC were performed in Refs. [35–39]. References [35–37] are
based on the “coat” concept (introduced in Ref. [31]) which
enables us to find the correct analytical form of the potentials
up to the unknown multiplicative constant.

Not so long ago, a proposal was made [40–42] to extend
the method [29] on the confined NLC and to find the exact
analytical form of all elastic potentials. Using that approach,
the elastic interactions between axially symmetric particles
were found in the nematic cell and near one wall with either
planar or homeotropic boundary conditions. The proposed
theory [40,41] fits very well with the experimental data for
the confinement effect between spheres in the homeotropic
cell [19] in the range 1–1000 kT as well as the confinement
effect in the planar cell for different cell thicknesses L [20].

But all those results were obtained for the beads or axially
symmetric particles. In this paper, we generalize the approach
[29,40–42] for the particles of arbitrary shape and chirality.
We obtain general formulas for the elastic interaction potential
between such colloidal particles in the confined NLC. The only
particles’ characteristics which determine elastic interactions
are the multipole coefficients which describe the director field
deformations far from the particle. We make the analysis of
the multipole coefficients from a symmetry point of view and
classify them in dependence on the shape symmetry. This
provides a way to determine which coefficients vanish and
which remain nonzero depending on the director symmetry
around the particles. The proposed analysis is valid for the
cases of weak as well as strong anchoring coupling constant W .
We consider both cases of the polar and azimuthal anchoring
coupling at the particle surface, and we analyze the possible
chirality of colloidal particles. Thus the proposed approach
covers the main possible shapes and director configurations
around colloidal particles in the confined NLC as well as
interactions between them.

In Sec. II, we generalize the method [40,41] and obtain
the most general expressions for the elastic interactions
between colloidal particles. In Sec. III, we connect multipole
coefficients with the symmetry of the director field around the
particle.

In Sec. IV, we consider the dipole-dipole interaction be-
tween two identical banana-shaped particles in a nematic cell.
Finally, the monopole-monopole interaction in homeotropic
and planar nematic cells is briefly discussed in Sec. V.

II. ELASTIC INTERACTIONS IN NEMATIC LIQUID
CRYSTAL COLLOIDS

Let us consider a liquid crystal colloidal system consisting
of a nematic host and one suspended particle. Anchoring of the
liquid crystal with the particle’s surface produces deformations
of the director field n, so that n varies from point to point. The

total energy of the system is presented as a sum of the bulk and
surface free energies F = Fbulk + Fsurface. The bulk energy of
these deformations can be written as

Fbulk = K

2

∫
dV [(∇ · n)2 + (∇ × n)2], (1)

where K is the Frank elastic constant. We use the one-
constant approximation, K11 = K22 = K33 = K , and omit
the K24 term because it does not play a crucial role in
further considerations [41]. Surface energy Fsurface ∝ W is
proportional to the anchoring strength coefficient W and will
be discussed in more detail in Sec. III [see (20)].

Far from the particle director, the field variations are small,
n(r) ≈ (nx,ny,1), |nμ| � 1. Hereafter, μ = {x,y} and n0 =
(0,0,1) is the ground state of pure nematic liquid crystal. Thus
the bulk free energy reduces to the harmonic free energy

Fbulk = K

2

∫
dV (∇nμ)2, (2)

and repeated μ means summation on x and y like (∇nμ)2 =
(∇nx)2 + (∇ny)2. The Euler-Lagrange equations for nμ are of
the Laplace type,

�nμ = 0. (3)

Similarly as in classical electrostatics, the solutions of these
equations can be expanded in multipoles,

nμ(r) = qμ

r
+ pα

μrα

r3
+ Qαβ

μ rαrβ

r5
+ · · · , (4)

where α and β take values x,y,z, and summation over repeated
greek indices is assumed. Quantities qμ, pα

μ, and Qαβ
μ are

called elastic charges (monopoles), dipoles, and quadrupoles,
respectively. At large distances r , the multipole expansion
is valid regardless of the anchoring strength. Hence, the
long-range interactions in NLC colloids are always controlled
by multipole coefficients. In a general case, these multipole
coefficients can be found as fitting parameters for agreement
with experimental data.

As follows from (4), director deviations nx and ny have a
long-range nature. This means that deformations caused by
different particles can overlap even if the particles are located
far from each other. In practice, the overlapping manifests itself
in the fact that a colloidal particle “feels” the presence of the
other particles mediated by a nematic host, and this leads to the
appearance of the effective long-range interactions between
colloidal particles. Since far from the particle the multipole
expansion (4) is valid regardless of the anchoring strength, all
these interactions are determined precisely by the coefficients
qμ, pα

μ, Qαβ
μ .

Now let us imagine that we have found all these multipole
coefficients in some way, so that we know two elastic
charges qμ, six components of the dipole moment pα

μ, and
five components of the quadrupole moment Qαβ

μ for every
μ = {x,y} (10 altogether). Note that the quadrupole moment
tensor Q̂μ = {Qαβ

μ } can always be introduced in such a way
that it would be a symmetric, Qαβ

μ = Qβα
μ , and traceless

one, SpQ̂μ = Qαβ
μ δαβ = 0 [44]. So we have 18 multipole

parameters. Now we need to build some effective free-energy
functional, which includes the multipole coefficients and gives
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the correct behavior of the director at large distances from the
particle.

This aim was achieved in Ref. [29] for the case of axially
symmetric particles. The effective free-energy functional was
written as

F
axial-sym
eff = K

∫
dV

[
(∇nμ)2

2
− 4πP (x)∂μnμ

− 4πC(x)∂z∂μnμ

]
, (5)

where P (x) = pδ(x) and C(x) = Qδ(x) are dipole and
quadrupole moment densities and ∂μnμ = ∂xnx + ∂yny .

Obviously the generalization of this effective free-energy
functional for particles of arbitrary shape and anchoring
strength can be presented in the form

Feff = K

∫
dV

[
(∇nμ)2

2
− 4πqμ(x)nμ − 4πpα

μ(x)∂αnμ

− 4πQαβ
μ (x)∂α∂βnμ

]
, (6)

where qμ(x) = qμδ(x), pα
μ(x) = pα

μδ(x), and Qαβ
μ (x) =

Qαβ
μ δ(x) are pointlike densities; α and β take values x,y,z, and

summation over repeated greek indices μ = x,y is assumed.
In the case of axially symmetric particles without helical
twisting, qμ = 0,pα

μ = 0 except px
x = p

y
y = p and Qxz

x =
Qzx

x = Q
yz
y = Q

zy
y = Q and we come to (5).

