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Sticky steps inhibit step motions near equilibrium
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Using a Monte Carlo method on a lattice model of a vicinal surface with a point-contact-type step-step
attraction, we show that, at low temperature and near equilibrium, there is an inhibition of the motion of
macrosteps. This inhibition leads to a pinning of steps without defects, adsorbates, or impurities (self-pinning of
steps). We show that this inhibition of the macrostep motion is caused by faceted steps, which are macrosteps that
have a smooth side surface. The faceted steps result from discontinuities in the anisotropic surface tension (the
surface free energy per area). The discontinuities are brought into the surface tension by the point-contact-type
step-step attraction. The point-contact-type step-step attraction also originates “step droplets,” which are locally
merged steps, at higher temperatures. We derive an analytic equation of the surface stiffness tensor for the vicinal
surface around the (001) surface. Using the surface stiffness tensor, we show that step droplets roughen the vicinal
surface. Contrary to what we expected, the step droplets slow down the step velocity due to the diminishment of
kinks in the merged steps (smoothing of the merged steps).
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I. INTRODUCTION

A vicinal surface is a tilted surface deviated from a low
Miller-index surface. The vicinal surface is thought to be
described by the terrace-step-kink (TSK) model [1–5] when
the temperature is below the roughening transition temperature
of the low Miller-index surface. When the surface steps are
regarded as linear excitations, the surface free energy per
projected x-y area f (ρ) [6,7] is obtained as the ground-state
energy of the one-dimensional (1D) free fermion (FF) in the
following form [1–16]:

f (ρ) = f (0) + γρ + Bρ3 + O(ρ4), (1)

where ρ represents the step density, γ represents the step
tension, and B represents the step-interaction coefficient. The
characteristic feature of Eq. (1) is the lack of a quadratic term
for ρ. The form of the free energy of Eq. (1) is common to other
many-body systems with nonoverlapping linear excitations
embedded in two dimensions [8–10]. The ρ-expanded form
of the free energy is called the Gruber-Mullins-Pokrovsky-
Talapov (GMPT) universal form [5] or the 1D FF universal
form [12,14,15].

If we introduce the surface gradient �p = (px,py) =
(∂z(x,y)/∂x,∂z(x,y)/∂y), ρ is described by �p as ρ = | �p|/d1,
where d1 (=1) is the step height of an elemental step, and
z(x,y) represents the surface height. We call f ( �p) the vicinal
surface free energy. Using the surface gradient, the surface
tension γsurf(�n) links to the vicinal surface free energy as

γsurf(�n) = f ( �p)/
√

1 + | �p|2, (2)

where �n is the normal unit vector of the surface at z(x,y).
In our previous papers [17–19], we presented a simple

lattice model for a surface with sticky steps, the restricted
solid-on-solid model with the point-contact-type step-step at-
traction (p-RSOS model) (Fig. 1). Using methods of statistical
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mechanics, we determined the surface free energy with full
anisotropy for the vicinal surface around the (001) surface.
At low temperature, we obtained the anisotropic surface free
energy, which included the discontinuities [17] due to the
step-step attraction. In addition, in one-temperature region,
we obtained non-GMPT values of the shape exponents [19]
on the profile of the equilibrium crystal shape (ECS), which
is the shape of a crystal particle that has the least surface
free energy [4–6,20–26]. The non-GMPT values of the shape
exponents obtained by the methods of statistical mechanics
closely relate to the non-GMPT | �p| expanded form of the
vicinal surface free energy, as follows [19]:

feff( �p) = f (0) + γ (φ)| �p| + Aeff(φ)| �p|2
+Beff(φ)| �p|3 + O(| �p|4). (3)

Here we have introduced a polar coordinate system with
respect to �p, and we have px = | �p| cos φ and py = | �p| sin φ.
The angle φ describes the angle of tilt from the y-axis, which
is formed by the mean running direction of the steps. As seen
from Eq. (3), a quadratic term with respect to | �p| has appeared.
In order to obtain Eq. (3), we took the inhomogeneity of the
step configuration, the “step droplets” (1D boson n-mers with
finite lifetimes), into consideration [19]. The step droplets
are the locally merged steps in the vicinal surface. Using
Eq. (3), we were able to reproduce the singularity in the surface
free energy and the non-GMPT shape exponents, which were
obtained with methods of statistical mechanics.

There are extensive studies on the mechanisms of step
bunching (such as electromigration [27–29], the Schwoebel
effect [3,30], the shockwave effect [31], impurity effects
[32–34], and strain effects [35–41]), and the vicinal surface
free energy is assumed to have the GMPT form [Eq. (1)]
according to those studies. A discontinuity in the anisotropic
surface tension is expected to strongly affect the morphology of
the crystal surface, accompanied by a change in the dynamics
of surface steps. The combination of the above mentioned
mechanisms and a discontinuity in the surface tension will give
us a true understanding of the nano- and mesoscale phenomena
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on the surface. In addition, since the self-assembling of surface
steps is expected to provide new technology to construct
nanoscale structures (such as nanowire), the study of the effects
of the discontinuity in the surface tension to the morphology
and the surface dynamics is important from an industrial point
of view.

The aim of this paper, therefore, is to study the effect of
the discontinuity in the surface tension to the step dynamics
near equilibrium. We also discuss the morphological aspect of
the crystal surface from the viewpoint of the self-assembling
of steps. In order to obtain clear results for the effect of
the discontinuity in the surface tension, we exclude realistic
interactions on the vicinal surface except for the point-contact-
type step-step attraction.

This paper is organized as follows. In Sec. II we present
the restricted solid-on-solid (RSOS) lattice model with point-
contact-type step-step attraction (the p-RSOS model). Using
a Monte Carlo method with the Metropolis algorithm, we
demonstrate the inhibition and the slowing down of the step
motion near equilibrium on the p-RSOS model. In Sec. III
we show the discontinuous vicinal surface free energy and
the equilibrium configuration of the vicinal surface. We also
calculate analytically the surface stiffness tensor near the (001)
surface. In Sec. IV the inhibition of the motion of a macrostep,
the intermittent motion of the vicinal surface, and the pinning
phenomena in the vicinal surface are studied in connection
with “step faceting” [42]. In Sec. V we study the roughness
of the vicinal surface with step droplets and the slowing down
of the step motion near equilibrium. Summary and further
discussion are given in Sec. VI, and the conclusion is given in
Sec. VII.

II. SURFACE MOTIONS NEAR EQUILIBRIUM

A. A lattice model for sticky steps

In this section we show Monte Carlo results for the surface
motion near equilibrium for a vicinal surface with sticky steps.
The model we adopted for the Monte Carlo calculation is
the restricted solid-on-solid (RSOS) model with point-contact-
type step-step attraction (p-RSOS model) [17–19].

To describe microscopic surface undulations, let us consider
the surface height h(i,j ) at a site (i,j ) on a square lattice
(Fig. 1). In the RSOS model [43], the height differences
between nearest-neighbor (nn) sites are restricted to values
of {1,0,−1}. We consider a point-contact-type microscopic
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FIG. 1. (a) Perspective view of a surface on the RSOS model
tilted towards the [100] direction. (b) Top view of a surface on the
RSOS model tilted towards the [110] direction. Gray lines: Surface
steps. Filled squares: Collision points of the adjacent steps.

step-step interaction and refer to this model as the p-RSOS
model [17–19]. The Hamiltonian for the p-RSOS model can
then be written as

Hp−RSOS =
∑
i,j

ε[|h(i + 1,j ) − h(i,j )|

+ |h(i,j + 1) − h(i,j )|]
+

∑
i,j

εint[δ(|h(i + 1,j + 1) − h(i,j )|,2)

+ δ(|h(i + 1,j − 1) − h(i,j )|,2)], (4)

where ε represents the microscopic ledge energy, εint is the
microscopic step-step interaction energy, and δ(a,b) is the
Kronecker delta. In the case of εint < 0, the interaction between
the steps becomes attractive [44]. The summation with respect
to (i,j ) is performed over all sites on the square lattice. The
RSOS restriction is required implicitly.

