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Standard thin-double-layer modeling of electro-osmotic flows about metal objects typically predicts an
induced zeta-potential distribution whose characteristic magnitude varies linearly with the applied voltage. At
moderately large zeta potential, comparable with several thermal voltages, surface conduction enters the dominant
electrokinetic transport, throttling that linear scaling. We derive here a macroscale model for induced-charge
electro-osmosis accounting for that mechanism. Unlike classical analyses of surface conduction about dielectric
surfaces, the present nonlinear problem cannot be linearized about a uniform-zeta-potential reference state. With
the transition to moderately large zeta potentials taking place nonuniformly, the Dukhin number, representing
the magnitude of surface conduction, is reinterpreted as a local dimensionless group, varying along the
boundary. Debye-scale analysis provides effective boundary conditions about two types of generic boundary
points, corresponding to small and moderate Dukhin numbers. The boundary decomposition into the respective
asymptotic domains is unknown in advance and must be determined throughout the solution of the macroscale
problem, itself hinging upon the proper formulation of effective boundary conditions. This conceptual obstacle
is surmounted via introduction of a uniform approximation to these conditions.
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I. INTRODUCTION

A. Induced-charge electro-osmosis

Classical electrokinetic analyses typically consider dielec-
tric solids on which the surface charge at the solid boundary
is immobile [1]. Starting in the mid 1990s a new type of
electrokinetic mechanism, driven by metal electrodes under
AC voltage, was observed by several research groups [2–7]. In
this “AC electro-osmosis” mechanism [8] the voltage applied
to the electrode results in both an induced Debye double layer
about its surface and an electric field acting on it, giving rise
to a clear nonlinear dependence of the flow-field magnitude.
Such flows ubiquitously occur when the electrodes–fluid
configuration is not one-dimensional, since the electric field
then possesses a component which is tangential to the double
layer at the metal-electrolyte interface; the associated Coulomb
forces are then generally nonconservative and cannot be
balanced by pressure gradients alone.

Squires and Bazant [9] have identified the linkage between
AC electro-osmosis and electro-osmotic flows about metal
particles, the latter having been investigated in the Russian
literature for quite some time [10–12]. In both types of
electrokinetic problems the electric field acts upon an induced
charge adjacent to the metal boundary. A similar mechanism
also occurs when colloidal particles are suspended at the
vicinity of an electrode [13], again, disturbing the equilib-
rium one-dimensional structure. Coining the entire host of
such phenomena “induced-charge electro-osmosis” (ICEO),
Squires and Bazant suggested that such flows may be useful
in microfluidic devices [9,14].

The prototypic problem in ICEO, as analyzed in the Russian
literature, entails a metal sphere suspended in an unbounded
electrolyte solution and exposed to an otherwise uniform
electric field [11]. The metal is a perfect conductor but is
assumed chemically inert. Since the ensuing electro-osmotic
flow is highly symmetric, no net hydrodynamic force arises.
Motivated by microfluidic applications, Squires and Bazant
[9] analyzed the similar problem of two-dimensional flow

about an infinitely long metal cylinder, modeling the flow
engendered about a thin metal wire [15]. The general structure
of the flow about more complex geometries was discussed by
Yariv [16] and Squires and Bazant [17]. Due to asymmetries,
such geometries may result in net pumping [18,19], mixing
and stirring [20–24], and animation of particle translation and
rotation [17,25–29]. The preceding analyses were carried out
in the thin-double-layer limit [30], ubiquitously realized in
colloidal and microfluidic systems. This underlying approx-
imation allows for the convenient use of well-established
macroscale descriptions [31].

As in the earlier modeling of AC electro-osmosis [8,32,33],
the initial analysis of Squires and Bazant [9] was carried out
using a linear double-layer model, valid when the zeta potential
is small compared with the thermal voltage [see (3.1)]. Since
the zeta potential is induced by the applied field, this implicitly
implies β � 1, β representing the ratio of the electric-potential
drop on the particle and the thermal voltage [see (3.26)].
The linear scaling of the zeta potential with β suggests in
principle the possibility of attaining large zeta potentials; this
is an attractive feature in engineering applications, as typical
zeta potentials characterizing dielectric solids are difficult to
manipulate and, in any event, are usually comparable with
the thermal voltage. Indeed, with the induced zeta potentials
scaling as β, the resulting ICEO flow scales as β2, supposedly
allowing for much larger velocities than those familiar with
classical electrokinetic phenomena. In addition, the quadratic
dependence upon field strength allows for net fluid motion
even under AC fields [9].

Squires and Bazant [9] have pointed out that the ICEO
mechanism applies to any polarizable solid object, which could
be either metal or dielectric. While this is conceptually true, the
effect of dielectric solid polarization is negligible in the very
thin-double-layer limit considered in Ref. [9]. Indeed, it was
shown by Yossifon et al. [25] that solid polarization becomes
appreciable in that limit only if the ratio of solid-to-electrolyte
dielectric constants is O(1/δ) large, δ(�1) being the ratio
of the Debye thickness to the linear dimension of the solid
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object [27,29,34,35]. For most relevant solids, the permittivity
is actually smaller than that of the fluid. Dielectric-solid
polarization may play a role in certain important problems,
such as the electro-osmotic flow near sharp corners [36,37],
contamination of metal surface [9,38], and electrophoresis
under strong fields [39,40]. Otherwise, within the prevailing
thin-double-layer limit, ICEO is practically associated with
metal surfaces.

With the zeta potential being an induced property, pre-
sumably independent of any surface chemistry, electrokinetic
flows about metal surfaces may appear to hold the promise
of advantageous quantitative predictions, compared to their
counterparts about dielectric surfaces. Remarkably, however,
existing theoretical models have persistently failed to agree
with experimental measurements [15,28,41]. Thus, electro-
osmotic velocities predicted by the standard ICEO model
have always overestimated experimental observations, some-
times by orders of magnitudes [42]. Other trends observed
in experiments, namely, high-frequency flow reversal and
concentration-dependent flow magnitude, are also incompat-
ible with standard ICEO modeling. Similar discrepancies are
ubiquitous in AC electro-osmosis as well [42].

B. Modeling ICEO beyond weak fields

Realizing the inadequacy of the standard ICEO descrip-
tions, Bazant and coworkers [43,44] have focused upon large
zeta potentials, where the Poisson-Nernst-Planck equations
break down due to nondilute effects. Their analysis of these
extreme conditions entails the incorporation of steric effects
and ion-ion correlations. The rational for going to such high
zeta potentials is the scaling of the induced zeta potential
with β. For practical systems, even at mild values of the
applied voltages, this scaling implies extremely high values.
For example, Bazant et al. [43] refer to several volts (about
100 thermal voltages) “applied” to the thin double layer. Such
values are much higher than those characterizing dielectric
materials in contact with electrolytes (a few thermal voltages
at most); if indeed attained in ICEO, there is no question that
the Poisson-Nernst-Planck description would break down.

It is important, however, to note that the zeta-potential
scaling with β is predicted by the original weak-field (β � 1)
ICEO models [45]; by no means is that linear scaling retained
at strong fields β � 1. Since the zeta-potential scaling with β

is unknown at this regime, it is actually unclear whether the
zeta-potential values stipulated by Bazant and coworkers are
indeed realized. Note that it is the applied field magnitude β,
rather than the zeta-potential distribution, which can be directly
controlled in an experiment. The linear scaling existing in weak
fields, effectively rendering the zeta potential a “prescribed”
quantity, is accordingly misleading.

In fact, the presumed linear scaling with β implies moderate
zeta potentials, easily reaching several thermal voltages, at
rather mild applied fields. Under such conditions, surface
conduction is known to affect the leading-order electrokinetic
transport [46]. The standard ICEO model, which has predicted
this very scaling, then breaks down. With the zeta potential
being an induced quantity here, moreover, surface conduction
becomes an inherently nonlinear mechanism.

With an unknown nonlinear dependence of the zeta po-
tential upon β, the logical approach in going beyond weak
fields is to consider those field magnitudes wherein the
induced zeta-potential distribution becomes moderately large.
At this regime, surface conduction necessarily enters the
picture, while the Poisson-Nernst-Planck equations may still
be considered applicable [47]. Analysis of this problem would
help unravel the dependence of the zeta potential upon β

beyond the linear regime. More importantly, systematic ICEO
models that properly account for surface conduction can shed
some light on the disturbing discrepancy between theory and
experiment.

Before attempting to incorporate surface conduction effects
into the ICEO paradigm, it is useful to review the manner
in which it is modeled in the context of dielectric surfaces,
especially when going beyond the linear-response regime.