The Euler-Lagrange equations arising from (6) are Poisson
equations,

�nμ = −4πqμ(x) + 4π
[
∂αpα

μ(x) − ∂α∂βQαβ
μ (x)

]
. (7)

If the liquid crystal is confined by some surface � so that
nμ|� = 0, then solutions of (7) are

nμ =
∫

V

dV ′Gμ(x,x′)
[
qμ(x′) − ∂ ′

αpα
μ(x′) − ∂ ′

α∂ ′
βQαβ

μ (x′)
]
,

(8)

where Gμ(x,x′) are Green’s functions, �Gμ(x,x′) =
−4πδ(x − x′) for any x,x′ ∈ V , and Gμ(x,s) = 0 for any
s ∈ �. When the nematic is unlimited, Gμ(x,x′) = 1

|x−x′| and
(8) yields (4).

Due to the linearity of the Euler-Lagrange equations (7),
we can use the superposition principle for the system of N

colloidal particles,

qμ(x) =
N∑

i=1

qμ,iδ(x − xi),

pα
μ(x) =

N∑
i=1

pα
μ,iδ(x − xi), (9)

Qαβ
μ (x) =

N∑
i=1

Q
αβ

μ,iδ(x − xi),

so that the director field distortions are the sum of distortions
caused by every single particle. Substituting (8) into (6) and
implying (9), we come to the fact that the free energy of
the system can be presented as a sum of the self-energy part

and pair interactions Feff = U self + U interaction, where U self =∑
i U

self
i and

U interaction =
∑

i

∑
j<i

U ij (xi ,xj ). (10)

The pair elastic interaction Uij , in turn, is the sum of
monopole-monopole, monopole-dipole, monopole-
quadrupole, dipole-dipole, dipole-quadrupole, and
quadrupole-quadrupole interactions, Uij = Uqq + Uqd +
UqQ + Udd + UdQ + UQQ, where

Uqq = −4πK qμ,i qμ,j Gμ(xi ,x′
j ), (11)

Uqd = −4πK
{
qμ,i p

α
μ,j ∂ ′

αGμ(xi ,x′
j )

+ qμ,j pα
μ,i ∂αGμ(xi ,x′

j )
}
, (12)

UqQ = −4πK
{
qμ,i Q

αβ

μ,j ∂ ′
α∂ ′

βGμ(xi ,x′
j )

+ qμ,j Q
αβ

μ,i ∂α∂βGμ(xi ,x′
j )

}
, (13)

Udd = −4πK pα
μ,i p

β

μ,j ∂α∂ ′
βGμ(xi ,x′

j ), (14)

UdQ = −4πK
{
pα

μ,i Q
βγ

μ,j ∂α∂ ′
β∂ ′

γ Gμ(xi ,x′
j )

+pα
μ,j Q

βγ

μ,i ∂
′
α∂β∂γ Gμ(xi ,x′

j )
}
, (15)

UQQ = −4πK Q
αβ

μ,i Q
γδ

μ,j ∂α∂β∂ ′
γ ∂ ′

δGμ(xi ,x′
j ). (16)

Expressions (11)–(16) are general formulas for the long-
range elastic pair interaction potentials between colloidal
particles of arbitrary shape in the confined NLC. In the bulk
NLC, we should take Gμ(x,x′) = 1

|x−x′| .
The self-energy part (the energy of the one particle in the

confined NLC or the energy of the interaction with confining
walls) can also be presented as the sum U self

i = U self
qq + U self

qd +
U self

qQ + U self
dd + U self

dQ + U self
QQ , where all U self

AB are obtained using
the formulas (11)–(16) but Gμ(xi ,x′

j ) should be replaced

with Hμ(xi ,x′
j ) [where Gμ(x,x′) = 1

|x−x′| + Hμ(x,x′) and
�xHμ(x,x′) = 0] and it is necessary to set x′

j = xi after all
primed derivatives ∂ ′

ξ are taken out. In this way, we exclude
the divergent part of the self-energy coming out from 1

|x−x′|
and retain only the regular part U self

i coming from Hμ(x,x′).
Using this procedure, we can find that

U self
qq = −4πKqμ,i qμ,i Hμ(xi ,xi), (17)

U self
qd = −4πK

[
qμ,i p

α
μ,i ∂

′
αHμ(xi ,x′

i)

+ qμ,i pα
μ,i ∂αHμ(xi ,x′

i)
]∣∣

xi=x′
i

, (18)

U self
dd = −4πK pα

μ,i p
β

μ,i ∂α∂ ′
βHμ(xi ,x′

i)|xi=x′
i
, . . . , (19)

etc.
All these formulas (11)–(19) remain valid even when

external electric E or magnetic H fields are applied to the
confined NLC (that was proved in Ref. [42] for axially
symmetric particles), but Green’s functions Gμ(xi ,x′

j ) should
be substituted with Gfield

μ (xi ,x′
j ). Rigorous proof of this

statement is the same as in Ref. [42], so we omit it here.
Those Green’s functions Gfield

μ (xi ,x′
j ) were found in Ref. [42]

for the homeotropic and planar nematic cells and for different
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orientations of the field E. Direct use of them in Eqs. (11)–(16)
gives interaction between arbitrary colloidal particles in the
confined NLC in the presence of the fields E or H.

Formulas (11)–(16) show that the energy of interaction
depends on both multipole coefficients and Green’s functions.
The former originate from the interaction between the particle
surface and NLC molecules. The latter are determined by the
shape of the confining surface � as well as by external fields
E or H.