Physically, we consider that the point-contact-type step-
step attraction arises from the local formation of a bonding
state at the collision point of the adjacent steps. When adjacent
steps collide at a point, the orbital of the dangling bond of each
step will overlap, and the spin pairing between electrons in the
dangling bonds will form a bonding state [46]. The energy
gain obtained by forming the bonding state amounts to −εint.

In the p-RSOS model, there are two characteristic temper-
atures Tf,1 and Tf,2 for the vicinal surface tilted towards the
[110] direction (φ = π/4) [19]. At temperatures T < Tf,1, the
surface tension of the (111) surface becomes discontinuous.
At temperatures T < Tf,2, the surface tension of the (001)
surface becomes discontinuous. That is, on the profile of the
ECS, the surface slope of the vicinal surface jumps at the (111)
facet edge (a first-order shape transition) for T < Tf,1, and the
surface slope jumps at the (001) facet edge for T < Tf,2. Then
the (001) facet directly contacts the (111) facet for T < Tf,2.

The key concept that is introduced to explain the breakdown
of the 1D FF picture is the inhomogeneity resulting from
the discontinuity in the surface tension. In other words, the
formation of a “step droplet” (a 1D boson n-mer), which is
formed from locally merged steps. Using the size of the step
droplet, Aeff(φ) and Beff(φ) in Eq. (3) are expressed explicitly
in the limit of | �p| → 0 as follows [19]:

Aeff(φ) = n
(1)
0 (φ)γ (1)

1 (φ)/d1, (5a)

Beff(φ) = 1

2d1

[
n

(2)
0 (φ)γ (1)

1 (φ) + n
(1)
0 (φ)2γ

(2)
1 (φ)

] + B1(φ)

d3
1

,

(5b)

where d1 (=1) represents the height of an elementary step,
and B1 represents the step-interaction coefficient between the
elementary steps. The variables n

(m)
0 (φ), γ

(m)
1 (φ), and γ̃

(m)
1 (φ)

are defined by

γ
(m)
1 (φ) = ∂m(γn(φ)/n)

∂nm

∣∣∣∣
n=1

, (6a)

γ̃
(m)
1 (φ) = ∂m(γ̃n(φ)/n)

∂nm

∣∣∣∣
n=1

, (6b)

n
(m)
0 (φ) = ∂m〈n(φ)〉

∂| �p|m
∣∣∣∣
| �p|=0+

, (6c)
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FIG. 2. (Color online) Top views of the vicinal surfaces tilted towards the [110] direction, calculated by the Monte Carlo method.
The brighter, the higher, with 10 gradations; 1 × 108 MCS/site. 	μ/ε = 0.0005, εint/ε = −0.5,Nstep = 24. Size: 240

√
2 × 240

√
2. (a) A24

(T < Tf,2). (b) B24 (Tf,1 < T < Tf,2). (c) C24 (T > Tf,1). (d) A24′ (original RSOS model).

where γn(φ) represents the step tension of a macrostep,
which is formed from the merger of n elementary steps, and
γ̃n(φ) = γn(φ) + ∂2γn(φ)/∂φ2 represents the step stiffness of
the merged step. 〈n〉, which describes the mean size of the step
droplets, represents the mean number of elementary steps in a
merged step. Here 〈·〉 represents the thermal average.

B. Monte Carlo calculation

We used the Monte Carlo method to demonstrate the step
motion of the nonconserved system [47,48] on a vicinal surface
tilted towards the [110] direction (Fig. 2). Then, the chemical
potential difference between the ambient phase and the bulk
crystal 	μ becomes an external variable and is the driving
force.

Initially a macrostep Nstep, made of N steps, was set almost
in the middle of a surface with an area of 240

√
2 × 240

√
2

(Fig. 2). The mean surface slope became | �p| = Nstep/(240
√

2).
Periodic boundary conditions were imposed in the vertical
direction in Fig. 2. For the horizontal direction in Fig. 2, the
left side of the image was higher than the right side by Nstep.

To study the time evolution of the step configuration, we
adopted a simple Metropolis algorithm. We randomly chose a
site (i,j ) and allowed its height h(i,j ) to increase or decrease

TABLE I. Initial values of external parameters for the Monte
Carlo calculations. Driving force: 	μ/ε = ±0.0005. Size: 240

√
2 ×

240
√

2.

Number of Surface Step-step
steps Temperature slope attraction

Label Nstep kBT /ε | �p|a εint/ε

A1 1 0.35 2.95 × 10−3 −0.5
A24 24 0.35 0.0707 −0.5
B24 24 0.36 0.0707 −0.5
C24 24 0.37 0.0707 −0.5
A240 240 0.35 0.707 −0.5
B240 240 0.36 0.707 −0.5
C240 240 0.37 0.707 −0.5
A1′b 1 0.35 2.95 × 10−3 0
A24′b 24 0.35 0.0707 0
A240′b 240 0.35 0.707 0

a| �p| = Nstep/(240
√

2).
bThe original RSOS model.

with equal probability. Then, if the RSOS restriction was
satisfied, the height was updated by the Metropolis algorithm
with a probability P described by

P =
{
1 (	E(i,j ) � 0),
exp[−β	E(i,j )] (	E(i,j ) > 0), (7)

where 	E(i,j ) = E(h(i,j ) ± 1) − E(h(i,j )) ∓ 	μ and β =
1/kBT . The energy E(h(i,j )) was calculated using the p-RSOS
Hamiltonian shown in Eq. (4). The driving force of the motion
of the crystal surface was designated by 	μ, where 	μ > 0
for growth and 	μ < 0 for sublimation.

The values of the parameters for each simulation are shown
in Table I.

C. Normal velocity of the surface

We present snapshots of the vicinal surface near Tf,1 and
Tf,2 at 	μ/ε = ±0.0005 in Fig. 2. From the methods of
statistical mechanics [18,19], we had kBT f,1/ε = 0.3610 ±
0.0005 and kBT f,2/ε = 0.3585 ± 0.0007, where kB represents
the Boltzmann constant.

In the case of kBT /ε = 0.35 (T < Tf,2) in Fig. 2(a) (A24),
the merged step hardly moves forward (	μ > 0) or backward

0 2 41
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2250
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3
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h(
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FIG. 3. (Color online) Time evolution of the mean surface height
under the p-RSOS model. Size: 240

√
2 × 240

√
2. Nstep = 240,

	μ/ε = ±0.0005, εint/ε = −0.5. Full lines: A240, kBT /ε = 0.35.
Broken lines: B240, kBT /ε = 0.36. Chain lines: C240, kBT /ε =
0.37. Two-dot chain lines: A240′, original RSOS model (εint = 0) at
kBT /ε = 0.35.
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TABLE II. Monte Carlo results on the surface normal velocities
and the lag times. Maximum time: 1 × 108τ0. τ0 equals 1 Monte Carlo
step/site.