C. Modeling surface conduction beyond weak fields

The surface conduction mechanism in the thin-double-layer
limit was explained by Dukhin and coworkers [48–52] in
the context of a classical colloid-science problem: weak-
field electrophoresis of dielectric solid particles possess-
ing immobile surface charge. In view of the exponential
Boltzmann distributions existing within thin double layers,
counterion concentration near the surface becomes large even
at moderately large values of the zeta potential. The associated
tangential flux, which normally does not affect the leading-
order transport [53], becomes significant: On a macroscale
description, it appears as an effective surface current. The
nonuniformity of this current then gives rise to a transverse
counterion flux into the electroneutral bulk. The resulting
polarized double-layer structure was reviewed by Derjaguin
and Dukhin [51]. Denoting by ζ the ratio of the particle zeta
potential and the thermal voltage, surface conduction appears
when

e|ζ |/2 ∼ O(δ−1). (1.1)

A systematic analysis of particle electrophoresis using
Dukhin’s ideas was carried out by O’Brien and Hunter [54]
in the thin-double-layer limit δ � 1 (see also Refs. [55–57]).
At low and moderate zeta potentials, when surface conduction
is negligible, O’Brien and Hunter obtain the familiar linear
variation of the electrophoretic mobility with ζ , as predicted
by Smoluchowski [58,59]. At somewhat higher ζ values,
corresponding to (1.1), surface conduction enter the picture
and the linear variation breaks down. These results are
in excellent agreement with the numerical calculations of
O’Brien and White [60], showing a nonmonotonic mobility
dependence upon ζ .

In a later paper, O’Brien [61] derived a macroscale thin-
double-layer description of surface conduction for a generic
geometry, not limited to the spherical-particle configuration.
This approach clarifies the limit process representing the
appearance of surface conduction. Thus, O’Brien [61] has
retained in his small-δ analysis terms which are formally
O(δ) small, but which become O(1) at moderately large ζ ,
as defined by the limit (1.1). This limit can be represented
using a dimensionless group, usually denoted the “Dukhin
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number” [62]; defining that number as

Du = δe|ζ |/2, (1.2)

surface conduction appears when Du becomes O(1).
Following Dukhin’s work, surface conduction has been

modeled in various electrokinetic phenomena, such as electro-
viscous forces [63,64], dielectric enhancement [55,56,65,66],
electrophoresis of nonuniformly charged colloids [67], effec-
tive properties of suspensions [68,69], particle interactions
[70], and mobility approximations [71,72]. More recently,
Khair and Squires have investigated the effects of surface
conduction in a host of problems of current interest, including
patterned surfaces [73], surface-charge discontinuities [74]
(correcting and extending the initial model of Yariv [75]),
and (following Ajdari [76]) combined hydrodynamic and
electrokinetic slip [77].

All of the above-mentioned thin-double-layer analyses
were carried out using the linearized equations appropriate
to weak-field phenomena. When the applied field is not weak
compared with the thermal scale the problem becomes signif-
icantly more complicated. Thus, salt polarization in the bulk,
animated by surface conduction, becomes appreciable, leading
to an inherently nonlinear bulk transport. This complication
also introduces a conceptual difficulty: With a nonuniform bulk
concentration, the zeta-potential distribution is nonuniform
even when the surface-charge density on the dielectric surface
is uniform. Definition (1.2), introduced in the context of
weak-field transport (where ζ represents the leading-order
Debye-layer voltage), thus becomes vague.

In an earlier paper [78] we have presented a generic
asymptotic analysis of electrokinetic flows in the thin-
double-layer limit, not restricted to weak fields. It results
in a macroscale model consisting of approximate differential
equations governing transport in the electroneutral bulk as
well as effective boundary conditions constituting a lumped
representation of the double-layer physics. The analysis in
Ref. [78] is presented in two stages, first addressing moderate
zeta potentials and only then considering the more difficult
case of moderately large potentials [in the sense (1.1)],
where surface conduction appears. The transition is quantified
by identifying a dimensionless Bikerman number which
represents the global appearance of surface conduction. At
weak fields, this number practically coincides with the Dukhin
number (1.2).

In analyzing electrokinetic transport at O(1) Bikerman
numbers, the intuitive procedure used in weak-field analyses,
where asymptotically small terms which change magnitude at
large ζ are retained in the governing equations, was abandoned
in favor of a more systematic approach. Following Hinch
et al. [65], the localization of surface conduction near the solid
was identified with the appearance of a boundary (“Dukhin”)
layer within the Debye layer itself. Separate asymptotic
expansions are accordingly introduced in the electroneutral
bulk, the Debye layer, and the newly identified Dukhin layer,
which turns out to be O(δ2) wide. The derivation of effective
boundary conditions requires asymptotic matching between
these three separate regions.

Our goal here is to construct a comparable macroscale
description of ICEO accounting for surface conduction.

II. SURFACE CONDUCTION IN ICEO

A. Conceptual difficulties

In view of (1.1), surface conduction becomes appreciable
when ζ is comparable with 2 ln δ. Practically, even for very
narrow double layers, this figure is not much greater than
unity. For example, for a Debye thickness of 10 nanometers
and a conducting-object size of 10 μm, where δ = 0.001,
the threshold zeta potential is about 14 thermal voltages. At
larger values of δ (still reasonably within the thin-double-layer
approximation) even more moderate values are predicted.
For δ = 0.1, for example, surface conduction appears at
about 5 thermal voltages. This is barely distinguishable from
“moderate” potentials ζ ∼ O(1).

Now, with typical values of the applied voltages in common
experiments, the stipulated linear scaling of the zeta potential
in that voltage easily leads to the prediction of much larger
zeta potentials [43]. There is no question then that surface
conduction is inherent in virtually any ICEO application.
(Incidentally, this is less so in the classical context of dielectric
surfaces, where typical zeta-potential values, say, 70mV, are
quite mild!) The discrepancy of standard ICEO models with
experiments is therefore hardly surprising. We propose that a
proper understanding of surface-conduction effects at moder-
ately large zeta potentials is essential. As shown in our previous
paper [78], there is a significant interval of the key parameters
representing practical systems within which surface conduc-
tion appears well before nondilute effects are introduced.

The goal of the present paper is accordingly to derive
a macroscale description of ICEO accounting for surface
conduction. This problem introduces new conceptual dif-
ficulties, having to do with the physical modeling of the
metal boundary. Unlike flows about a dielectric colloid, the
zeta-potential distribution about a metal object is an intrinsic
nonequilibrium property. Thus, the procedure of weak-field
linearization about a reference equilibrium state, underlying all
the above-mentioned classical analyses of surface conduction,
is inapplicable.

As indicated in our previous analysis of surface conduction
about a dielectric solid [78], a uniform charge density does not
transform into a uniform zeta potential when going beyond
weak fields. Nonetheless, some linkage does exist on a global
level. Thus, a key feature in [78] is the identification of
a Bikerman number which sensibly quantifies the relative
role of surface conduction even beyond weak fields, where
the zeta potential distribution is inherently nonlinear. In the
preset problem, however, when attempting to analyze ICEO
with surface conduction, with “large zeta potentials” typically
implying a “strong” applied field, the comparable definition
of a global dimensionless number is not as useful. Indeed,
consider the prototypic problem of ICEO flow about a sphere
or a cylinder of zero net charge. Because of the antisymmetric
distribution of the zeta potential along the boundary, the zeta
potential vanishes at the intersection of the solid boundary
with the transverse symmetry plane (normal to the applied
field). Thus, even at sufficiently strong fields where the typical
zeta-potential magnitude is large for surface conduction to
appear, there are always boundary regions where the zeta
potential is small. Moreover, the implied decomposition of the
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boundary to “moderate” and “moderately large” zeta-potential
domains cannot be inferred a priori; rather, it is the outcome
of the very macroscale description we are trying to construct.
This description, in turn, depends upon proper modeling of
surface conduction at those regions where it is appreciable.

With such conceptual difficulties, it is hardly surprising
that the modeling of surface condition in ICEO has remained
an open problem. Certain aspects of the problem have been
addressed in the literature, but only in rather limited contexts.
Thus, Chu and Bazant [46] have analyzed electrochemical
relaxation about conducting bodies but have entirely ignored
the induced flow; not only does this preclude ICEO, it
also results in the omittance of ionic convection, thereby
undermining the attempt to properly model the electrochem-
ical processes when going beyond the weak-field regime.
Gregersen et al. [79] have partially accounted for surface
conduction in their analysis of ICEO flow driven by a
biasing electrode, incorporating charge flux in the macroscale
Neumann condition governing the electric potential. These
authors however employed the ad hoc assumption that the salt
concentration remains uniform. It is well known, however, that,
even at weak-field phenomena [54], the role of salt polarization
is comparable with that of the electric field in affecting global
properties of the electrokinetic transport (e.g., electrophoretic
mobility).