III. MULTIPOLE COEFFICIENTS AND PARTICLE
SYMMETRY

In this section, we want to establish a connection between
the symmetry of the particle and the director deformations
produced at large distances. As mentioned above, these distor-
tions are completely described by a set of multipole coefficients
qμ,pα

μ,Qαβ
μ . Strictly speaking, we should distinguish two cases

here. When the anchoring is weak, Wr0/K < 1 (r0 being
the average size of the particle), the deformations are small
everywhere outside the particle and the coefficients can be
found from the mechanical equilibrium condition (we apply
this procedure below). If the anchoring is strong, Wr0/K > 1,
the deformations in the particle’s vicinity are large, and even
topological defects may appear there. So the coefficients
cannot be linked directly to the particle’s symmetry. But
in this case the notion of the coat suggested in Ref. [31]
is helpful. The coat is an area that contains all topological
defects and large deformations inside, so that the director
field outside is presented in the form of multipole expansion
(4). The symmetry of the coat matches with the symmetry
of the director field around the particle and can be easily
observed experimentally. In fact, one can treat the coat as
some imaginary particle with appropriate symmetry and weak
anchoring on its surface. Therefore, from this point on we only
use the term “particle.”

Thus, it is enough to consider one colloidal particle with
weak anchoring in a bulk NLC. The free energy of such a
system is the sum of two parts: bulk energy (2) and the surface
anchoring energy. The latter can be presented as

Fsurface =
∮

dS Wαβ(s)nα(s)nβ(s), (20)

where Wαβ(s) is the symmetrical local anchoring tensor at
point s on the particle’s surface [43]. The tensor description
has a covariant form and describes both polar and azimuthal
anchoring simultaneously. But a connection between the
particle’s symmetry and the tensor’s properties is not so clear
in the general case. To make our analysis as transparent as
possible, we should use the following representation of the
surface energy:

Fsurface =
∮

dS Wp(s)[ν(s) · n(s)]2

−
∮

dS Wa(s)[τ (s) · n(s)]2. (21)

This is the generalized Rapini-Popular surface energy, with
Wp and Wa being the strengths of the polar and azimuthal
anchoring energies, respectively. Here ν is the outer normal to
the particle’s surface at the point s, and τ is the unit tangential

vector along the local rubbing, which also depends on the
point s of the surface. Azimuthal anchoring Wa > 0 results in
alignment of the director along vector field τ (s) at the surface.
Since the anchoring is weak, the total energy can be reduced
to

Fharm = K

2

∫
dV (∇nμ)2 + 2

∮
dS Wp(s)νz(s)νμ(s)nμ(s)

− 2
∮

dS Wa(s)τz(s)τμ(s)nμ(s), (22)

where we neglected terms like (∇nz)2, Wpnμnμ′ , and Wanμnμ′

because of their smallness. Note that, in fact, Wpνzνμ −
Waτzτμ = Wzμ in Eq. (20).

At the same time, the director field everywhere outside the
particle in the unlimited NLC is described by (4), so that

(∇nμ)2 = qμqμ

r4
+

∑
α,β,γ,δ

pα
μpα

μ

r6
+ 3

pα
μrαpβ

μrβ

r8

+ 5
Qαβ

μ rαrβQ
γδ
μ rγ rδ

r12
+ 4

Q
αγ
μ Q

βγ
μ rαrβ

r10

+ 4
qμpα

μrα

r6
+ 6

qμQαβ
μ rαrβ

r8
+ 8

pα
μQ

βγ
μ rαrβrγ

r10

+ 4
pα

μQαβ
μ rβ

r8
. (23)

Then substituting (4) and (23) into (22) and performing the
integration, one can obtain the free energy of the system as a
function of the multipole coefficients,

Fharm = 1

2

∑
uv

auvmumv +
∑

u

cumu, (24)

where we introduced the vector of the coefficients m =
(qμ,pα

μ,Qαβ
μ ) = ( qx,qy,p

x
x ,p

y
x ,p

z
x,p

x
y ,p

y
y ,p

z
y,Q

xx
x ,Q

xy
x , . . . ).

Hence mu,mv denote unknown multipole coefficients.
Quantities auv arise from the bulk energy, for example,

a11(qxqx ) ∝
∫

V

dV r−4,

a33(px
x px

x ) ∝
∫

V

dV r−6,

a15(qxp
z
x ) ∝

∫
V

dV zr−6,

etc. Apparently, all auu are positive and not equal to zero,
and auv depend on the particle shape. Each cu is the sum of
two terms c

p
u and ca

u arising from the polar and azimuthal
anchoring, respectively, cu = c

p
u + ca

u. So, for instance,

c
p

1(qx ) ∝
∮

dS Wpνzνx, ca
1(qx ) ∝ −

∮
dS Waτzτx,

c
p

3(px
x ) ∝

∮
dS Wpνzνxsx, ca

3(px
x ) ∝ −

∮
dS Waτzτxsx.

cu depends on both the anchoring and the particle’s shape,
and s = (sx,sy,sz) is the radius vector from the center of the
particle to the point s at the surface [this center of the particle
coincides with the center of the coordinate cystem (CS) from
which all rα are measured].
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Now it is natural to assume that the system under investiga-
tion is in equilibrium. Therefore, its energy is minimal. Hence
one can find the multipole coefficients from the following
system of linear equations, ∂Fharm

∂mu
= 0:

auumu +
∑

v,v �=u

auvmv + cu = 0, (25)

or the same in the matrix form:

Âm = −c. (26)

Here we should make some remarks. First of all, this equa-
tion (26) is the exact equation for the multipole coefficients m
for the weak anchoring case. In this case, we know exactly the
weak anchoring coefficient Wa,p(s) and vector fields ν(s),τ (s),
we can calculate all cu and auv , and finally we can solve this
matrix equation and find all 18 unknown coefficients.

On the other hand, this long procedure is usually unneces-
sary. Usually we do not need to calculate coefficients m—we
can measure them in the experiment. It is much more valuable
just to understand which coefficients vanish and which remain
nonzero. If we know this, we can find nonzero coefficients
from the fitting of the experimental data. So the main strategy
is to understand which coefficients vanish and which remain
nonzero without solving the system (26) on the basis of just
symmetry considerations.