Normal Mean size
velocity of of step
the surfacea Lag time droplets

Label vz (×10−6 d1/τ0) τL/τ0 (×105) 〈n〉
A1 ±0.38 ± 0.03 – –
A24 ±0.63 ± 0.15 – 8.26 ± 0.02
B24 ±7.30 ± 0.08 8 ± 3 1.167 ± 0.003
C24 ±7.61 ± 0.08 5 ± 3 1.102 ± 0.002
A240 ±0.246 ± 0.011 – 83.9 ± 0.6
B240 ±22.90 ± 0.09 22 ± 4 5.61 ± 0.08
C240 ±23.87 ± 0.16 7.2 ± 0.8 5.28 ± 0.03
A1′ ±0.381 ± 0.010 – –
A24′ ±9.07 ± 0.06 0.4 ± 0.4 1.00620 ± 0.00002
A240′ ±66.2 ± 0.3 0.30 ± 0.10 6.6220 ± 0.0003

aThe velocity with the minus sign corresponds to 	μ/ε = −0.0005.

(	μ < 0). In the case of kBT /ε = 0.36 (B24) and kBT /ε =
0.37 (C24), steps bunch locally, and the two cases look similar.
However, the mean terrace width of B24 looks larger than that
of C24. As a comparison, we show the case of the original
RSOS model (εint = 0) in Fig. 2(d) (A24′). From the figure,
we see that the mean terrace width of A24′ looks smaller than
that of C24.

In Fig. 3 we show the time evolution of the mean surface
height h(t) = (1/N )

∑
i,j h(i,j ) for 	μ/ε = ±0.0005, where

N represents the number of lattice points. As seen from Fig. 2,
the surface motion is linked to the step movements.

Quantitatively, after the time 1 × 107τ0, where τ0 desig-
nates the time for one Monte Carlo step per site (MCS/site), the
mean surface heights of B24, C24, and A24′ increase linearly.
We define the surface velocity vz as ∂h(t)/∂t . Using the data
from the time interval 2 × 107τ0 to 1 × 108τ0, we obtained
the constant velocities by fitting the data to a linear function
with the least-squares method; these velocities are shown in
Table II. By extrapolating the linear function to the initial
height, we obtained a finite time τL, which we call the “lag
time.” The lag times are also shown in Table II.

In the case of kBT /ε = 0.35 (A24), the center of the
macrostep hardly moves.

III. DISCONTINUITY IN THE SURFACE TENSION

A. Calculations from the methods of statistical mechanics

Let us consider a vicinal surface that is so close to
equilibrium that the diffusivity of atoms does not become the
rate-limiting process [49]. In that case the interface-limited
growth/sublimation becomes the rate-limiting process. A de-
tailed understanding of the surface thermodynamic quantities
are, therefore, essential for understanding the behavior of a
vicinal surface under small |	μ|. In this section we study the
discontinuity in the vicinal surface free energy f ( �p) and the
surface stiffness tensor (f ij ).

In order to calculate the surface free energy with the
methods of statistical mechanics, we add the terms of the
Andreev field [7] �η = (ηx,ηy) as external variables to Eq. (4).

The Andreev field tilts the (001) surface to make a vicinal
surface. The model Hamiltonian given in Eq. (4) then becomes

Hvicinal = Hp−RSOS − ηx

∑
i,j

[h(i + 1,j ) − h(i,j )]

−ηy

∑
i,j

[h(i,j + 1) − h(i,j )]. (8)

The partition function Z for the p-RSOS model is given
by Z = ∑

{h(i,j )} exp[−βHvicinal], where β = 1/kBT . The
Andreev surface free energy f̃ (�η) [7] is the thermodynamic
potential calculated from the partition function Z using

βf̃ (�η) = − lim
N→∞

1

N lnZ, (9)

where N is the number of lattice points on the square lattice.
The vicinal surface free energy is obtained from the Andreev
surface free energy as follows:

f ( �p) = f (�η) + �p�η. (10)

Direct calculation of Eq. (9) is impractical due to the
complexity of the entropy estimations associated with the
vast variety of zigzag structures of the surface steps and
with the parallel movements of the steps. Fortunately, the
density-matrix renormalization group (DMRG) method [50]
developed for the 1D quantum spin system can be used
to calculate the partition function [Eq. (9)] of the p-RSOS
model. Using the Suzuki-Trotter formula [51], a 1D quantum
spin system can be mapped to a transfer matrix [52] of a
two-dimensional (2D) classical system, such as a surface. The
transfer-matrix version of the DMRG method was developed
by Nishino et al. [53–55] for an infinite lattice, and it is called
the product wave-function renormalization group (PWFRG)
method. Since the p-RSOS model can be mapped to a transfer
matrix, we adopted the PWFRG method to calculate Eq. (9).

B. Equilibrium step configurations

In Fig. 4 we show the slope dependence of the vicinal sur-
face free energy f ( �p) and the surface tension γsurf calculated
by Eqs. (9), (10), and (2), with the PWFRG method. f (0,0)
is assumed to be ε, and γsurf(p,p) represents γsurf(�n) with
�n = (−p,−p,1)/

√
1 + 2p2.

For kBT /ε = 0.35 [Fig. 4(a)], only the values of the surface
tension of the (001) surface and the (111) surface were
obtained. The surface tension with a mean surface slope in
the range 0 < | �p| <

√
2 does not exist for the regular train of

steps, because the homogeneous surface is thermodynamically
unstable there. Hence, if the mean slope of the vicinal surface
has the value of 0 < | �p| <

√
2, the surface becomes a mixture

of the (001) and (111) surfaces, and its vicinal surface free
energy is on the tangent line connecting the value of the (001)
surface with the value of the (111) surface. We demonstrate
this structure in Fig. 5(a) using the Monte Carlo method.

For kBT /ε = 0.36 [Fig. 4(b)], the surface tension and
the vicinal surface free energy increase continuously from
γsurf(0,0) = f (0,0) as p increases. Thus, for small | �p| or small
Nstep, a homogeneous structure is expected. The homogeneous
structure [Fig. 2(b)], however, is not the same as the regular
train of steps seen in the 1D FF universal system [Fig. 2(d)].
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FIG. 4. For the surface tilted towards the [110] direction calculated by the PWFRG (DMRG) method, (a)–(d) slope dependence of the
vicinal surface free energy [f (px,py) − f (0,0)]/ε, and (e)–(h) surface tension γsurf (p,p)/ε. For (a)–(c) and (e)–(g), εint/ε = −0.5; for (d) and
(h), εint = 0, the original RSOS model. Temperatures: kBT /ε = 0.35 for (a), (d), (e), and (h); kBT /ε = 0.36 for (b) and (f); kBT /ε = 0.37 for
(c) and (g). Closed squares: (a) and (b), (0,0) and [f (1,1) − f (0,0)]/ε; (e) and (f), γsurf (0,0)/ε and γsurf (1,1)/ε. Broken lines: (b) and (f), the
curves for the metastable states.

The value of 〈n〉 is larger than one (see Table II), which means
that step droplets are formed.

For large | �p|, γsurf(p,p) and f (p,p)/ε jump from pt =
0.349 ± 0.002 to p0 = 1 at equilibrium. The broken line in the
figure indicates the metastable state for 0.349 < p < 0.501.
The tangent line with the end point f (1,1) contacts the f (p,p)
curve at f (pt ,pt ). Hence, a vicinal surface with mean surface
slope pt < p < 1 should be formed by the mixture of the
surface with the slope p = pt and the (111) surface. This
structure is demonstrated in Fig. 5(b).

For kBT /ε = 0.37 [Fig. 4(c)], the surface tension and the
vicinal surface free energy are continuous for all p. Therefore,
the mixture of two surfaces does not occur in equilibrium
[Fig. 5(c)]. Step droplets appear, however, due to the sticky
character of the steps.