B. Solution scheme

For simplicity, we begin by considering the simple pro-
totypic configuration of a circular metal cylinder, introduced
by Squires and Bazant [9]. Focusing on that simple geometry
allows us to illuminate the fundamental features associated
with the appearance of surface conduction in ICEO. The
generalization of the resulting macroscale model to more com-
plicated geometries, carried out in Sec. VII, is straightforward.
We also limit the discussion to steady ICEO; the generalization
to unsteady flows, in particular those due to AC forcing, is
discussed in Sec. VIII.

As in our earlier study [78] of dielectric surfaces, we begin
by deriving the macroscale model for moderate fields, where
surface conduction is absent. In considering the transition to
stronger fields, we follow a different path than the one we
employed in that study. Thus, we perform a local Debye-scale
analysis about an arbitrary boundary point where the zeta
potential is assumed to be logarithmically large, in the sense
(1.1). The Dukhin number, as defined by (1.2), is employed,
with the understanding that it varies along the boundary (in
a manner which remains to be determined). Following the
methodology of our previous paper [78], the localization of
surface conduction near the boundary is exploited in the local
analysis about a generic boundary point via the introduction
of a Dukhin sublayer.

This novel procedure eventually furnishes effective bound-
ary conditions for two types of boundary points: those on
which the zeta potential is moderate, and those on which it is
(logarithmically) large (either positive or negative). We then
obtain a uniform approximation for these conditions, which
applies over the entire boundary. This allows us to furnish a
complete macroscale model for ICEO beyond weak fields.

While part of the analysis is reminiscent of our pre-
vious paper [78], the conceptual and technical differences
are significant. In particular, with an inherently nonuniform
surface-charge density on the solid boundary, the Dukhin-layer
counterion distribution varies along the boundary, whereby
a diffusive component contributes to the surface-conduction
effect. This is in contrast with the case of a dielectric surface
[78], where the uniform surface charge is essentially screened
by an unpolarized Dukhin layer, and surface conduction is
merely due to electromigration and convection. We have
therefore written the present paper in a self-contained manner.
In the next section we formulate the exactly posed problem
using the standard electrokinetic model. The thin-double-layer
limit is addressed in Sec. IV, wherein asymptotic matching
between the electroneutral bulk and the Debye layer results in
effective boundary conditions for moderate zeta potentials. A
local analysis at moderately large zeta potentials is performed
at Sec. V, providing a different set of effective conditions. A
uniform approximation for the boundary conditions is derived
in Sec. VI. In Sec. VII we recapitulate our macroscale model
and generalize it for arbitrary geometries. We conclude in
Sec. VIII.

III. PROBLEM FORMULATION

Our idealized configuration comprises of an infinitely long
circular cylinder of radius a∗ held fixed in an unbounded fluid
domain. (Dimensional quantities are hereafter decorated by an
asterisk.) The cylinder is made out of metal which is assumed
to be chemically inert; it is free of any net charge. The sur-
rounding fluid is a symmetric electrolyte solution (permittivity
ε∗, viscosity μ∗). The two ionic species are characterized by
the ionic valencies ±Z and diffusivities D∗±. At equilibrium
both species possess an identical ionic concentration c∗. Our
interest is in the steady-state two-dimensional flow, which is
animated by the application of a constant and uniform electric
field E∗ in a direction perpendicular to the cylinder axis.

We employ the dimensionless notation of our previous
paper [78]. Thus, length variables are normalized by a∗, ionic
concentrations by c∗, and electric potentials by the thermal
voltage

ϕ∗ = k∗T ∗

Ze∗ , (3.1)

in which k∗T ∗ is the Boltzmann temperature and e∗ the
elementary charge. Stress variables are normalized by the
Maxwell scale M∗ = ε∗ϕ∗2/a∗2; a balance with viscous
stresses yields the scale u∗ = ε∗ϕ∗2/a∗μ∗ used to normalize
velocity variables. We employ cylindrical coordinates (r,θ )
with r = 0 at the cylinder axis and θ = 0 in the applied-field
direction.

The electrokinetic transport in the fluid is described in terms
of the two ionic concentrations c±, the electric potential ϕ, the
pressure p, and the velocity field

u = êru + êθ v. (3.2)

The molecular ionic fluxes, respectively normalized by
D∗±c∗/a∗, are provided by the constitutive expressions

j± = −∇c± ∓ c±∇ϕ (3.3)
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representing the combined action of of diffusion and electro-
migration. As an alternative to the use of c± one can employ
the average (“salt”) concentration (normalized by c∗) and
volumetric charge density (normalized by 2Ze∗c∗)

c = 1
2 (c+ + c−), q = 1

2 (c+ − c−). (3.4)

Defining the salt flux and current density

j = 1
2 (j+ + j−), i = 1

2 (j+ − j−), (3.5)

we find, using (3.3),

j = −∇c − q∇ϕ, i = −∇q − c∇ϕ. (3.6)

The governing differential equations are as follows:
(1) Ionic conservation,

∇ · (j± + α±c±u) = 0, (3.7)

wherein

α± = ε∗ϕ∗2

μ∗D∗± (3.8)

are the ionic drag coefficients. These coefficients are in-
dependent of both system dimension a∗ and electrolyte
concentration c∗. Moreover, in view of the Stokes-Einstein
relations, they are also independent of the liquid viscosity.
Substitution of typical values (see Ref. [1]) for ionic diffusiv-
ities (≈10−9 m2 s−1) in univalent aqueous solutions at room
temperature (where ϕ∗ ≈ 26 mV, μ∗ ≈ 10−3 kg m−1 s−1, and
ε∗ ≈ 7 × 10−10 kg m s−2 V−2) yields the characteristic value
≈0.5.

(2) Poisson,

q = −δ2∇2ϕ. (3.9)

Here

δ = 1

κ∗a∗ (3.10)

is the dimensionless Debye thickness, wherein the Debye
width 1/κ∗ is defined by

κ∗2 = 2Ze∗c∗

ε∗ϕ∗ . (3.11)

(3) Continuity,

∇ · u = 0, (3.12)

or, explicitly, using (3.2),

1

r

∂

∂r
(ru) + 1

r

∂v

∂θ
= 0. (3.13)

(4) Inhomogeneous Stokes equations, incorporating
Coulomb body forces [using (3.9)],

∇p = ∇2u + ∇2ϕ∇ϕ. (3.14)

Explicitly, the radial and tangential balances respectively
read

∂p

∂r
= ∇2u − 2

r2

∂v

∂θ
+ ∇2ϕ

∂ϕ

∂r
, (3.15)

1

r

∂p

∂θ
= ∇2v + 2

r2

∂u

∂θ
+ 1

r
∇2ϕ

∂ϕ

∂θ
. (3.16)

In view of the continuity equation (3.12), the ionic balances
(3.7) may be written in the more familiar form

∇ · j± + α±u · ∇c± = 0, (3.17)

or, alternatively, using (3.5),

∇ · j + α+ + α−

2
u · ∇c + α+ − α−

2
u · ∇q = 0, (3.18a)

∇ · i + α+ − α−

2
u · ∇c + α+ + α−

2
u · ∇q = 0. (3.18b)

The boundary conditions at the metal-electrolyte interface
r = 1 comprise the following:

(1) Electric-potential continuity,

ϕ = 0 at r = 1, (3.19)

where, with no loss of generality, the uniform value of the
electric potential within the metal is set to zero.

(2) Flow impermeability,

u = 0 at r = 1. (3.20)

(3) No-slip,

v = 0 at r = 1. (3.21)

(4) No-flux,

êr · j± = 0 at r = 1, (3.22)

representing the inability of the electrolyte ions to discharge
on the chemically inert solid metal.

Since the electric field vanishes within the metal, the local
form of Gauss’s law reads

σ = −δ
∂ϕ

∂r
at r = 1, (3.23)

in which σ is the (generally nonuniform) surface-charge
density (normalized by ε∗κ∗ϕ∗) on the metal boundary.
Equation (3.23) does not constitute an additional boundary
condition; rather, it provides σ as a function of θ .