From this strategy point of view, the strong anchoring case
can be considered as well. When the anchoring strength on
the real surface of the particle is strong (Wr0/K > 1), usually
topological defects arise in the vicinity. We can put all of them
into the area called the coat [31], which has the same symmetry
elements as the director field itself. The deformations are small
beyond the coat. This means that we can put some distribution
Wa,p(s),ν(s),τ (s) on the surface of the coat, which matches
with the director symmetry. Inasmuch as this distribution
is unknown exactly, we cannot calculate cu exactly and we
cannot find exact values of the multipole coefficients m in
this case. But we do not need this. We just need to know
which coefficients m are nonzero based on the symmetry of
the coat without solving (26). This strategy is realized in the
next subsections.

Since c = cp + ca , a solution of the system (26) can be
written as the sum

m = mp + ma (27)

of two solutions of the following systems:

Âmp = −cp, (28)

Âma = −ca. (29)

Thus the polar and azimuthal anchorings make their contri-
butions to the coefficients independently and we can consider
these two cases separately.

A. Polar anchoring

Suppose that we have a particle with usual polar anchoring
on its surface, Wa ≡ 0. Then the multipole coefficients satisfy
system (28). Here we should say that the phrase “particle
symmetry” means that the appropriate symmetry element
belongs to the particle shape as well as to the anchoring

distribution Wp(s). Thus, in terms of symmetry, particles of
symmetrical shape with asymmetric anchoring do not differ
from those of asymmetrical shape with symmetric Wp(s).

Assume first that the particle has one plane of symmetry.
Say, for instance, that it coincides with the coordinate xz

plane. Then for any point s = (x,y,z), where ν = (νx,νy,νz),
there exists point s′ = (x, − y,z), where ν = (νx, − νy,νz),
and Wp(s) = Wp(s′). Then using these symmetry relations,
one can easily ensure that, for example, aqxqx

= K
∫

dV r−4 �=
0, aqxp

y
x

= 4K
∫

dVyr−6 = 0, c
p
qy

= 2
∫

dS Wpνzνys
−1 = 0,

etc. In the same way, aqxp
y
x

= apx
x p

y
x

= ap
y
x pz

x
= aqyp

y
y

=
apx

y p
y
y

= ap
y
y pz

y
= 0 and c

p
qy

= c
p
px

y
= c

p

pz
y
= c

p

p
y
x

= 0. It is well

known that if the leading term in nμ decreases as r−n, then
the leading anharmonic correction will fall off as r−3n [29].
Thus, quadrupolar terms can be neglected here as anharmonic
corrections to nμ. Since in vector m the multipole coefficients
can be arranged in any order, we are able to rewrite the system
(25) in the following matrix form Âmp = −cp:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aqx
bqxpx

x
bqxp

z
x

0 0 0 0 0

bqxpx
x

apx
x

bpx
x pz

x
0 0 0 0 0

bqxp
z
x

bpx
x pz

x
apz

x
0 0 0 0 0

0 0 0 ap
y
y

0 0 0 0

0 0 0 0 ap
y
x

0 0 0

0 0 0 0 0 aqy
bqypx

y
bqyp

z
y

0 0 0 0 0 bqypx
y

apx
y

bpx
y pz

y

0 0 0 0 0 bqyp
z
y

bpx
y pz

y
apz

y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

qx

px
x

pz
x

p
y
y

p
y
x

qy

px
y

pz
y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
p
qx

c
p
px

x

c
p

pz
x

c
p

p
y
y

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (30)

Here Â is a block-diagonal matrix, Â = ( Ânh 0
0 Âh

). So

the system (25) splits into two independent subsystems,
nonhomogeneous with matrix Ânh and homogeneous with
matrix Âh. At the same time, Â is a positive-definite matrix.
Indeed, we can treat the components of arbitrary nonzero
vector m as the coefficients of some multipole expansion, and
then

mT Âm = K

∫
dV (∇nμ)2 > 0. (31)

Thus detÂ = detÂnhdetÂh > 0. So the homogeneous subsys-
tem has only a trivial solution. It is easy to ensure that the same
scenario occurs for particles of other symmetries. If certain
c
p
u is equal to zero, then the related multipole coefficient mu

vanishes: c
p
u = 0 ⇒ m

p
u = 0.

Accordingly, only those multipole coefficients can exist
which are allowed by the particle symmetry from the Table I.

Note that the same classification was obtained in Ref. [31]
on the basis of gradient expansion ∂nμ in the center of the
particle. But actually the gradient expansion cannot be done
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TABLE I. Multipole coefficients and symmetry of the shape. σik means that the particle’s plane of symmetry coincides with the coordinate
ik plane, and I denotes the inversion center. If a colloidal particle has at least one of the inhibiting symmetry elements, then the appropriate
multipole coefficient vanishes.

Defining integral Multipole coefficient Inhibiting symmetry Multipole coefficient Inhibiting symmetry
∮

dS Wpνzνμ qx σxy, σyz qy σxy, σxz∮
dS Wpνzνμx px

x σxy, I px
y σxy, σxz, σyz, I∮

dS Wpνzνμy py
x σxy, σxz, σyz, I py

y σxy, I∮
dS Wpνzνμz pz

x σyz, I pz
y σxz, I∮

dS Wpνzνμxx Qxx
x σxy, σyz Qxx

y σxy, σxz∮
dS Wpνzνμyy Qyy

x σxy, σyz Qyy
y σxy, σxz∮

dS Wpνzνμzz Qzz
x σxy, σyz Qzz

y σxy, σxz∮
dS Wpνzνμxy Qxy

x σxz, σxy Qxy
y σxy, σyz∮

dS Wpνzνμxz Qxz
x Qxz

y σxz, σyz∮
dS Wpνzνμyz Qyz

x σyz, σxz Qyz
y

exactly as ∂nμ ≈ 1 is not a small parameter. Therefore, the
current approach can be considered as more consistent and
correct.

Here we should remark that multipole coefficients m
depend on the chosen coordinate system. In one coordinate
system CS1, there will be one set of parameters m1, and in CS2
(which can be rotated or shifted by some vector d with respect
to CS1) there will be another set of multipole coefficients
m2, but the total sum (4) will be the same in both CSs. In
our consideration, we have chosen the most appropriate case
when symmetry planes coincide with coordinate planes, as in
this CS the classification is possible and useful. But in any CS
the main multipole coefficient qμ will be the same as well as
in electrostatics—the charge does not depend on the CS [45],
while high-order moments do depend on the CS.