C. Surface stiffness tensor

Let us describe a slowly undulating surface by z(x,y),
where z(x,y) is the surface height at a point (x,y). A slowly
undulating surface is a surface whose orientation varies slowly
from place to place around (001).

Near equilibrium, the time derivative of the height of the
slowly undulating surface is assumed to equal the variational

(a) (b) (c)

FIG. 5. (Color online) Equilibrium configurations on the p-RSOS
model. Top views of the vicinal surfaces tilted towards the [110]
direction calculated by the Monte Carlo method. The brighter, the
higher, with 10 gradations. | �p| = 0.707, 1 × 108MCS/site, 	μ =
0.0 (at equilibrium), εint/ε = −0.5. Nstep = 80. Size: 80

√
2 × 80

√
2.

(a) kBT /ε = 0.35. (b) kBT /ε = 0.36. (c) kBT /ε = 0.37.

derivative multiplied by a transport coefficient V({ �p}) [56,57]
based on the time-dependent Ginsburg-Landau theory. After
some manipulation (Appendix A), we have the following
equation:

vz = V({ �p})
{

	μ



+

∑
i,ν

[
f i,νz

(2)
ν,i

]}
, (11)

where 
 represents the volume of the growth unit in
the crystal, (f ij ) represents the surface stiffness tensor
∂2f ( �p)/∂pi∂pj | �p= �pe

[ �p = (px,py) = (p1,p2)] [58], and z
(2)
ij

represents ∂2z/∂xi∂xj [�x = (x,y) = (x1,x2)]. Here �pe is
the surface slope at equilibrium, and ∂f ( �p)/∂pi | �p= �pe

= 0
(i = {1,2}).

The second term on the right-hand side of Eq. (11) expresses
the x-y projected Gibbs-Thomson effect. From the condition
vz = 0, we obtain another expression of the ECS, except for
the facets.

For T > Tf,2, kBT /ε = 0.36, and kBT /ε = 0.37, the sur-
face free energy f ( �p) increases monotonically as | �p| increases
around | �p| = 0 [Figs. 4(b) and 4(c)]. We can then calculate the
surface stiffness tensor (f ij ) in Eq. (11) explicitly in the limit
of | �p| → 0.

Keeping the non-GMPT | �p| expanded form of the vicinal
surface free energy [Eq. (3)] in mind, we describe the vicinal
surface free energy as follows:

f ( �p) = f (0) + γ (φ)
| �p|
d

+ Bζ (φ)
| �p|ζ
dζ

+ O(| �p|ζ+1), (12)

where d represents the unit height of a single step (d = 1),
γ (φ) represents the step tension of a single step, and Bζ (φ)
represents the coefficient of | �p|ζ /dζ .

Adopting Eq. (12), and after some calculations, we obtain
the expressions of the surface stiffness tensor (f ij ) [58] in the
limit of | �p| → 0 as follows:

f 11 = γ̃ (φ)

| �p| sin2 φ + | �p|ζ−2(t1 − t2 sin2 φ

− 2t3 sin φ cos φ) + O(| �p|ζ−1), (13a)
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f 22 = γ̃ (φ)

| �p| cos2 φ + | �p|ζ−2(t4 + t2 sin2 φ

+ 2t3 sin φ cos φ) + O(| �p|ζ−1), (13b)

f 12 = − γ̃ (φ)

| �p| sin φ cos φ + | �p|ζ−2[t3(1 − 2 sin2 φ)

+ t2 sin φ cos φ] + O(| �p|ζ−1)

= f 21, (13c)

where γ̃ (φ) [γ̃ (φ) = γ (φ) + ∂2γ (φ)/∂φ2] represents the step
stiffness of a single step, and t1, t2, t3, and t4 are as follows:

t1 = ζ (ζ − 1)Bζ (φ),

t2 = ζ (ζ − 2)Bζ (φ) − B ′′
ζ (φ),

t3 = (ζ − 1)B ′
ζ (φ), (14)

t4 = ζBζ (φ) + B ′′
ζ (φ),

B ′′
ζ (φ) = ∂2Bζ (φ)/∂φ2.

The principal values of the (f ij ) become

fn = | �p|ζ−2t1 + O(| �p|ζ−1), (15a)

ft = γ̃ (φ)

| �p| + | �p|ζ−2t4 + O(| �p|ζ−1). (15b)

Then we obtain det(f ij ) as follows:

det(f ij ) = t1| �p|ζ−3γ̃ (φ) + O(| �p|ζ−2)

= | �p|ζ−3ζ (ζ − 1)Bζ (φ)γ̃ (φ)

(| �p| → 0). (16)

Physically fn represents the surface stiffness against a bending
stress that is normal to the facet edge, and ft represents the
surface stiffness against a bending stress that is tangent to the
facet edge.

Using fn and ft , we have an expression for the normal
surface velocity, as follows:

vz = V( �p)

{
	μ



+ fnz

(2)
n + ftz

(2)
t

}
, (17)

where z(2)
n and z

(2)
t are the eigenvalues of (∂2z/∂xi∂xj )

(i,j = 1,2). According to recent developments in the study
of time evolution of bunched steps [59–61] slightly further
from equilibrium, the profile of the step bunch is results of a
fine balance between evaporation and deposition and is related
to the force range of the effective step-step interactions on the
nonequilibrium vicinal surface.

At equilibrium, where vz = 0, the z(2)
n and z

(2)
t are obtained

explicitly as

z(2)
n,eq = −[	μ/(2
)]| �p|2−ζ /[ζ (ζ − 1)Bζ (φ)],

(18)
z

(2)
t,eq = −[	μ/(2
)]| �p|/γ̃ (φ)

in the limit of | �p| → 0. Therefore, the Gaussian curvature K

near the (001) facet edge on the ECS is obtained as follows:

K = λ2

g2 det(f ij )
≈ λ2| �p|3−ζ

ζ (ζ − 1)Bζ (φ)γ̃ (φ)
(| �p| → 0), (19)

where g = 1 + | �p|2, and λ = 	μ/(2
).
Therefore, for Tf,2 < T < Tf,1, applying the form of

vicinal surface free energy Eqs. (3) to (12) and (15a)–(19), we

have the principal values and the determinant of the stiffness
tensor and the Gaussian curvature as follows:

fn = 2Aeff(φ), ft = γ̃1(φ)/| �p|, (20a)

det(f ij ) = 2Aeff(φ)γ̃1(φ)/| �p|, (20b)

K = λ2| �p|/[2Aeff(φ)γ̃ (φ)], (20c)

where ζ = 2 [19].
For Tf,1 < T � TR , where ζ = 3 [19] and TR is the

roughening transition temperature of (001) surface (Sec. V A),
we have

fn = 6Beff(φ)| �p|, ft = γ̃1(φ)/| �p|, (21a)

det(f ij ) = 6Beff(φ)γ̃1(φ)/| �p|, (21b)

K = λ2/[6Beff(φ)γ̃ (φ)]. (21c)

Due to the step droplets, Beff(φ) [Eq. (5b)] has a different value
from the value of the 1D FF [15] in the following:

B1(φ) = (kBT π )2/[6γ̃ (φ)]. (22)

For Tf,1 � T < TR , the p-RSOS system converges to the 1D
FF system; i.e., Beff(φ) converges to B1(φ). Hence, det(f ij )
and K converge to the GMPT universal value [15] of

det(f ij ) = (kBT π )2 and K = λ2/(kBT π )2, (23)

respectively.
In Table III we show the values of the surface thermo-

dynamic quantities for kBT /ε = 0.36 (B24) and kBT /ε =
0.37 (C24). As a comparison, we show the values of the
original RSOS model at kBT /ε = 0.35 (A24′). In the process
of the estimation of fn and ft , we used values calculated
by the PWFRG method for βAeff(π/4) and βBeff(π/4)
[19]; i.e., βAeff(π/4) = (6.22 ± 0.06) × 10−3 for B24 and
βBeff(π/4) = 0.281 ± 0.008 for C24. We also approximated
βγ̃1(π/4) by the values of the interface stiffness of the 2D nn
Ising model [62–64]; i.e., 1.377, 1.371, and 1.364 for A24′,
B24, and C24, respectively.