As the cylinder was uncharged to begin with, the no-flux
conditions (3.22), which apply during the transient charging
process, imply that at steady state the net charge (per unit
length) must vanish as well. Equation (3.23) then yields the
“memory” condition ∫

r=1

∂ϕ

∂r
dθ = 0. (3.24)

Last, consider the behavior at large distances from the
cylinder, as r → ∞. The electric field must approach the
externally imposed uniform field,

ϕ ∼ −βr cos θ. (3.25)

Here

β = a∗E∗

ϕ∗ , (3.26)

is the dimensionless magnitude the applied field. In addition,
the ionic concentrations c± approach the equilibrium unity
values, implying that

c → 1, q → 0, (3.27)

and the velocity goes to zero.
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IV. THIN-DOUBLE-LAYER LIMIT

We consider thin double layers, where

δ � 1. (4.1)

Our goal is a leading-order description in that asymptotic
limit. Substitution of (4.1) into (3.9) yields leading-order
electroneutrality, q ≡ 0. The salt and charge balances (3.18)
thus, respectively, read

∇2c = α+ + α−

2
u · ∇c (4.2)

and

∇ · (c∇ϕ) = α+ − α−

2
u · ∇c, (4.3)

while the flow equations (3.12) and (3.14) remain unaltered.
With electroneutrality, the salt flux and current density (3.6)
become

j = −∇c, i = −c∇ϕ, (4.4)

whereby use of (3.5) yields

j+ = −∇c − c∇ϕ, j− = −∇c + c∇ϕ. (4.5)

The preceding description is incompatible with the bound-
ary conditions at r = 1. Indeed, conditions (3.22) imply that
ϕ satisfies an homogenous Neumann condition there, which,
together with the Dirichlet condition (3.19) and the approach
(3.25) to a uniform field, over-specifies the electrostatic prob-
lem. The source of this nonuniformity is rooted in Poisson’s
equation (3.9), where the highest derivative is multiplied by a
small parameter. The limit (4.1) is a singular one.

The electroneutral description (4.2)–(4.5) therefore consti-
tutes an outer “bulk” approximation in the limit (4.1), valid
outside an inner boundary (“Debye”) layer about r = 1. This
conceptual decomposition is made explicit by the introduction
of a “coarse-grained” radial coordinate r̄ which cannot discern
the fine details within the Debye layer. Thus, as opposed to the
literal interface r = 1, the surface r̄ = 1 represents the “outer
edge” of that layer, where asymptotic matching between the
inner and outer regions takes place.

In what follows, we consider the Debye-layer structure.
Once calculated, matching with the bulk fields provides
effective boundary conditions at r̄ = 1. This is the standard
approach in analyzing electrokinetic phenomena in the thin-
double-layer limit [61].

A. Debye layer scaling

The O(δ)-wide Debye layer is resolved by the stretched
inner variable

Z = r − 1

δ
. (4.6)

Assuming O(1) ionic concentrations and electric potential, we
postulate the following asymptotic expansions:

c± = C±(Z,θ ) + · · · , ϕ = �(Z,θ ) + · · · . (4.7)

A similar scaling of the tangential velocity component also
suggests the expansion

v = V (Z,θ ) + · · · . (4.8)

The continuity equation (3.13) in conjunction with the imper-
meability condition (3.20) then implies an O(δ) radial velocity
component,

u = δU (Z,θ ) + · · · . (4.9)

In addition, the large O(δ−3) Coulomb body forces in the
radial-momentum balance (3.15) necessitate an O(δ−2) large
pressure

p = δ−2P (Z,θ ) + · · · . (4.10)

Finally, asymptotic matching suggests O(1) ionic fluxes in the
radial direction

êr · j± = J±
r (Z,θ ) + · · · , (4.11)

whereby the presumed absence of O(δ−1) fluxes implies [see
(3.3) and (4.7)]

− ∂C±

∂Z
∓ C± ∂�

∂Z
= 0. (4.12)

At large Z the Debye-scale variables must match the
corresponding bulk-domain fields. Thus,

� → ϕ, V → v as Z → ∞. (4.13)

Also, in view of leading-order bulk electroneutrality,

C± → c as Z → ∞. (4.14)

Hereafter, bulk-domain variables appearing in equations in-
volving Debye-layer fields are understood to be evaluated at
the effective boundary r̄ = 1 and are accordingly functions of
θ alone. The matching requirement also implies that P , which
represents an asymptotically large O(δ−2) field, must vanish
at large Z, as it matches an O(1) bulk field there:

P → 0 as Z → ∞. (4.15)

For the same reason, we also require

∂�

∂Z
,
∂V

∂Z
→ 0 as Z → ∞. (4.16)

The boundary conditions (3.21)–(3.23) must be rewritten
in terms of the Debye-layer variables. Thus, the conditions
of equipotential surface (3.19), impermeability (3.20), no-slip
(3.21) and no-flux (3.22) now read

� = 0, U = 0, V = 0, J±
r = 0 at Z = 0. (4.17)

In addition, the memory condition (3.24) becomes∫
Z=0

∂�

∂Z
dθ = 0. (4.18)

B. Analysis

Integration of (4.12) in conjunction with the matching
conditions (4.13)–(4.14) provides the Boltzmann distributions

C± = c e∓ (4.19)

wherein

 = � − ϕ (4.20)
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is the “excess” boundary-layer potential relative to the bulk
potential at r̄ = 1. Substitution into Poisson’s equation (3.9)
yields at leading order

∂2

∂Z2
= c sinh . (4.21)

Integration in conjunction with (4.16) yields

∂

∂Z
= −2

√
c sinh



2
. (4.22)

Specifically, in view of (4.17) and (4.20),

∂

∂Z
= 2

√
c sinh

ϕ

2
at Z = 0. (4.23)

The memory condition thus becomes (3.24)∫
r̄=1

√
c sinh

ϕ

2
dθ = 0. (4.24)

With ∂�/∂Z = ∂/∂Z considered known, the pressure
field P is obtained from the leading-order balance of (3.15),

∂P

∂Z
= ∂2�

∂Z2

∂�

∂Z
. (4.25)

Integration in conjunction with (4.13) and (4.15) readily yields

P = 1

2

(
∂

∂Z

)2

. (4.26)

Substitution into the leading-order balance of (3.16) in
conjunction with definition (4.20) then yields

∂2V

∂Z2
= ∂

∂Z

∂2

∂Z ∂θ
− ∂2

∂Z2

(
∂

∂θ
+ ∂ϕ

∂θ

)
. (4.27)

Use of (4.22) allows one integration of this differential
equation (see Ref. [80]),

∂V

∂Z
= −∂

∂Z

∂ϕ

∂θ
− 4√

c

∂c

∂θ
sinh2 

4
, (4.28)

where the constant of integration must vanish in view of (4.16).
Integration of (4.28) from Z to ∞, making use of both (4.13)
and (4.22), yields the profile

v − V = 
∂ϕ

∂θ
− 4

c

∂c

∂θ
ln cosh



4
. (4.29)

Use of conditions (4.17) thus furnishes the slip condition,

v = −ϕ
∂ϕ

∂θ
+ 2 ln

(
1 − tanh2 ϕ

4

)
∂ ln c

∂θ
, (4.30)

consisting of both electro-osmosis and diffuso-osmosis.
Finally, the ion-conservation equations (3.17) read at

O(δ−1)

∂J±
r

∂Z
= 0, (4.31)

implying that J±
r are functions of θ alone. The no-flux

condition [see (4.17)] then yields

J±
r ≡ 0. (4.32)

C. Effective boundary conditions

Asymptotic matching can now be used to obtain effective
boundary conditions governing the bulk fields. The boundary
condition governing the tangential velocity component was
already obtained in (4.30). Since the Debye-layer radial
velocity (4.9) is O(δ), asymptotic matching readily implies
the effective impermeability condition

u = 0 at r̄ = 1. (4.33)

(This explains why we did not bother calculating U .)
Consider now the radial ionic fluxes in the electroneutral

bulk, given by (4.5). Asymptotic matching with the nil Debye-
layer fluxes (4.32) yields

−∂c

∂r̄
− c

∂ϕ

∂r̄
= 0, − ∂c

∂r̄
+ c

∂ϕ

∂r̄
= 0 at r̄ = 1, (4.34)

or, equivalently,

∂ϕ

∂r̄
= 0,

∂c

∂r̄
= 0 at r̄ = 1. (4.35)

The zeta potential ζ is defined in the usual manner as the
Debye-layer voltage, which in the present context means that
[see (4.17) and (4.20)]

ζ = −ϕ, (4.36)

where ϕ is evaluated at r̄ = 1. In view of this simple relation,
there is no benefit here in using ζ as an explicit variable; indeed,
all the effective boundary conditions are here expressed in
terms of ϕ. This is in contrast to the usual practice in analyzing
flows about dielectric surfaces [78], where the zeta potential
is employed as a convenient alternative to the surface-charge
density: a prescribed quantity in such problems.