B. Azimuthal anchoring and possible chirality
of the colloidal particles

As follows from (27) and (29), the long-ranged director
deformations can also arise from the azimuthal anchoring of
NLC molecules on the particle surface.

Simple examples of such particles are uniaxial helicoids—
axially symmetric particles like cylinders or cones with the
helicoidal alignment along their easy axes z (see Figs. 1 and
2). For this case, we need to take Wa > 0, and vector τ (s)
makes screw thread at the surface of the particle. Then using
the method suggested in the previous subsection, one can
find that multipole coefficients ma in this case are defined
from Table II. Inasmuch as phel ∝ ∮

dS Waτzτyx and Qhel ∝∮
dS Waτzτyxz, then phel > 0 and Qhel > 0 for right-handed

helicity and phel < 0 and Qhel < 0 for left-handed helicity (see
Fig. 1).

1. Interaction between helicoid cylinders

Consider cylinders (or other symmetric particles such as
ellipsoids or spheres) with helicoidal alignment at the surface
(see Fig. 1). This azimuthal helicoid anchoring gives rise to
nonzero dipole moments px

y = phel = −p
y
x , though the shape

of the cylinder does not produce any dipole moments (see

Table I). Then substitution into (11) gives the dipole-dipole
elastic interaction between helicoid cylinders (ellipsoids or
spheres):

Udd = −4πKphelp
′
hel[∂x∂

′
xGy(x,x′) + ∂y∂

′
yGx(x,x′)]. (32)

The Green’s functions Gx �= Gy are different only when
some external field (electric or magnetic) is applied along
the axis x or y [42]. When the external fields are absent in
any other cases (as in homeotropic or planar nematic cells),

FIG. 1. Helicoid cylinders with the same handedness phelp
′
hel > 0

attract along the z axis and repel in a perpendicular direction and vice
versa for helicoids with different handedness phelp

′
hel < 0 [see (34)].
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FIG. 2. Helicoid cones with different dipole moments p and phel

produced by shape and azimuthal helical anchoring, respectively
[see (38)].

Gx = Gy = G and we come to the expression

Udd = −4πKphelp
′
hel∂μ∂ ′

μG(x,x′), (33)

which coincides with the dipole-dipole interaction between
usual axially symmetric dipole particles (∂μ∂ ′

μ = ∂x∂
′
x +

∂y∂
′
y). In the bulk nematic liquid crystal, for example,

TABLE II. Multipole coefficients which are born by azimuthal
helical alignment along the z axis. phel > 0 and Qhel > 0 for right-
handed helicity and phel < 0 and Qhel < 0 for left-handed helicity
(see Fig. 1).

Defining Multipole Multipole
integral coefficient Value coefficient Value
∮

dS Waτzτμ qx 0 qy 0∮
dS Waτzτμx px

x 0 px
y phel∮

dS Waτzτμy py
x −phel py

y 0∮
dS Waτzτμz pz

x 0 pz
y 0∮

dS Waτzτμxx Qxx
x 0 Qxx

y 0∮
dS Waτzτμyy Qyy

x 0 Qyy
y 0∮

dS Waτzτμzz Qzz
x 0 Qzz

y 0∮
dS Waτzτμxy Qxy

x 0 Qxy
y 0∮

dS Waτzτμxz Qxz
x 0 Qxz

y Qhel∮
dS Waτzτμyz Qyz

x −Qhel Qyz
y 0

G(x,x′) = 1
|x−x′| so that

U bulk
dd = 4πKphelp

′
hel

(1 − 3 cos2θ )

r3
, (34)

where θ is the angle between r and z, and the director field
around the particle has the form

nx = −phel
y

r3
, ny = phel

x

r3
. (35)

The formula (34) means that helicoids with the same
handedness phelp

′
hel > 0 attract along the z axis and repel in

a perpendicular direction and vice versa for helicoids with
different handedness phelp

′
hel < 0 (see Fig. 1). In the nematic

cell, the interaction, falling off as r−3 in the bulk NLC,
becomes exponentially screened at distances comparable to
the thickness L of the cell. At the same time, the borders
between the attraction and repulsion zones transform from
straight lines into some parabola-like curves. These effects are
caused only by the confining walls, so they do not depend on
the particle shape and anchoring. More detailed consideration
of these issues is presented in Refs. [40,41].

2. Interaction between helicoid cones

Consider cones (or other axially symmetric particles
without symmetry plane σxy) with helicoidal alignment at
the surface (see Fig. 2). The shape of the particle produces
dipole moments px

x = p
y
y = p according to Table I. Azimuthal

helicoid anchoring gives rise to nonzero dipole moments
px

y = phel = −p
y
x . Then substitution of it into (11) gives the

dipole-dipole elastic interaction between helicoid cones:

Udd = −4πK{pp′[∂x∂
′
xGx(x,x′) + ∂y∂

′
yGy(x,x′)]

+phelp
′
hel[∂x∂

′
xGy(x,x′) + ∂y∂

′
yGx(x,x′)]}. (36)

In the absence of the external fields, Gx = Gy = G and we
come to the expression

Udd = −4πK(pp′ + phelp
′
hel)∂μ∂ ′

μG(x,x′). (37)

In the confined nematic, this formula gives the same results as
in the [41] but with a new coefficient pp′ + phelp

′
hel.

In the bulk nematic liquid crystal, G(x,x′) = 1
|x−x′| , so that

U bulk
dd = 4πK(pp′ + phelp

′
hel)

(1 − 3 cos2θ )

r3
, (38)

and the director field around the particle has the form

nx = p
x

r3
− phel

y

r3
, ny = p

y

r3
+ phel

x

r3
. (39)

Formulas similar to (34), (35), (38), and (39) were first
obtained in Ref. [34], but our results predict three times
stronger interaction. In Ref. [34], the authors made a very good
classification of different types of dipoles in nematostatics
based on the firm fixation of the director field on the surface
of the imaginary sphere enclosing the particle and containing
all the defects inside. At first glance, it seems quite similar to
the coat approach used above. The authors of [34] do not use
any anchoring surface energy explicitly and consider the total
energy as just the bulk one. But the total energy is the sum of
the bulk and surface energies. This, we suppose, is the reason
for the discrepancy. The surface terms do play an important
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(a) (b)

(c) (d)

FIG. 3. (Color online) (a) General banana-shaped particles, (b) front view (see Figs. 5 and 8), (c) side view (see Fig. 4), (d) top view (see
Fig. 9).

role and increase the energy of the system, and they should be
taken into consideration. In the current approach, the surface
terms are taken into account via the terms −4πqμ(x)nμ −
4πpα

μ(x)∂αnμ − 4πQαβ
μ (x)∂α∂βnμ in the effective free energy

(6). These terms in the effective free energy (6) replace surface
terms in the real free energy (22) so they can be effectively
considered as surface-born.