As seen from Table III, even though ft is kept almost
constant, fn changes drastically as the temperature changes.
This means that the step droplets soften the surface against
the bending force normal to the mean running direction of the
steps. In fact, the Gaussian curvature at the (001) facet edge
increases.

Note that �p on the ECS [z = z(x,y)] depends on (x,y).
Taking the x axis normal to the edge of the (001) facet at a

TABLE III. Surface stiffness and Gaussian curvature.

Label βfn
a βft

b β2 det(f ij )c K/(βλ)2d

B24 1.24 × 10−2 19.4 0.241 4.10
C24 0.119 19.3 2.30 0.431
A24′ 0.507 19.5 π 2 1/(gπ )2e

≈9.870 ≈0.1003

aβ = 1/kBT [Eq. (15a)].
bEq. (15b).
cEq. (16).
dEq. (19).
eGMPT (1D FF) universal value [15].
fg = 1 + | �p|2. | �p| = 0.0707.

061604-6



STICKY STEPS INHIBIT STEP MOTIONS NEAR . . . PHYSICAL REVIEW E 86, 061604 (2012)

point (xc,0),

βλ[z(x,0) − z(xc,0)] = −An[βλ(x − xc)]θn , (24)

where β = 1/kBT , θn is the normal shape exponent, and An

is the normal amplitude. Using Eq. (12), θn and An are then
described as follows [19]:

θn = ζ

ζ − 1
, An = 1

θn

[
kBT

ζBζ

]θn−1

, (25a)

| �p| =
∣∣∣∣λ(x − xc)

ζBζ

∣∣∣∣
θn−1

. (25b)

IV. INHIBITION OF STEP MOTION
DUE TO “STEP FACETING”

A. Roughness on the side surface of a merged step

In the section we explain the inhibition of the macrostep
motion in the vicinal surface at sufficiently low temperatures
T < Tf,2.

For T < Tf,2, the inhomogeneous vicinal surface, a mixture
of the (001) and (111) surfaces [Fig. 5(a)], is realized due to
discontinuities in the surface tension [19]. Since both the (001)
surface and the (111) surface are smooth, a macrostep in the
vicinal surface becomes a faceted step (“step faceting” [42]).
Hence, the squared surface widths for the (001) and (111)
surfaces should both be finite.

The squared surface width of a vicinal surface W (�n)2 is
defined as follows [58]:

W (�n)2 = 〈[z(�x) − 〈z(�x)〉]2〉/g, (26)

where 〈·〉 represents the thermal average and �n = (−p1,

− p2,1)/g represents the normal unit vector of the tilted
surface. From the result of Ref. [58], W (�n)2 is connected to
the surface stiffness tensor in the limit of L → ∞, where L is
the linear size of the surface, as follows:

W (�n)2 = kBT

2πg
√

det(f ij )
ln L. (27)

Since W (�n)2 should be finite for a smooth surface, det(f ij )
should be divergent in the order of (ln L)2 in the thermody-
namic limit. Hence, slight deformations from the flat surfaces
of (001) or (111) are pulled back to the flat surfaces because
of the strong Gibbs-Thomson effect.

Further, if we consider z(2)
n = 0 and z

(2)
t = 0 on the

macroscopic vicinal surface, the transport coefficient V( �p)
reduces to zero because the kink density on the side of the
macrostep converges to zero in the thermodynamic limit.
Therefore, the continuous motion of the surface described by
Eqs. (11) or (17) is inhibited in this temperature region.

Instead, as shown in Fig. 6, the intermittent motion of the
surface occurs on a longer time scale. The mechanisms that
cause the intermittent surface motion are considered to be 2D
nucleation [4] around the intersection line of two surfaces, a
terrace surface and the side surface of a faceted step. Near
equilibrium, the nucleation rates at about the center of the
terrace and at about the center of the side surface are small,
and the nucleation rate around the intersection line of the

1710

1715

1720

h(
t)

1
10  )8

MCS/site

0.8 0.9

FIG. 6. Intermittent sublimation of the surface. A24, 	μ/ε =
−0.0005, εint/ε = −0.5, kBT /ε = 0.35, Nstep = 240. Size: 240

√
2 ×

240
√

2.

surfaces becomes larger because of the special geometrical
arrangement.

B. Self-pinning of steps

At sufficiently low temperature, the step movements of
the macrosteps are almost inhibited for small 	μ because
of step faceting. In Fig. 7 we show the time evolution of the
vicinal surface at kBT /ε = 0.1 for the p-RSOS model with
εint/ε = −0.5, starting from the regular train of elementary
steps [Fig. 7(a)]. In our previous paper [18], we showed that for
	μ = 0, step zipping, the phenomena of successive sticking
of adjacent steps, much like a slide fastener in clothes, occurs
at the collision points of adjacent steps.

In the case of 	μ/ε = 0.1, step-flow growth occurs in the
early stages [Fig. 7(b)] of surface growth. When an elementary
step collides with an adjacent elementary step, the steps merge
to form a double step due to the sticky character of steps

(a) (b) (c)

(d) (e) (f)

FIG. 7. (Color online) Self-pinning of steps on the p-RSOS
model. Top views of the vicinal surfaces tilted towards the [110]
direction calculated by the Monte Carlo method. The brighter, the
higher, with 10 gradations. 	μ/ε = 0.1, εint/ε = −0.5, kBT /ε =
0.1, Nstep = 24. Size: 240

√
2 × 240

√
2. (a) Initial configuration.

(b) 1000 MCS/site. (c) 2000 MCS/site. (d) 3000 MCS/site.
(e) 5000 MCS/site. (f) 1 × 104 MCS/site.
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(a) (b) (c)

(d) (e) (f)

FIG. 8. (Color online) Step growth on the p-RSOS model. Top
views of the vicinal surfaces tilted towards the [110] direction demon-
strated by the Monte Carlo method. The brighter, the higher, with 10
gradations. 	μ/ε = 0.35, εint/ε = −0.5kBT /ε = 0.1, Nstep = 24.
Size: 240

√
2 × 240

√
2. (a) Initial configuration. (b) 1000 MCS/site.

(c) 3000 MCS/site. (d) 5000 MCS/site. (e) 9000 MCS/site. (f)
1.3 × 104 MCS/site.

[Fig. 7(b)]. Since the step droplet now has a velocity lower
than that of the elementary steps, the steps from behind catch
up with the new step droplet and merge to form a larger
step droplet [Fig. 7(c)]. Since the larger step droplet now has
even lower velocity, step movements become pinned by step
droplets, as in a traffic jam [Figs. 7(c)–7(e)]. The mobility
of the merged steps is so slow that the vicinal surface is
almost quenched when elementary steps disappear [Figs. 7(e)
and 7(f)]. This inhibition of the step motion occurs when
	μ/ε < 0.3 and around 	μ/ε = 0.3 if kBT /ε = 0.1.