The present local Debye-layer analysis implicitly entails the
assumption that ζ (= −ϕ) is at most O(1). If that restriction
holds over the entire boundary, it is readily verified that
the trivial solution to the salt-transport problem is c ≡ 1,
whereby the familiar formulation of Squires and Bazant
[9] is recovered. Note, however, that the zeta potential is
an inherently nonuniform induced quantity in the present
problem. Thus, the implicit assumption |ϕ| � O(1) does not
necessarily hold over the entire boundary: Unless the applied
field is weak, there will be boundary regions where the zeta
potential becomes large enough for the present analysis to
locally break down. This is discussed next.

D. Breakdown

Because of surface conduction, the preceding Debye-layer
analysis breaks down at boundary points where the zeta
potential is logarithmically large; see (1.1). In the present
context the zeta potential distribution is given by (4.36) and
is hence inherently nonuniform, implying that the emergence
of surface condition does not take place uniformly over the
boundary. Moreover, since the dependence of ζ upon θ is
unknown a priori, the associated decomposition of the bound-
ary into “moderate” and “moderately large” zeta-potential
domains must be determined as part of the solution scheme.
Remarkably, regardless of how large β is, there are always
regions of the boundary where the local zeta potential is not
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large: it is expected, e.g., that the neighborhood of θ = π/2 is
such a region (see Sec. VII). Thus, unlike our previous analysis
of the electrokinetic transport about a dielectric surface [78],
there is no practical benefit in defining here a dimensionless
Bikerman number which quantifies the global intensity of the
surface conduction mechanism.

Our approach here is a local one. Thus, we consider a
generic boundary point (namely, an angle θ ) about which the
local Dukhin number, as defined by (1.2), is O(1). We then
reanalyze the electrokinetic transport in the adjacent Debye
layer with the goal of deriving effective boundary conditions
which apply at the corresponding macroscale point, namely,
the counterparts of (4.30) and (4.33)–(4.35).

Until stated otherwise, we assume that the local value of ζ

is positive. Once the effective condition corresponding to that
choice are obtained, the comparable description for negative
ζ is readily derived. Thus, we define the local Dukhin number
[cf. (1.2) and (4.36)]

Du = δeζ/2 = δe−ϕ/2 (4.37)

and consider hereafter those points where ζ is logarithmically
large, wherein Du ∼ O(1).

V. LOGARITHMICALLY LARGE ZETA POTENTIALS

When the local value of ζ is moderately large, the Debye-
layer analysis of the previous section breaks down near the
surface. We address this problem following the methodology
of our previous paper [78], introducing within the Debye
layer a new boundary layer adjacent to the surface: the
Dukhin sublayer. With cationic density scaling as eζ near the
surface [see (4.19)], Poisson’s equation implies a region of
width δe−ζ/2(� δ) wherein surface conduction is localized.
Since surface conduction affects leading-order transport when
eζ/2 is comparable to 1/δ [see (1.1)], we postulate that the
thickness of the new sublayer is O(δ2). The O(δ)-wide Debye
layer is redefined by excluding from it the Dukhin layer.
With this asymptotic paradigm, the Debye-layer analysis of
Sec. IV remains valid, except for those results obtained using
boundary conditions at Z = 0: In the present scheme, the
boundary conditions describing the metal-electrolyte interface
apply at a surface which is no longer part of the Debye
layer.

Our multiscale approach results in two major modifications
to the effective boundary conditions. The first has to do with
evaluation of tangential velocity V . While (4.29) remains valid,
the slip condition (4.30) prescribing v needs in principle to be
reconsidered, as it hinges upon the no-slip condition. Thus, the
unknown bulk velocity v remains as an integration constant in
(4.29). It is to be determined by asymptotic matching with the
Dukhin sublayer.

The second modification is more important and has to do
with the radial ionic fluxes. As equations (4.31) retain their
validity, J±

r are still functions of θ alone. However, conditions
(4.32), derived using the no-flux condition at Z = 0, are
expected to break down. In the present paradigm, the values of
J±

r at a given θ must be determined by asymptotic matching
with the Dukhin layer. This is where the main effect of surface
conduction is manifested.

A. Dukhin-layer formulation

We define the Dukhin-layer transverse coordinate [cf. (4.6)]

Z̃ = r − 1

δ2
= Z

δ
, (5.1)

and analyze the near-boundary region Z̃ ∼ O(1). In view of
the Boltzmann distributions (4.19) and the scaling (1.1), it is
anticipated that the anionic concentration in the sublayer is
O(δ−2)

c− = δ−2C̃−(Z̃,θ ) + · · · , (5.2)

while the cation concentration is O(δ2). Since the electric
potential is only logarithmically large in δ, it is considered as
O(1) in expansion in powers of δ (see Ref. [81]):

ϕ = �̃(Z̃,θ ) + · · · . (5.3)

The radial momentum balance (3.15) suggests an O(δ−4) large
pressure in the sublayer,

p = δ−4P̃ (Z̃,θ ) + · · · . (5.4)

We still postulate O(1) tangential velocities

v = Ṽ (Z̃,θ ) + · · · , (5.5)

whereby the continuity equation (3.13) and the impermeability
condition (3.21) in conjunction with the scaling (5.1) imply an
O(δ2) normal velocity,

u = δ2Ũ (Z̃,θ ) + · · · . (5.6)

Last, consider the anionic fluxes. The requirement of match-
ing with the Debye-layer radial flux suggests a comparable
O(1) magnitude in the Dukhin sublayer:

êr · j− = J̃−
r (Z̃,θ ) + · · · . (5.7)

On the other hand, as the large anionic concentration (5.2) sug-
gests O(δ−2) fluxes in the tangential directions, we postulate

êθ · j− = δ−2J̃−
θ (Z̃,θ ) + · · · , (5.8)

wherein [see (3.3)]

J̃−
θ = −∂C̃−

∂θ
+ C̃− ∂�̃

∂θ
. (5.9)

The boundary conditions on the metal surface apply now to
the sublayer fields. Conditions (4.17) are accordingly replaced
by

�̃ = 0, Ũ = 0, Ṽ = 0, J̃−
r = 0 at Z̃ = 0. (5.10)

In addition, at large Z̃ the Dukhin-layer fields must match the
small-Z expansions of the corresponding Debye-layer fields.
The memory condition (3.24) is not addressed at this point,
as it entails the entire boundary: The local analysis presented
herein applies (at most) to part of it.

B. Dukhin-layer analysis

Since the radial anionic flux in the radial direction are
presumed O(1) [see (5.7)], the term

− ∂C̃−

∂Z̃
+ C̃− ∂�̃

∂Z̃
, (5.11)
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representing an O(δ−4) flux, must vanish; this results in the
Boltzmann distribution

C̃− = c Du2e�̃ (5.12)

wherein matching with the Debye-layer fields has been
accounted for using both (4.19) and definition (4.37). [As
in the preceding Debye-layer analyses, bulk-scale variables
appearing in boundary-layer equations are understood to be
evaluated at the macroscale boundary r̄ = 1.] Substitution of
(5.12) into (5.9) yields the tangential anionic flux,

J̃−
θ = −e�̃ d

dθ
(c Du2), (5.13)

consisting of both diffusion and electromigration contribu-
tions.

Consider now Poisson’s equation (3.9) at leading O(δ−4).
In this asymptotic order the electric potential is affected only
by the counterions,

2
∂2�̃

∂Z̃2
= C̃−

−2. (5.14)

Substitution of (5.12) followed by integration yields
(

∂�̃

∂Z̃

)2

= c Du2e�̃ + B(θ ). (5.15)

Since ∂�̃/∂Z̃ and e�̃ are respectively proportional to the
O(δ−2) transverse electric field and anionic concentration
within the Dukhin layer, they must decay at large Z̃ due to
the different scaling of these variables in the Debye layer.
Thus, the integration constant B must vanish. Since the radial
electric field is positive, we then obtain

∂�̃

∂Z̃
= −c1/2 Du e�̃/2. (5.16)

Integration in conjunction with (5.10) yields the excess
potential

�̃ = 2 ln
2

2 + c1/2 Du Z̃
, (5.17)

from which (5.12) yields the counterion concentration

C̃− = 4c Du2

(2 + c1/2 Du Z̃)2
. (5.18)

Note that �̃ behaves as ln Z̃ at large Z̃, while C̃− decays there
as Z̃−2.