IV. BANANA-SHAPED PARTICLES IN NEMATIC CELLS

As an example of the interaction between nonaxially
symmetric colloids, we consider now the interaction between
banana-shaped particles (see Fig. 3). Here let us content
ourselves with the dipole-dipole interactions in homeotropic
and planar nematic cells.

A. Homeotropic cell

A coordinate system for this case is depicted in Figs. 4(a)
and 4(b). The Green’s function then has a form that is well
known in electrostatics [45],

Gμ(x,x′) = 4

L

∞∑
n=1

∞∑
m=−∞

eim(ϕ−ϕ′) sin
nπz

L
sin

nπz′

L

× Im(λnρ<)Km(λnρ>), (40)

where Im, Km are modified Bessel functions, tan ϕ = y

x
,

tan ϕ′ = y ′
x ′ , λn = nπ

L
, and ρ< is the smaller of ρ =

√
x2 + y2

and ρ ′ =
√

x ′2 + y ′2.
Every banana-shaped particle has two orthogonal symmetry

planes. Suppose first that the particles are oriented in such a

way that these planes are parallel to the coordinate xz and
yz planes [see Fig. 4(a)], i.e., particles are located primarily
perpendicular to the director (we will use the symbol ⊥ for this
case). Then using Table I, one can easily find that the allowed
dipole coefficients are px

x and p
y
y . Below we omit the upper

indexes and assume py > px . Note that px = py for axially
symmetric particles. It follows from (14) that

U hom
dd,⊥ = −4πK[pxp

′
x∂x∂

′
xG + pyp

′
y∂y∂

′
yG], (41)

U hom
dd,⊥ = 8πK

L
[(pxp

′
x + pyp

′
y)A1

+ (pxp
′
x − pyp

′
y)A2 cos 2φ], (42)

where ρ =
√

(y − y ′)2 + (x − x ′)2 is the horizontal projection
of the distance between particles, φ is the azimuthal angle
between ρ and the x axis,

A1 =
∞∑

n=1

λ2
n sin

nπz

L
sin

nπz′

L
K0(λnρ), (43)

A2 =
∞∑

n=1

λ2
n sin

nπz

L
sin

nπz′

L
K2(λnρ). (44)

We see that axially symmetric particles either attract or repel
each other everywhere inside the homeotropic cell, while
the dipole-dipole interaction between banana-shaped particles
is anisotropic. Before proceeding to a discussion of this
interaction in the cell, let us consider its features in the
bulk liquid crystal. The Green’s function for the bulk NLC
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FIG. 4. (Color online) Banana-shaped particles in the nematic cell, side view (see Fig. 3 as well).

is G(x,x′) = 1
|x−x′| so that U bulk

dd,⊥ is anisotropic as well,

U bulk
dd,⊥ = −4πK

r3
[pxp

′
x + pyp

′
y

− 3 sin2 θ (pxp
′
x cos2 φ + pyp

′
y sin2 φ)], (45)

where r is the distance between particles, θ is the polar angle
between r and the z axis, and φ is the azimuthal angle between
ρ and the x axis. Note that a similar formula for bulk NLC
was obtained in Ref. [34], but our result predicts three times
stronger interaction. A map of the attraction and repulsion
zones between two particles with z = z′ in the infinite crystal
is depicted by the dashed lines in Fig. 5.

Now assume that the particles are located in the center of
the homeotropic cell z = z′ = L

2 (solid lines in Fig. 5). At
small distances ρ � L, the interaction is the same as in the
bulk nematic U hom

dd,⊥ → U bulk
dd,⊥. But as ρ increases, the lateral

zones become closed. So identical particles attract inside some
dumbbell-shaped regions along the x axis when py >

√
2px .

These regions shrink as |py − √
2px | decreases and collapse to

the point when py = √
2px .The crossover from the attraction

to the repulsion when both particles are located along the x

axes and py >
√

2px is shown in Fig. 6.
When px√

2
< py <

√
2px , there will be only repulsion for

every φ in the perpendicular plane θ = π/2. When py <
px√

2
,

there will be attraction inside some dumbbell-shaped regions
along the y axis and repulsion everywhere along the x axis.

Another important issue is the energy dependence on the
distance between particles. It follows from (45) that in the
bulk nematic host, the interaction of dipolar colloidal particles

decreases as ρ−3 (see the dashed line 4 in Fig. 7). But in the cell
we see a completely different picture. The interaction potential

FIG. 5. (Color online) Map of the attraction and repulsion zones
for two identical banana-shaped particles, px = p′

x and py = p′
y =

αpx , α >
√

2, according to (42). Black line (a) corresponds to the
case py = 1.5px , blue line (b) corresponds to the py = 2px , and red
line (c) corresponds to the py = 3px . The particles are located in
the center of the homeotropic cell z = z′ = L

2 . Their orientations are
shown in Figs. 3(b) and 4(a). The sign “–” means attraction (inside of
the dumbbell-shaped regions), and “ + ” means repulsion. If py <

px√
2
,

then the attraction will appear along the y axis.

061703-9



O. M. TOVKACH, S. B. CHERNYSHUK, AND B. I. LEV PHYSICAL REVIEW E 86, 061703 (2012)

FIG. 6. (Color online) The crossover from the attraction to
the repulsion between two banana-shaped particles located in the
middle of the homeotropic cell z = z′ = L

2 along the x axis [see

Figs. 4(a) and 5], px = p′
x , py = p′

y = αpx for α >
√

2. Ũ =
U hom

dd,⊥L3/8πK(pxp
′
x + pyp

′
y), where U hom

dd,⊥ is given by (42) and
φ = 0. Solid black line 1 corresponds to py = p′

y = 1.5px , orange
line 2 corresponds to py = p′

y = 1.7px .

falls off as ρ−3 only when ρ < L. At larger distances ρ > L,
the potential becomes screened by the cell walls (see solid
line 2 in Fig. 7). Such screening, known as the confinement
effect, was first reported experimentally in Ref. [19] and
theoretically explained in Refs. [36,41] for spherical particles.
This phenomenon is related only to the confining surfaces and
therefore it occurs despite the particle shape.