At 	μ/ε = 0.35, elementary steps begin to separate suc-
cessively from the lower side of the macrosteps (Fig. 8). This
separation of elementary steps looks like step nucleation. As
mentioned at the end of the previous subsection, step nucle-
ation starts from the 2D nucleation around the intersection line
between a terrace surface and a side surface of a macrostep. In
addition, the growing steps in Fig. 8 exhibit distinctive wavy
shapes due to the sticky character of the steps. The frequency
of the separation of steps is not simply defined, and it may be
considered to be related to “kinetic roughening” [2,65,66] on
the surface.

This separation of steps occurs more frequently when
	μ/ε > 0.35, so we designate 	μ∗/ε = 0.35 the threshold
driving force for the separation of a step at kBT /ε = 0.1.
When the temperature increases within the range of T < Tf,2,
the value of the threshold force for the separation of step 	μ∗
becomes smaller. This is because a decrease of the step tension
for an elementary step, which is caused by the entropy of the
zigzag structure in an elementary step, induces more frequent
2D nucleation at the intersection line.

In the case of sublimation (	μ < 0), an elementary step
appears from the upper side of the macrostep, and the step goes
backward. This separation of elementary steps also looks like
“step nucleation,” and the steps that move backward exhibit
distinctive wavy shapes, which are almost mirror-symmetric
to the shapes observed for the growing steps.

V. SLOWING DOWN OF THE STEP MOTION
DUE TO STEP DROPLETS

A. Roughness of the vicinal surface

In this section we study the step motion in the case of
Tf,2 < T ∼ Tf,1. In this temperature range, the surface tension
and the vicinal surface free energy f ( �p) are discontinuous
at the (111) surface but continuous around | �p| = 0. Hence,
Eq. (11) is applicable, and it describes the motion of the vicinal
surface around | �p| = 0. Also, for the mean flat surface, the
velocity of the surface vz is expressed using Eq. (11) as follows:

vz = V( �p)	μ/
. (28)

According to simple linear response theory [67], the trans-
port coefficient V( �p) should be proportional to the squared
fluctuation width W 2(�n) of the vicinal surface due to the
fluctuation-dissipation theorem [Eq. (B6)]. In this subsection,
therefore, we study the roughness of the vicinal surface.

Let us first evaluate the roughening transition temperature
TR of the (001) surface. By using the PWFRG method,
we calculated TR from the universal relationship KR/λ2 =
4/(kBT Rπ )2, where KR is the GMPT Gaussian curvature on
the ECS at T = TR [1,12]. The obtained TR are kBT R/ε =
1.505 ± 0.008 for εint/ε = −0.5 and kBT RSOS

R /ε = 1.584 ±
0.006 for εint = 0. The value of T RSOS

R is consistent with the
value obtained by den Nijs [68]. The result that TR < T RSOS

R

means that the step-step attraction slightly roughens the (001)
surface. The local bonds εint are considered to stabilize the
“blobs” [69] in the zigzag structure of a single step. These blobs
enhance the deformations of a step by thermal fluctuation,
which decreases the step free energy per length.

The roughness of the vicinal surface is measured by the
squared surface width W (�n)2. Hence, by substituting Eq. (16)
into Eq. (27), we have

W (�n)2 = kBT | �p| 3−ζ

2

2πg
√

ζ (ζ − 1)Bζ (φ)γ̃ (φ)
ln L. (29)

Using the values of det(f ij ) in Table III, we calculated the
corresponding values of W (n)2/ ln L and present them in
Table IV.

TABLE IV. Surface roughness and surface velocities. 	μ/ε =
±0.0005.

Label W (n)2/ ln La ρk,1
b ρk,2

c ρk
d vz

e (×10−6 d1/τ0)

A1 0 0.116 – 0.116 0.346
B24 0.322 0.118 0.0598 0.108 7.49
C24 0.104 0.119 0.0622 0.113 7.63
A1′ 1/(2π 2g)f 0.131 – 0.131 0.388

≈0.05066
A24′ 1/(2π 2g) 0.131 0.226 0.131 9.36

≈0.05041

aEq. (27).
bEq. (33).
cEq. (35).
dEq. (34).
eEqs. (32) and (28).
fg = 1 + | �p|2.
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For Tf,2 < T < Tf,1, we can see from Table IV that the
step droplets roughen the vicinal surface. For Tf,1 < T � TR ,
the vicinal surface is still roughened by the remaining step
droplets. As the temperature increases from Tf,1, the roughness
of the vicinal surface W (�n)2/ ln L (| �p| → 0) rapidly converges
to the GMPT value 1/(2π2).

In summary, for the cases demonstrated in Sec. II C, we
have the following relationship from the values in Table IV:

W 2(�n)|T̂ =0.36 > W 2(�n)|T̂ =0.37

> W 2(�n)RSOS|T̂ =0.37 = W 2(�n)RSOS|T̂ =0.35, (30)

where T̂ represents the reduced temperature kBT /ε.

B. Step smoothing

From Eq. (30), referring to the expression of V( �p)
[Eq. (B6)], we must have the relationship vz|T̂ =0.36 >

vz|T̂ =0.37 > vRSOS
z |T̂ =0.35 for the cases demonstrated in Sec.

II C. However, the calculated order of surface mobility is
clearly seen from Fig. 3 and from Table II as

vz|T̂ =0.36 < vz|T̂ =0.37 < vRSOS
z |T̂ =0.35. (31)

Therefore, even near equilibrium, the simple linear response
theory is not applicable to describe the transport coefficient for
the vicinal surface with sticky steps around T ∼ Tf,1.

It is the formation of the step droplets that prevents the
application of the simple linear response theory to the transport
coefficient. Though the step droplets roughen the vicinal
surface, they also diminish the number of kinks on the side
of the merged steps. At temperatures sufficiently lower than
TR , the step motion is governed by the total in- and out-flow
of materials at the kink sites. We will use “step smoothing” to
refer to this reduction in the number of kinks.

We note that the transport coefficient is described as
follows:

V( �p) = ρkN[1̄10]Nstep

2/(SkBT ), (32)

xy

FIG. 9. (Color online) Conceptual diagrams of kink configura-
tions for an elementary step. 	μ > 0. Top figure: An example of
an elementary step (top view). The lattice sites are divided into two
sub-lattices, distinguished by stripes and solid. Darkly shaded areas
describe the lower terrace. “K” represents a kink site.

where ρk represents a kink density, N[1̄10] represents the
linear number of the unit cell in the direction of [1̄10], and
S = 240 × 240 × 2 represents the size of the simulated area.
We show a “kink” in the case of the growth (	μ > 0) of
a single elementary step in Fig. 9. The kink density for a
single elementary step is approximated based on the 19-vertex
model [43] as follows (Fig. 9):

ρk,1 ≈ 4
(1 + 2e−βε)2

[6 + e−βε + 2e−β(ε+εint)]2
. (33)

Using the expressions of ρk,1 and V( �p), we obtained vz for
an elementary step, as shown in Table IV for the data of A1
and A1′. By comparing these values with the ones in Table II,
it is seen that the values obtained by Eqs. (32) and (33) are
in agreement with the values obtained by the Monte Carlo
method without fitting parameters.

When | �p| increases, that is, Nstep increases, the step droplets
are created by a local merging among steps. Since 〈n〉, which
represents the mean size of the step droplets (boson n-mers),
is close to 1 [19] for the surface with Nstep = 24 (Table II), the
double step is statistically dominant among multiply merged
steps. Hence, we consider the mean kink density as follows:

ρk = (2 − 〈n〉)ρk,1 + (〈n〉 − 1)ρk,2, (34)

where ρk,2 represents the kink density of the double step.
In Eq. (34), we assumed 〈n〉 ≈ 1 · (1 − p̂) + 2 · p̂, where p̂
represents the fraction of steps that are double steps.