Consider now the leading O(δ−5) balance of the radial
Stokes equation (3.15),

∂P̃−4

∂Z̃
= ∂2�̃

∂Z̃2

∂�̃

∂Z̃
. (5.19)

Integration followed by asymptotic matching yields

P̃−4 = 1

2

(
∂�̃

∂Z̃

)2

. (5.20)

Substitution of both (5.16) and (5.20) into the leading O(δ−4)
balance of the tangential Stokes equation (3.16) yields

∂2Ṽ

∂Z̃2
= −e�̃/2 ∂�̃

∂Z̃

d

dθ
(c1/2 Du). (5.21)

A single integration gives

∂Ṽ

∂Z̃
= −2e�̃/2 d

dθ
(c1/2 Du), (5.22)

where the integration constant must vanish by the requirement
of asymptotic matching. A subsequent integration using (5.16)
yields

Ṽ = 2�̃
d

dθ
ln(c1/2 Du) (5.23)

where the integration constant again vanishes, now because of
the no-slip and equipotential boundary conditions; see (5.10).
Note that Ṽ possesses the same dependence upon Z̃ as does
�̃; specifically, at large Z̃ it behaves as ln Z̃. From the leading
O(1) balance of the continuity equation (3.13)

∂Ũ

∂Z̃
+ ∂Ṽ

∂θ
= 0, (5.24)

it then follows that Ũ diverges as Z̃ ln Z̃ at large Z̃.
Last, consider the leading O(δ−2) anionic balance [see

(3.17)]:

∂J̃−
r

∂Z̃
+ ∂J̃−

θ

∂θ
+ α−

(
Ũ

∂C̃−

∂Z̃
+ Ṽ

∂C̃−

∂θ

)
= 0. (5.25)

Integration over Z̃ in conjunction with (5.10) yields

−J̃−
r (Z̃ → ∞) = d

dθ

∫ ∞

0
J̃−

θ dZ̃

+α−
∫ ∞

0

(
Ũ

∂C̃−

∂Z̃
+ Ṽ

∂C̃−

∂θ

)
dZ̃,

(5.26)

where we have interchanged the order of radial integration and
tangential differentiation in the first term on the right-hand
side. Substitution of (5.17) into (5.13) followed by integration
yields for this term

− 4
d2

dθ2
(c1/2 Du). (5.27)

Making use of the leading-order continuity equation (5.24)
and integration by parts yields for the second term on the
right-hand side of (5.26)

α−
∫ ∞

0

∂

∂θ
(C̃−Ṽ ) dZ̃ = α− d

dθ

∫ ∞

0
C̃−Ṽ dZ̃,

where use has been made of both the impermeability condition
[see (5.10)] and the large-Z̃ decay of C̃−Ṽ . Substitution
of (5.17)–(5.18) and (5.23) followed by integration over Z̃

eventually yields for this term

− 8α− d2

dθ2
(c1/2 Du). (5.28)

Substitution of (5.27)–(5.28) into (5.26) furnishes the
counterion flux at the outer edge of the Dukhin layer

J̃−
r (Z̃ → ∞) = 4(1 + 2α−)

d2

dθ2
(c1/2 Du). (5.29)

Because of the asymptotically small cationic concentration, it
is evident that the comparable O(1) cationic flux vanishes.
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C. Effective boundary conditions

With the Dukhin-layer fields known, we can now obtain the
effective boundary conditions which locally represent a Debye
layer of (positive) large zeta potential. Because the Debye-
layer scaling (4.7)–(4.11) remains intact, the impermeability
condition (4.33) is unaffected. The slip condition (4.30) is,
however, modified. Thus, asymptotic matching between (5.23)
and (4.29) yields

v = (4 ln 2 + ϕ)
∂

∂θ
ln c − ϕ

∂ϕ

∂θ
at r̄ = 1. (5.30)

Inspection reveals that (5.30) is simply the large-ϕ (i.e., large-
ζ ) limit of (4.30).

More importantly, consider the O(1) ionic fluxes in the
radial direction. For positive ζ the anionic flux at the outer edge
of the Dukhin layer is provided by (5.29), while the comparable
cationic flux vanishes. These fluxes should match their
Debye-layer counterparts, which are transversely uniform;
see (4.31). This implies that the Dukhin-layer fluxes can
be matched directly with those in the bulk. Using (4.5) we
therefore obtain at r̄ = 1

−∂c

∂r̄
− c

∂ϕ

∂r̄
= 0, (5.31a)

−∂c

∂r̄
+ c

∂ϕ

∂r̄
= 2(1 + 2α−)

d2

dθ2
(c1/2Du), (5.31b)

replacing (4.34). The inhomogeneous condition (5.31b) rep-
resents the emergence of surface conduction, unaccounted by
the moderate-zeta-potential model.

D. Negative zeta potentials

The appropriate conditions for large but negative zeta
potentials, where the roles of cations and anions are in-
terchanged, are readily obtained. In the Dukhin layer, the
cationic concentration is now O(δ−2) large, while the anionic
concentration is small. Equation (5.16) becomes

∂�̃

∂Z̃
= c1/2 Du e−�̃/2, (5.32)

wherein the local Dukhin number is redefined as [see (1.2) and
(4.37)]

Du = δeϕ/2. (5.33)

The transverse cationic flux is O(1) [cf. (5.7)]

êr · j+ = J̃+
r (Z̃,θ ) + · · · (5.34)

wherein [cf. (5.29)]

J̃+
r (Z̃ → ∞) = 4(1 + 2α+)

d2

dθ2
(c1/2Du). (5.35)

The anionic flux vanishes at that order.
With the modifications in the Dukhin-layer fields, the slip

condition (5.30) is replaced by

v = (4 ln 2 − ϕ)
∂

∂θ
ln c − ϕ

∂ϕ

∂θ
, (5.36)

and (5.31) are replaced by

−∂c

∂r̄
− c

∂ϕ

∂r̄
= 2(1 + 2α+)

d2

dθ2
(c1/2Du), (5.37a)

−∂c

∂r̄
+ c

∂ϕ

∂r̄
= 0. (5.37b)

VI. UNIFORM APPROXIMATION FOR EFFECTIVE
BOUNDARY CONDITIONS

At this stage we have at our possession effective boundary
conditions for boundary regions where the zeta potential is
moderate, as well as comparable conditions for the comple-
mentary regions where the (positive or negative) ζ value is
logarithmically large. Of course, the decomposition of the
boundary into these different regions is unknown a priori: It
is determined by the solution to the electrokinetic problem,
which in turn depends upon proper use of the effective
boundary conditions.

This paradigmatic circular obstacle is circumvented via use
of uniform asymptotic approximations (see Ref. [82]) for the
effective conditions, valid at all ζ values (and hence for all
boundary points) [83].

Since (5.30) and (5.36) are simply the appropriate
extrapolations of (4.30) for the respective cases of positive
and negative large zeta potentials, it is evident that (4.30)
constitutes a uniform approximation for the slip.

To obtain comparable uniform condition governing c and
ϕ, we simply employ (5.29), derived for large and positive zeta
potential, for the anionic flux, regardless of the zeta-potential
value. Similarly, we uniformly employ (5.35)—derived for
large and negative zeta potential—for the cationic flux. Using
(4.37) and (5.33) thus yields

−∂c

∂r̄
− c

∂ϕ

∂r̄
= 2δ(1 + 2α+)

d2

dθ2
(c1/2eϕ/2), (6.1a)

−∂c

∂r̄
+ c

∂ϕ

∂r̄
= 2δ(1 + 2α−)

d2

dθ2
(c1/2e−ϕ/2). (6.1b)

For ζ large and positive the cationic flux is exponentially
small, and we recover (5.31). For ζ large and negative, the
anionic flux is exponentially small and we recover (5.37).
If ζ is moderate, both fluxes are O(δ), and we recover the
homogenous conditions (4.34).

In addition to conditions (6.1) we also employ the
memory condition (4.24), originally derived for moderate
zeta potentials. Indeed, use of (5.16) and (4.37) reveals that
(4.23) provides a leading-order approximation for the radial
electric field at the surface even at large and positive zeta
potential. Similarly, use of (5.32) and (5.33) reveals that (4.23)
provides a leading-order approximation for the radial electric
field at the surface even at large and negative zeta potential.