But the particle orientation examined above is not the
only possibility. Their symmetry planes can be parallel to
the coordinate yz and xy planes as well [see Fig. 4(b)], i.e.,
particles lie primarily parallel to the director (we will use || for
this case). Then we have one dipole coefficient pz

y = p �= 0 as

FIG. 7. (Color online) Log-log plot of the dimensionless energy
of the dipole-dipole interaction as a function of the distance between
two banana-shaped particles located in the middle of the homeotropic
cell z = z′ = L

2 . Solid blue line 2 corresponds to the particle repulsion
for the orientation along the y axis depicted in Fig. 4(a), px =
p′

x , py = p′
y = 2px , 2φ = π , and Ũ = UddL

3/8πK(pxp
′
x + pyp

′
y),

where Udd > 0 is given by (42). Dashed line 4 is an appropriate
power-law asymptotic U unc

dd L3/4πK(pxp
′
x + pyp

′
y) ∝ ( L

ρ
)3. Solid

red line 1 corresponds to the particle attraction along the y axis in
Fig. 4(b), pz

y = p �= 0 and Ũ = UddL
3/16πKpp′, where Udd < 0 is

given by (47). Dashed line 3 is the appropriate power-law asymptotic
1
4 ( L

ρ
)3.

follows from Table I. Thus

U hom
dd,|| = −4πKpp′∂z∂

′
zG, (46)

U hom
dd,|| = −16πKpp′

L

∞∑
n=1

λ2
n cos

nπz

L
cos

nπz′

L
K0(λnρ). (47)

As in the previous case, the interaction given by (47) is
screened by the cell walls (solid line 1 in Fig. 7). But here
it exhibits cylindrical symmetry. In particular, parallel dipoles
with z = z′ attract each other throughout the cell plane. In the
unlimited case, G = 1

|x−x′| and (47) becomes

U bulk
dd,|| = −4πKpp′

r3
(1 − 3 cos2 θ ). (48)

A similar result for the bulk NLC was obtained in Ref. [34],
but our result again predicts three times stronger interaction.

B. Planar cell

Let us choose the coordinate system as shown in Figs. 4(c)
and 4(d). Then the Green’s function is as follows:

Gμ(x,x′) = 4

L

∞∑
n=1

∞∑
m=−∞

eim(ϕ−ϕ′) sin
nπx

L
sin

nπx ′

L

× Im(λnρ<)Km(λnρ>), (49)

where L is the cell thickness, Im, Km are modified Bessel func-
tions, tan ϕ = y

z
, tan ϕ′ = y ′

z′ , λn = nπ
L

, and ρ< is the smaller

of ρ =
√

z2 + y2 and ρ ′ =
√

z′2 + y ′2. This Green’s function
was already used by the authors of [41] to describe interactions
between axially symmetric particles. Their predictions were
found to be in good agreement with the experimental data for
a wide range of L [20].

Imagine first that the particles are oriented as depicted in
Fig. 4(c). Hence every particle has two symmetry elements
affecting the multipole coefficient’s existence. They are σxz

and σxy . Therefore, as follows from Table I, director deviations
here can be described by the only dipole coefficient pz

x = p �=
0. Then

U
plan
dd,|| = −4πKpp′∂z∂

′
zG, (50)

U
plan
dd,|| = 8πKpp′

L

∞∑
n=1

λ2
n sin

nπx

L
sin

nπx ′

L

× [K0(λnρ) + K2(λnρ) cos 2θ ], (51)

where ρ =
√

(y − y ′)2 + (z − z′)2 is the horizontal projection
of the distance between particles, and θ is the angle between ρ

and the z axis. As in the homeotropic cell, the particles do not
“feel” the cell walls at small distances U

plan
dd,|| → − 4πKpp′

ρ3 (1 −
3 cos2 θ ). But if ρ increases, the interaction falls off expo-
nentially [Kn(z → ∞) ∝ e−z√

z
] and the borders between zones

transform from straight lines into some parabola-like curves
(see Fig. 8).

Now suppose that the particle symmetry planes are parallel
to the coordinate yz and xz planes [see Fig. 4(d)]. The allowed
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FIG. 8. (Color online) Map of the attraction and repulsion zones
for two identical banana-shaped particles, p = p′, according to (51).
The particles are located in the center of the planar cell x = x ′ = L

2 .
Their orientation are shown in Figs. 3(b) and 4(c). The sign “–” means
attraction, and “ + ” means repulsion.

dipole coefficients are px
x = px and p

y
y = py . Thus

U
plan
dd,⊥ = −4πK[pxp

′
x∂x∂

′
xG + pyp

′
y∂y∂

′
yG], (52)

U
plan
dd,⊥ = 8πK

L
[−pxp

′
xB1 + pyp

′
yB2 − pyp

′
yB3 cos 2θ ],

(53)

where

B1 = 2
∞∑

n=1

λ2
n cos

nπx

L
cos

nπx ′

L
K0(λnρ), (54)

B2 =
∞∑

n=1

λ2
n sin

nπx

L
sin

nπx ′

L
K0(λnρ), (55)

B3 =
∞∑

n=1

λ2
n sin

nπx

L
sin

nπx ′

L
K2(λnρ). (56)

At small distances, B1 → 1
2 (L

ρ
)3, B2 → 1

4 (L
ρ

)3, and B3 →
3
4 (L

ρ
)3 and we come to the fact that in this case Udd → U bulk

dd

when ρ � L as well. Note that here U bulk
dd,⊥ is given by (45)

if we set x = x ′ (φ = π/2), that is, U bulk
dd,⊥ = − 4πK

r3 [pxp
′
x +

pyp
′
y − 3pyp

′
y sin2 θ ]. Say, for instance, px > py . Then it can

be easily found that the interaction between such particles in
the bulk nematic is completely repulsive or attractive. In the
cell we again have both attraction and repulsion (see Fig. 9).
In turn, since the summation in Eq. (54) starts from n = 2, B1

falls off faster than B2 and B3. Therefore, when ρ � L the
interaction is determined only by the coefficients py and p′

y .
Due to this fact, at large distances these particles will interact
as axially symmetrical ones (black lines in Fig. 9). In the same
way, if we set py > px , no attraction will appear along the
y axis. The map of the interaction in this case will be quite
similar to that for the axially symmetrical particles.