Since the configuration of a double step (Fig. 10) is
approximately described by the triple vertices, ρk,2 is estimated

K

K

K K K

statistical
weight

number
of links

exp[-β(4ε+ε    )]int 

exp[-β(5ε+2ε    )]int exp[-β(5ε+2ε    )]int exp[-β(6ε+3ε    )]int

exp[-β(4ε+ε    )]int exp[-β(4ε+ε    )]int

1 1 1

1 1 0

FIG. 10. Conceptual diagrams of kink configurations for a double
step. 	μ > 0. Top figure: Example of a double step (top view). Darker
areas describe lower terraces: white > gray > gray with stripes > gray
with hatching > black. “K” represents a kink site.
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as follows:

ρk,2 ≈ [2 + 2e−β(ε+εint) + e−β(2ε+2εint)]eβεint

3[3 + 2e−β(ε+εint) + e−β(2ε+2εint)]
. (35)

In Table IV we show the values of ρk,1, ρk,2, and ρk calculated
by using Eqs. (33)–(35), respectively. Here, we used the value
of 〈n〉 in Table II. Comparing the values of vz in Table IV
obtained by Eqs. (32)–(35) with the ones obtained by the
Monte Carlo calculations (Sec. II C), we see that they are in
close agreement without fitting parameters.

VI. SUMMARY AND DISCUSSION

We studied the step motions in a vicinal surface near
equilibrium using a lattice model with sticky steps. We adopted
a restricted solid-on-solid model with a point-contact-type
step-step attraction [Eq. (4), εint < 0, the p-RSOS model]. We
showed that the point-contact-type step-step attraction caused
discontinuities in the surface tension γsurf(�n) [Eq. (2)] and
in the vicinal surface free energy f ( �p) at low temperatures
[Fig. 4(a)]. Due to the discontinuities, “step faceting” [42]
occurred on the macrosteps in the vicinal surface tilted from
the (001) surface towards the [110] direction for T < Tf,2

[Fig. 5(a)]. The continuous motion of the macrosteps was
inhibited under a small driving force 	μ by the step faceting
[Figs. 2(a) and 3]. Instead, the intermittent motion of the vicinal
surface (Figs. 6 and 8) occurred by way of 2D nucleation
around the intersection line between the terrace surface and
the side surface of the macrostep. Starting from the regular
train of steps as the initial configuration, pinning of steps
was demonstrated to take place from the collision point of
the adjacent elementary steps (Fig. 7) without impurities or
defects. We term this phenomenon the “self-pinning” of steps.

For Tf,2 < T < Tf,1, the surface tension and the vicinal
surface free energy were continuous for the surface slope
| �p| ∼ 0, but they were still discontinuous around the (111)
surface [Fig. 4(b)]. This discontinuity around the (111) surface
led to the formation of “step droplets” (boson n-mers), locally
merged steps. The step droplets roughen the vicinal surface,
and we showed this by calculating the squared surface width
W 2(�n) (Sec. V A, Table IV), using the relationship between
the squared surface width and the determinant of the surface
stiffness tensor det(f ij ) (Sec. III C, Table III). The step
velocity, which is expected to be larger than that of the original
RSOS model, was lower than the step velocity of the original
RSOS model at the same temperature (Fig. 3, Table II). This
is because the step droplets diminish the kink density of the
vicinal surface (the “step smoothing,” Sec. V B). We estimated
the transport coefficient [Eqs. (32) and (34)] using the kink
density of an elementary step ρk,1 [Eq. (33)] and the kink
density of a double step ρk,2 [Eq. (35)]. Using the equations
of the kink densities, we reproduced the surface velocities
obtained by the Monte Carlo method (Sec. II C, Table IV)
without fitting parameters.

The time lag of the surface motion for an abrupt reverse of
the driving force around equilibrium is one of the methods
of detection for the step droplets that are created by the
discontinuity in the surface tension. When 	μ > 0 (growth) at
low temperature, elementary steps separate successively from
the lower side of the step edge on a macrostep [Figs. 8(b)

and 8(c)]. The elementary steps in the terrace of the upper
side of the macrostep catch up and merge with the macrostep
[Figs. 8(d) and 8(e)]. Hence, the profile of a macrostep is
asymmetric with respect to the upper side and the lower side of
the step edge. Then, when the driving force is reversed abruptly
to 	μ < 0 (sublimation), the movement of the elementary
steps reverses; for the macrostep, however, the profile of the
step edges changes first. In this way, a time lag of the surface
motion occurs. If step droplets do not exist, as in the original
RSOS model, the bunched steps dissolve rapidly because the
edges of the side surface of the bunched step are rough near
equilibrium. There is no nucleation barrier for the separation
of steps from the bunched steps. Therefore, the inhibition of
the macrostep motion against the alternative change of 	μ

around 	μ = 0 becomes the evidence of the discontinuity in
the surface tension.

It should be noted that under equilibrium, step merging or
step faceting do not always occur for sticky steps. In order
for step merging to occur under equilibrium, discontinuities in
the surface tension and in the vicinal surface free energy are
essential. For temperatures higher than Tf,1, in the case of the
p-RSOS model, discontinuities disappear because the entropic
repulsion between the steps overwhelms the point-contact-type
step-step attraction. Step faceting then disappears. The step
droplets, on the other hand, remain for temperatures slightly
above Tf,1, due to the finite character of the step droplets.
Therefore, a slowing down of the step velocity occurs when
|	μ| is small.

Recently, an anomaly together with strong anisotropy in
the stiffness of vicinal surfaces was observed [70] for the
surface around the (0001) facet of a 4He crystal particle at
low temperature. This anomaly in the stiffness of the 4He
crystal particle may be explained by anomalous behavior of
the surface stiffness tensor that originated from a discontinuity
in the surface tension (Secs. III C and IV). Based on this present
work and our previous work, we consider that point-contact-
type step-step attraction with a microscopic origin might exist
on the surface of a 4He crystal. A hydrodynamic interaction
of steps [71] may also be conceivable for 4He. Since the
hydrodynamic interaction of steps is long-range, it causes
a discontinuity in the surface tension of the vicinal surface
tilted in all directions around the (0001) facet at a temperature
lower than the specific temperature Tf . In the case of the
point-contact-type step-step attraction, however, the attraction
causes a discontinuity in the surface tension only around the
vicinal surface tilted towards a special direction where the
step droplets are formed. In the p-RSOS model, the vicinal
surface tilted towards the [100] direction from the (001) surface
shows typical GMPT behavior [19]. We expect further relevant
experimental studies in the future.

In the present Monte Carlo simulation, only non-conserved
attachments and detachments of atoms [47] were taken into
consideration in order to show clearly the effect of the
point-contact-type step-step attraction. That is, other effects
that occur on a real surface were ignored, such as surface
diffusion [22], electromigration [27–29], the Schwoebel effect
[3,30], the shockwave effect [31], impurity effects [32–34],
strain effects [35–41], and the effect of surfactants [72,73]. On
real surfaces, these effects exist together with discontinuities in
the surface tension. For example, for a system with short-range
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attraction and long-range repulsive step-step interaction, such
as an elastic interaction, Shenoy et al. [38] showed that a
regular array of merged steps of size n appears on the vicinal
surface, where n depends on the strength of the step-step
attraction and on the strength of the elastic repulsion.