VII. RECAPITULATION

A. ICEO flow about a cylinder

For easy reference, we recapitulate here the entire
macroscale model describing the thin-double-layer limit δ �
1. We focus upon the case of equal ionic diffusivities, where
α± are identical, equal, say to α [see (3.8)]. For brevity we also
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omit the bar decoration from the coarse-grained radial coordi-
nate; since only the macroscale model is addressed hereafter,
no confusion should arise. Our macroscale model governs
the salt concentration c, electric potential ϕ, velocity field
u = êru + êθ v and pressure field p within the electroneutral
bulk. It comprises the following:

(1) Differential equations:

∇2c = αu · ∇c, (7.1)

∇ · (c∇ϕ) = 0, (7.2)

∇ · u = 0, (7.3)

∇p = ∇2u + ∇2ϕ∇ϕ. (7.4)

(2) Boundary conditions on the effective boundary r = 1,
consisting of the impermeability

u = 0 (7.5)

and slip

v = −ϕ
∂ϕ

∂θ
+ 2 ln

(
1 − tanh2 ϕ

4

)
∂ ln c

∂θ
(7.6)

conditions, together with the inhomogeneous Neumann-type
conditions [cf. (4.35)]

∂c

∂r
= −4δ(1 + 2α)

∂2

∂θ2

(
c1/2 cosh

ϕ

2

)
, (7.7)

c
∂ϕ

∂r
= −4δ(1 + 2α)

∂2

∂θ2

(
c1/2 sinh

ϕ

2

)
, (7.8)

obtained via respective addition and subtraction of (6.1).
(3) Far-field conditions at r → ∞, consisting of the

required approach to a uniform electric field

∇ϕ → −β ı̂, (7.9)

velocity decay

u → 0, (7.10)

and the approach to the equilibrium salt concentration,

c → 1. (7.11)

(4) Memory condition,∫
r=1

c1/2 sinh
ϕ

2
dθ = 0. (7.12)

The problem prescribed by (7.1)–(7.12) is coupled and
highly nonlinear. No closed-form solution seems to be
available. Nonetheless, certain symmetry properties may be
deduced. It is readily verified that c, p, and u are even
functions of x = r cos θ while ϕ and v are odd functions of x.
The charge-invariance condition (7.12) is then automatically
satisfied. With ϕ vanishing along the transverse symmetry
plane x = 0 (where θ = ±π/2), it becomes evident that even
for large β there are always boundary regions where the zeta
potential −ϕ is moderate.

B. Arbitrary geometry

It is straightforward to generalize the macroscale model
to an arbitrary geometry, where the boundary of the metal
object (still assumed fixed) is described in terms of the unit
normal vector n̂ pointing into the fluid. Conditions (7.5)–
(7.8) are replaced by the following conditions, written in an

invariant notation:

u = −ϕ∇sϕ + 2 ln

(
1 − tanh2 ϕ

4

)
∇s ln c, (7.13)

∂c

∂n
= −4δ(1 + 2α)∇2

s

(
c1/2 cosh

ϕ

2

)
, (7.14)

c
∂ϕ

∂n
= −4δ(1 + 2α)∇2

s

(
c1/2 sinh

ϕ

2

)
. (7.15)

Here ∇s = (I − n̂n̂) · ∇ is the surface gradient operator (in
which I is the idemfactor), ∇2

s is the surface Laplacian, and
∂/∂n = n̂ · ∇. The memory condition (7.12) is replaced by∫

s

c1/2 sinh
ϕ

2
dA = 0, (7.16)

in which dA is a differential area element, normalized by a∗2.
The appearance of δ(� 1) in the boundary conditions (7.14)

and (7.15) is an artifact of the use of uniform asymptotic
approximations; see Sec. VI. While δ is asymptotically small,
it multiples terms that become O(1/δ) for moderately large β

values, of order 2 ln δ.
Fundamentally the electric potential is determined only up

to an additive constant. It may therefore seem surprising that
conditions (7.13)–(7.15) are not invariant to the transformation
ϕ → ϕ + constant. Note, however, that the arbitrariness in ϕ

has already been exploited in the microscale analysis, where
the potential of the metal was conveniently set to zero [see
(3.19)]. The consequent uniqueness of ϕ is conveyed to the
macroscale description through memory condition (7.16). In
the case of a fore-aft symmetric shape, like a cylinder, this
necessitates that ϕ is an odd function of x.

VIII. CONCLUDING REMARKS

Starting from the standard microscale electrokinetic
description, we have derived a macroscale model governing
ICEO flows about metal objects, valid beyond moderately
applied fields. At this regime, where the zeta potential
distribution is characterized by values exceeding the thermal
voltage, surface conduction affects the leading-order transport
processes.

Incorporating surface conduction in ICEO modeling is
not straightforward. The traditional linearization approach
of colloidal science entails a weak field that acts upon the
Debye cloud associated with an essentially uniform zeta
potential distribution, of moderately large magnitude. In ICEO,
this weak-field approach is evidently irrelevant: As the zeta
potential distribution is induced by the applied field, large zeta
potentials go together with strong fields.

In analyzing the present highly nonlinear problem we
have followed the approach of our recent paper [78] where
a macroscale model was developed for electro-osmotic flow
about a highly charged dielectric solid without the weak field
limitation. Even that approach can only be partially applied.
Thus, the derivation [78] is facilitated by the identification
of a dimensionless Bikerman number which represents the
global role of surface conduction (and which degenerates
to a Dukhin number in the weak-field limit, where the zeta
potential becomes uniform). In ICEO, where the surface-
charge distribution is polarized, the comparable definition of
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a dimensionless number does not appear to be as useful in the
subsequent analysis.

We have therefore adopted a complementary paradigm,
where the Dukhin number Du was interpreted as a local
dimensionless group which varies along the liquid-metal
interface. The Debye layer adjacent to any generic point on that
interface has been treated according to two possible scenarios,
corresponding to small Du (moderate zeta potential) or
moderate Du (logarithmically large zeta potential). The former
leads to the familiar boundary conditions of thin-double-layer
electrokinetics [53]. The latter, involving surface conduction,
results in different boundary conditions. Following [78], the
derivation of these conditions is facilitated by a separate
analysis of the Dukhin sublayer, formed adjacent to the
interface, where surface conduction is localized.

With the zeta potential being an inherently induced quantity,
the asymptotic decomposition of the boundary into the
moderate- and large-ζ regions, where the effective boundary
conditions differ, is a priori unknown and must be determined
as part of the solution of the macroscale problem. Proper
formulation of this problem, on the other hand, relies upon
the appropriate use of these very conditions. This obstacle is
overcome via the construction of a uniform approximation for
the effective conditions, valid along the entire boundary.

The resulting model readily clarifies the transition to
moderately large fields where surface conduction is appre-
ciable. Indeed, consider the case of small β, where ϕ is
O(β). The surface conduction mechanism, represented by the
right-hand-sides of (7.14) and (7.15), is O(δ) small. Thus,
c − 1 satisfies a homogenous linear problem whose solution
is trivial, giving c ≡ 1. With a uniform salt concentration,
we recover the problem solved by Squires and Bazant [9].
The electric potential becomes harmonic, with the solution
ϕ = −β (r + 1/r) cos θ , where the integration constant must
vanish by the fore-aft antisymmetry of ϕ [or, equivalently, by
(7.12)]. Note that the maximum absolute value of the zeta
potential −ϕ over the cylinder boundary is 2β. This implies
that it is actually not necessary that β be small for the preceding
solution to apply. Indeed, it readily follows from (7.14) and
(7.15) that the surface conduction mechanism is negligible if

δeβ � 1. (8.1)

Since this is the only approximation made in solving (7.1)–
(7.12), the solution given by the standard ICEO model is valid
provided β � ln δ. Criterion (8.1) suggests that the present
counterpart to the Bikerman number of Ref. [78] is δeβ .

For β ∼ O(ln δ), practically meaning O(1) β values,
surface conduction enters the picture. The macroscale model
derived herein allows for the first time to analyze the resulting
ICEO flows. Note that the β values characterizing most prac-
tical systems may actually be quite large. Nonetheless, since
the macroscale manifestation of surface conduction typically
represents a negative feedback mechanism, we anticipate that
the resulting salt polarization would be such as to maintain the
zeta-potential distribution comparable to the thermal voltage,
even for β � 1. If that is indeed the case, dilute systems (in
the sense of Fig. 5 in Ref. [78]) are adequately described by
the standard Poisson-Nernst-Planck equations even at very
large β values; the present macroscale model is then rather
robust. This speculation of slowly growing (or even bounded)
zeta-potential magnitude can only be confirmed by a numerical
solution of our model. We are currently pursuing this route.
Thus, preliminary numerical simulations of our macroscale
equations at moderate field values, up to about β ≈ 6, indicate
that the linear zeta-potential scaling with β breaks down; the
dependence of the typical flow magnitude upon β exhibits an
inflection point, representing a transition from the convex β2

dependence to a concave one.
In view of the complexity of the surface-conduction

mechanism, we have confined the present analysis to DC
fields, where the electrokinetic transport is steady. A desirable
extension of our analysis should then address the more general
scenario of time-dependent fields. Practically speaking, most
experimental realizations of ICEO are carried out under AC
fields [15]. Moreover, time-dependent fields are inherent in
“AC electro-osmosis,” where the metal object on which the
electro-osmotic slip occurs is also the electric-field driver [8].
Such an extension may be quite challenging. Indeed, even
in one-dimensional analyses of electrochemical cells, where
neither flow nor surface conduction are present, the nonlinear
double-layer capacitance leads to multi-time-scale dynamics
under AC forcing [84] accompanied by a diffusive boundary
layer where salt relaxation takes place. A rigorous attempt
to analyze time-dependent ICEO may therefore require the
simultaneous analysis of at least four different asymptotic
domains.
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(Barth-Verlag, Leipzig, 1921).