FIG. 9. (Color online) Map of the attraction and repulsion zones
for two identical banana-shaped particles px = p′

x and py = p′
y ,

according to (53). The particles are located in the center of the
planar cell x = x ′ = L

2 . Their orientations are shown in Figs. 3(d)
and 4(d). Black line (a) px = py . Red line (b) px = 2py . Blue line
(c) px = 5py . Green line (d) px = 10py . The sign “–” means
attraction, and “ + ” means repulsion.

V. MONOPOLE-MONOPOLE INTERACTION
IN NEMATIC CELLS

Finally, it is worth noting that the elastic monopoles do
not “feel” the cell type. Indeed, suppose that we have two
ellipsoidal particles suspended in the cell (Fig. 10). Let us
assume that their long axes make angles ω and ω′ with
n0, 0 < ω,ω′ < π

2 and they lie in the plane of the figure.
This configuration can be achieved with the help of some
external electric or magnetic field if particles have a dipole

FIG. 10. Ellipsoidal particles in the homeotropic (a) and planar
(b) nematic cell.
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FIG. 11. (Color online) Monopole-monopole interaction in a
nematic cell. Elastic monopoles do not “feel” the type of cell. Blue
line 1 corresponds to Ũ = −U

plan
qq L/16πKqq ′. Here U

plan
qq is given

by (58). The dashed line 2 is the Coulomb-like Ũ = 1
4ρ/L

asymptotics
for ρ � L.

electric or magnetic moment. Since ellipsoids have a center of
symmetry, the main deformations produced by these particles
are elastic monopoles: qx = q ′

x = 0,qy = q,q ′
y = q ′ in the

homeotropic and qx = q, q ′
x = q ′,qy = q ′

y = 0 in the planar
cell (see Table I). Then as follows from (40) and (11), the
monopole-monopole interaction in the homeotropic cell is
given by

U hom
qq = −16πKqq ′

L

∞∑
n=1

sin
nπz

L
sin

nπz′

L
K0(λnρ), (57)

where ρ =
√

(y − y ′)2 + (x − x ′)2. In the same way, we can
find from (49) and (11) that in the planar cell this interaction
is described by

U plan
qq = −16πKqq ′

L

∞∑
n=1

sin
nπx

L
sin

nπx ′

L
K0(λnρ), (58)

where ρ =
√

(y − y ′)2 + (z − z′)2. Expressions (57) and (58)
demonstrate that the monopole-monopole interaction is the
same and does not depend on the type of the nematic cell (see
Fig. 11), as z in Fig. 10(a) is the same as x in Fig. 10(b).
For small distances ρ � L, both (57) and (58) converge to
the Coulomb-like law Uqq = −4πKqq ′ 1

r
(see Fig. 11). Equal

elastic charges attract, opposite charges repel.

VI. CONCLUSIONS

Colloidal particles suspended in a nematic liquid crystal
host cause deviations of the director from its ground state. Far
from any particle, these distortions can be written in a form of
the multipole expansion.

We develop the method proposed in Ref. [40] for theo-
retical investigation of elastic interactions between colloidal
particles of arbitrary shape and anchoring strength in the
confined nematic liquid crystal. General expressions for
six different types of multipole elastic interactions are ob-
tained in the confined NLC: monopole-monopole (Coulomb-
type), monopole-dipole, monopole-quadrupole, dipole-dipole,
dipole-quadrupole, and quadrupole-quadrupole interactions.
The obtained formulas remain valid in the presence of the
external electric or magnetic fields. The particles with both
polar and azimuthal helicoid anchoring are considered. It
is found that azimuthal helicoid anchoring and usual polar
anchoring produce multipole coefficients independently. In the
weak anchoring case, Wr0 < K , the method proposed enables
us to find exact values of all the multipole coefficients. When
the anchoring is strong, Wr0 > K , we cannot find exact values
of them, but it is possible to predict which coefficients vanish
and which remain nonzero on the basis of the symmetry of
the director field. The connection between the symmetry of
the director field and multipole coefficients is established.
Since this symmetry can be easily observed experimentally,
the results we present are applicable for particles of arbitrary
shapes, sizes, and anchoring strengths.

Dipole-dipole interactions between helicoid cylinders and
cones are found in the confined NLC. In addition, the banana-
shaped particles in homeotropic and planar nematic cells
are considered. It is found that the dipole-dipole interaction
between banana-shaped particles differs greatly from the elas-
tic dipole-dipole interaction between the axially symmetrical
particles in the nematic cell. The banana-like particle has two
planes of symmetry. Obviously in the equilibrium state one
of these planes is always perpendicular to the cell walls. The
other can be either perpendicular (say orientation A) or parallel
(orientation B) to them. Both of these cases are considered in
the homeotropic and planar nematic cell. So, for example, in
the homeotropic cell the interaction between particles with the
orientation A is anisotropic. Two “bananas” attract inside some
dumbbell-shaped region. The more asymmetric the particles
are, the larger the region of attraction. But as r → ∞, the
interaction becomes completely repulsive. At the same time,
the interaction between such particles in the bulk nematic LC
preserves its sign independent of the distance. In the planar cell,
particles with the orientation B as well as the axially symmetric
particles interact anisotropically. But the symmetric particles
repel along the direction perpendicular to the rubbing while
the asymmetric particles attract at small distances.

It is shown that monopoles do not “feel” the type of nematic
cell: monopole-monopole interaction turns out to be the same
in the homeotropic and planar nematic cell and converges to
the Coulomb law as thickness increases, L → ∞.
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247801 (2007).

[18] U. Tkalec, M. Ravnik, S. Žumer, and I. Muševic, Phys. Rev.
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