The vicinal surface of Cu (11n) (n = 5,7,9) [74] may be
an example of a surface with a discontinuity in the surface
tension together with an Ehrlich-Schwöbel (ES) barrier.
The STM image [Fig. 2(a)] of the Cu (11n) vicinal surface
in the paper of Néel et al. looks similar to the pattern shown in
Fig. 7 of the present work. The dark spots in their STM image,
which look like holes or trenches, seem to pin the macrosteps.
An explanation for the pinned phenomena was not given in
their paper. We consider that the trenches may be formed by
the self-pinning caused by the step faceting in the early stage
of step bunching. The authors said that the step bunching had
a kinematical cause because the regular train of steps was
observed at about 700 K. If the characteristic temperature Tf,1

is lower than 700 K, however, the macrosteps caused by the
sticky character of the steps dissolve at T ∼ 700 K. The time
evolution of step bunching and simultaneous step meandering
is the area under development [75].

In our previous papers [76,77], we presented lattice models
to describe the vicinal surface with adsorption. We showed that
the discontinuity in the surface tension and the vicinal surface
free energy is induced by adsorbates. Hence, the inhibition of
step motion around equilibrium, as presented in this work, is
expected to occur on a vicinal surface with adsorbates. In fact,
the shape shown in Fig. 8 and intermittent growth, as is one
shown in Fig. 6, are similar to those seen in the observations of
a Au/Si(001) surface [73] and an O/Ni(977) surface [78]. In the
case of the Au/Si(001) surface, gold-induced faceting occurs,
and the origin of the faceting is thought to be discontinuities
in the surface tension [79].

In the case of the O/Ni(977) surface, oxygen-induced step
merging has been observed, and it has also been observed
on the surfaces of several other metals [80]. So far, step
bunching, or step merging, has been considered to be a
dynamical phenomenon that takes place when the surface is
far from equilibrium [27–34,61,81]. In their studies of step
bunching resulting from various causes when the system is
far from equilibrium, the surface free energy and the step
free energy are assumed to have the GMPT universal form
[Eq. (1)]. We think that the oxygen-induced step merging that
occurs near equilibrium may be explained by the discontinuity
in the surface tension that is induced by adsorbates. For a
full understanding of step dynamics on the vicinal surface in
combination with step-step attraction and other surface effects,
further study is required.

VII. CONCLUSION

Point-contact-type step-step attraction causes discontinu-
ities in the surface tension γsurf(�n) and in the vicinal surface
free energy f ( �p) around the (001) and (111) surfaces at
low temperature. Due to these discontinuities, “step faceting”
occurs, which is where the side surface of a macrostep
becomes smooth. Step faceting inhibits the continuous motion
of macrosteps under a small driving force 	μ. Step faceting
also induces intermittent motion of the surface in the long-time

behavior, and it induces the pinning of steps even if there are
no impurities, adsorbates, or defects on the surface.

For temperatures such that the discontinuity in the surface
tension occurs only around the (111) surface, the slowing down
of step movements occurs due to “step droplets” (boson n-mers
with finite lifetimes), which are locally merged steps. The step
droplets roughen the vicinal surface, but they diminish the kink
density of the vicinal surface (step smoothing).
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APPENDIX A: EQUATION OF SURFACE MOTION
NEAR EQUILIBRIUM

In this Appendix, we derive an equation for the surface
motion near equilibrium.

Based on the linear response theory near equilibrium [67],
the time derivative of the height change of the vicinal surface
is assumed to equal the variational derivative multiplied
by a transport coefficient. Let z′(x,y) = z(x,y) + δξδ(x,y),
where δ(x − x0,y − y0) is the delta function. Then we write
a kinetic equation for the height change of the surface as
follows [56]:

vz = δξ

δt
= −V({ �p})δG

δξ
, (A1)

where V({ �p}) is a transport coefficient that depends on the
surface gradient and G is the total free energy of the system.
The functional G for z′(x,y) is described as

G =
∫ ∫

dx dy

[
f ( �p) − 	μ



z′(x,y)

]
, (A2)

where �p = (p1,p2) = (∂z′/∂x,∂z′/∂y), and f ( �p) represents
the surface free energy per x-y projected area (vicinal surface
free energy). f ( �p) depends on the surface tension γsurf(�n)
as f ( �p) = γsurf(�n)

√
1 + p2

1 + p2
2, where �n represents the unit

normal vector at the surface.
Considering δG = 0, where the free energy becomes

minimum, at equilibrium, we have

∂

∂xi

∂f ( �p)

∂pi

+ 	μ



= 0,

∂f ( �p)

∂ �p
∣∣∣∣
�p= �pe

= �η, (A3)

where �x = (x1,x2) = (x,y). From the solution of Eq. (A3), we
obtain

�η = −[	μ/(2
)]�x, f̃ (�η) = f ( �p)| �p= �pe
− �η · �pe. (A4)

Then the relation Eq. (A3) is inverted as

�pe = −∂f̃ (�η)/∂ �η. (A5)
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Expanding G around the equilibrium �p = �pe, we write δG as

δG =
∫ ∫

dx dy

[
∂2f ( �p)

∂pi∂pj

∣∣∣∣
�p= �pe

δpiδpj − 	μ



δξ

]
(A6)

= −
∫ ∫

dx dy

[
∂2f ( �p)

∂pi∂pj

∣∣∣∣
�p= �pe

∂2z

∂xi∂xj

δξ + 	μ



δξ

]
.

(A7)

From Eqs. (A1) and (A7), therefore, we have Eq. (11).

APPENDIX B: TRANSPORT COEFFICIENT BASED
ON THE SIMPLE LINEAR RESPONSE THEORY

Let us consider the Langevin equation for 	μ = 0 as
follows [82]:

∂h

∂t
= ν∇2h + R(t), (B1)

where we assume R(t) is a Gaussian white noise such as
〈R(t)R(t ′)〉 = 2Dhδ(t − t ′). Then the distribution function
P (h,t) of the Fokker-Plank equation is proportional to

exp

[
−

∫
d2x

ν

2Dh

|( �p − �pe)|2
]

. (B2)

Comparing Eq. (B2) with Eq. (A6) at 	μ = 0, where Eq. (A6)
should be the Hamiltonian of the Fokker-Plank equation,
we see that f (ij )/kBT in Eq. (A6) corresponds to ν/2Dh in
Eq. (B2). Hence, we have

V( �p) = 2Dh/kBT . (B3)

Since Rj ∝ (pj − pj,e), we have

〈RiRj 〉 = const. × kBT (f (αβ)−1)ij /L
2, (B4)

from which follows

det〈RiRj 〉 = const.2 × 4π2g2[W (�n)2]2

L4(ln L)2
. (B5)

K

K

K

K K

FIG. 11. Conceptual diagrams of the kink configuration for
	μ < 0 (sublimation). Top line: Kink configurations of an elemen-
tary step. Second and third lines: Kink configurations of a double
step. Darker areas describe the lower terraces: white > gray > gray
with stripes > gray with hatching > black. “K” represents a kink site.

Therefore, we approximate V( �p) as follows:

V( �p) ≈ const. × 4πgW 2(�n)

kBT L2 ln L
. (B6)

APPENDIX C: KINK SITES FOR SUBLIMATION

In the case of sublimation (	μ < 0) at low temperature,
“atoms” (elementary cubes in the RSOS model) detach mainly
from the kink sites shown in Fig. 11. Equations for the kink
densities for an elementary step and for a double step are the
same as Eqs. (33) and (35).
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