[60] R. W. O’Brien and L. R. White, J. Chem. Soc., Faraday Trans.
74, 1607 (1978).

[61] R. W. O’Brien, J. Colloid Interface Sci. 92, 204 (1983).
[62] J. Lyklema, Fundamentals of Interface and Colloid Science,

Vol. II (Academic, New York, 1995).
[63] J. D. Sherwood, J. Fluid Mech. 101, 609 (1980).
[64] E. J. Hinch and J. D. Sherwood, J. Fluid Mech. 132, 337 (1983).
[65] E. J. Hinch, J. D. Sherwood, W. C. Chew, and P. N. Sen, J. Chem.

Soc., Faraday Trans. 2 80, 535 (1984).
[66] J. Kijlstra, H. P. van Leeuwen, and J. Lyklema, J. Chem. Soc.,

Faraday Trans. 88, 3441 (1992).
[67] Y. E. Solomentsev, Y. Pawar, and J. Anderson, J. Colloid

Interface Sci. 158, 1 (1993).
[68] S. Y. Kang and A. S. Sangani, J. Colloid Interface Sci. 165, 195

(1994).
[69] H. J. Keh and W. T. Hsu, Colloid Polym. Sci. 280, 922 (2002).
[70] H. J. Tu and H. J. Keh, J. Colloid Interface Sci. 231, 265 (2000).
[71] H. Ohshima, J. Colloid Interface Sci. 263, 337 (2003).
[72] H. Ohshima, J. Colloid Interface Sci. 275, 665 (2004).
[73] A. S. Khair and T. M. Squires, Phys. Fluids 20, 087102 (2008).
[74] A. S. Khair and T. M. Squires, J. Fluid Mech. 615, 323 (2008).
[75] E. Yariv, J. Fluid Mech. 521, 181 (2004).
[76] A. Ajdari and L. Bocquet, Phys. Rev. Lett. 96, 186102 (2006).
[77] A. S. Khair and T. M. Squires, Phys. Fluids 21, 042001 (2009).
[78] O. Schnitzer and E. Yariv, Phys. Rev. E 86, 021503 (2012).
[79] M. M. Gregersen, M. B. Andersen, G. Soni, C. Meinhart, and

H. Bruus, Phys. Rev. E 79, 066316 (2009).
[80] B. Zaltzman and I. Rubinstein, J. Fluid Mech. 579, 173 (2007).

061506-13

http://dx.doi.org/10.1016/j.cocis.2010.01.005
http://dx.doi.org/10.1016/j.cocis.2010.01.005
http://dx.doi.org/10.1103/PhysRevLett.92.066101
http://dx.doi.org/10.1103/PhysRevLett.92.066101
http://dx.doi.org/10.1016/j.colsurfa.2005.06.050
http://dx.doi.org/10.1063/1.1900823
http://dx.doi.org/10.1017/S0022112006000371
http://dx.doi.org/10.1039/b608092h
http://dx.doi.org/10.1088/1367-2630/11/7/075019
http://dx.doi.org/10.1088/1367-2630/11/7/075019
http://dx.doi.org/10.1103/PhysRevE.75.066217
http://dx.doi.org/10.1039/b717416k
http://dx.doi.org/10.1109/JMEMS.2008.2010849
http://dx.doi.org/10.1109/JMEMS.2008.2010849
http://dx.doi.org/10.1063/1.3167279
http://dx.doi.org/10.1063/1.3167279
http://dx.doi.org/10.1103/PhysRevE.81.036306
http://dx.doi.org/10.1063/1.2746847
http://dx.doi.org/10.1063/1.2746847
http://dx.doi.org/10.1103/PhysRevE.75.011503
http://dx.doi.org/10.1017/S0022112008003327
http://dx.doi.org/10.1103/PhysRevLett.100.058302
http://dx.doi.org/10.1103/PhysRevLett.100.058302
http://dx.doi.org/10.1063/1.3677675
http://dx.doi.org/10.1063/1.3677675
http://dx.doi.org/10.1017/S002211208500132X
http://dx.doi.org/10.1103/PhysRevE.61.4019
http://dx.doi.org/10.1103/PhysRevE.61.R45
http://dx.doi.org/10.1017/S002211200800459X
http://dx.doi.org/10.1017/S002211200800459X
http://dx.doi.org/10.1063/1.3431695
http://dx.doi.org/10.1063/1.1519530
http://dx.doi.org/10.1063/1.2391701
http://dx.doi.org/10.1063/1.2391701
http://dx.doi.org/10.1103/PhysRevLett.104.088301
http://dx.doi.org/10.1103/PhysRevLett.104.088301
http://dx.doi.org/10.1017/jfm.2012.161
http://dx.doi.org/10.1063/1.4748967
http://dx.doi.org/10.1039/b906909g
http://dx.doi.org/10.1016/j.cis.2009.10.001
http://dx.doi.org/10.1016/j.cis.2009.10.001
http://dx.doi.org/10.1088/1367-2630/11/7/075016
http://dx.doi.org/10.1088/1367-2630/11/7/075016
http://dx.doi.org/10.1016/j.cocis.2010.01.003
http://dx.doi.org/10.1016/j.cocis.2010.01.003
http://dx.doi.org/10.1103/PhysRevE.74.011501
http://dx.doi.org/10.1080/00986440903076590
http://dx.doi.org/10.1139/v81-280
http://dx.doi.org/10.1063/1.444838
http://dx.doi.org/10.1063/1.447239
http://dx.doi.org/10.1002/aic.690330707
http://dx.doi.org/10.1039/f29787401607
http://dx.doi.org/10.1039/f29787401607
http://dx.doi.org/10.1016/0021-9797(83)90129-7
http://dx.doi.org/10.1017/S0022112080001826
http://dx.doi.org/10.1017/S0022112083001640
http://dx.doi.org/10.1039/f29848000535
http://dx.doi.org/10.1039/f29848000535
http://dx.doi.org/10.1039/ft9928803441
http://dx.doi.org/10.1039/ft9928803441
http://dx.doi.org/10.1006/jcis.1993.1221
http://dx.doi.org/10.1006/jcis.1993.1221
http://dx.doi.org/10.1006/jcis.1994.1220
http://dx.doi.org/10.1006/jcis.1994.1220
http://dx.doi.org/10.1007/s00396-002-0709-9
http://dx.doi.org/10.1006/jcis.2000.7145
http://dx.doi.org/10.1016/S0021-9797(03)00280-7
http://dx.doi.org/10.1016/j.jcis.2004.02.078
http://dx.doi.org/10.1063/1.2963507
http://dx.doi.org/10.1017/S002211200800390X
http://dx.doi.org/10.1017/S0022112004001892
http://dx.doi.org/10.1103/PhysRevLett.96.186102
http://dx.doi.org/10.1063/1.3116664
http://dx.doi.org/10.1103/PhysRevE.86.021503
http://dx.doi.org/10.1103/PhysRevE.79.066316
http://dx.doi.org/10.1017/S0022112007004880


ORY SCHNITZER AND EHUD YARIV PHYSICAL REVIEW E 86, 061506 (2012)

[81] E. J. Hinch, Perturbation Methods (Cambridge University Press,
Cambridge, 1991).

[82] C. Bender and S. Orszag, Advanced Mathematical Methods for
Scientists and Engineers (McGraw-Hill, New York, 1978).

[83] Such uniform approximations, applying to all boundary points,
should not be confused with uniform approximations about a
specific boundary point where ζ is large, describing both the
Debye- and Dukhin-layer fields. The latter have been derived in

our previous analysis of dielectric surfaces [78] with the purpose
of emphasizing the universal structure of the Dukhin-layer fields.

[84] L. Højgaard Olesen, M. Z. Bazant, and H. Bruus, Phys. Rev. E
82, 011501 (2010).

[85] H. Zhao and H. H. Bau, Langmuir 23, 4053 (2007).
[86] E. Yariv and T. Miloh, J. Fluid Mech. 595, 163 (2008).
[87] M. Abu Hamed and E. Yariv, J. Fluid Mech 627, 341 (2010).
[88] E. Yariv, Europhys. Lett. 82, 54004 (2008).

061506-14

http://dx.doi.org/10.1103/PhysRevE.82.011501
http://dx.doi.org/10.1103/PhysRevE.82.011501
http://dx.doi.org/10.1021/la063224p
http://dx.doi.org/10.1017/S0022112007009196
http://dx.doi.org/10.1017/S0022112009005965
http://dx.doi.org/10.1209/0295-5075/82/54004



