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Possible origin of the crack pattern in deposition films formed from a drying colloidal suspension
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The fracture mechanics was usually employed to explain the crack propagation in the deposition produced
by drying colloidal suspension. However, more complex than conventional fracture, those cracks periodically
distribute and make up a unique pattern. Inspired by the concept of spinodal decomposition, here we develop the
theory to illustrate the possible mechanism of the spatial arrangement of the cracks. It indicates that before the
cracks develop and propagate in the deposition under the law of fracture mechanics, the periodically distributed
flaws are generated by the phase separation of colloidal clusters and solvent. Then the cracks originate at the sites
of those flaws in terms of fracture mechanics. It concludes that the crack spacing results from the wavelength of
the concentration fluctuation during the phase separation, linearly growing with the increase of the deposition
thickness and initial particle concentration, which is consistent with experimental results.
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I. INTRODUCTION

Colloidal depositions formed by drying suspension ubiq-
uitously occur in both nature and technological application.
Cracks widely exist in those depositions, which greatly limits
and lowers their practical purposes. More elusive than ordinary
cracks in routine materials, cracks in colloidal deposition
periodically distribute and divide the two-dimensional (2D)
deposit into uniform domains. These cracks separated by a
distance make up the array pattern, which can be characterized
by the wavelength (crack spacing) [1–5].

Crack patterns displayed versatile morphologies under var-
ious experimental conditions. With directional drying aqueous
suspensions of silica, the pattern constituted by parallel cracks
formed [6,7]. Okubo et al. demonstrated a spokelike crack
pattern by drying a suspension of silica or polystyrene spheres
[3,4]. A polygon pattern of cracks in the dried deposition
was produced after evaporating starch slurry [1,5]. Shorlin
et al. studied crack patterns formed by drying a thin layer of
alumina-water slurry. The weblike crack pattern was generated
from isotropic drying, whereas the parallel longitudinal pattern
emerged on the condition of directional drying [2].

The fracture mechanics was employed to analyze the crack
propagation [6–9]. Allain and Limat developed a model to
suggest that the competition of the relaxation and increase of
stress results in the regular crack spacing [7]. Tirumkudulu and
Russel studied the cracks in the dried latex films, and found
the scaling law of critical stresses derived from the concept
of classical Griffith’s energy balance [8]. The dynamics of
crack propagation in silica gel was studied by linear elastic
fracture mechanics. It was shown that the stress was released
by the formation of cracks as it surpassed a threshold value [9].
Dufresne et al. worked on the dynamics fracture in dried silica
films and discovered that the crack propagation was driven
by the elastic energy, which was balanced by the energies of
interface of crack and viscous dissipation of fluid [6].
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On the other hand, first, the cracks periodically distribute,
and make up the unique pattern. Second, the pattern depends
on the deposition thickness [7,10] and particle concentration
[4,11], etc. Inspired by the concept of spinodal decomposition
[12], here we propose a theory to explore the origin of the
pattern consisting of periodically parallel cracks.

II. COLLOIDAL CLUSTERS COALESCE IN THE
DRYING PROCESS

Consider here that the colloidal suspension (hard
spheres + distilled water) directionally dries on a rigid
wettable plate (Fig. 1). Although the DLVO theory is valid
for dilute suspensions, it can also be applied for higher solid
contents on the condition of only main characteristic such
as interaction energy being concerned [13]. Since the dilute
suspension concentrates gradually in the whole evaporation
process, the DLVO theory is adopted to describe the inter-
action energy between two colloidal particles (clusters) (see
Appendix subsection A). The coalescence of colloidal particles
results from the collision causing by Brownian motion. To
simplify the analysis, we assume the doublet reaction to occur,
which has been employed for the general analysis of colloidal
aggregation [14]. Due to weak electrolyte environment (di-
water), the repulsive electric force is strong so that particles
coalesce by reaction-limited colloid aggregation (RLCA).

During the evaporation in the present case, the contact line
of aqueous suspension is not pinned and continually retreats,
laying the dried deposit (as indicated in Refs. [7,15]), which
indicates that no flow replenishes solvent loss owing to the
evaporation. The particle diffusion from inner suspension to
the reaction area (drying front) can be neglected (Appendix
subsection B). This is consistent with the Roth et al. exper-
imental study of drying a colloidal droplet with a receding
contact line, in which no particle transportation occurred by
diffusion or flow from the inner drop to the drying front (near
the contact line), where the particle deposit is generated from
the concentrating due to the drying [15].

As indicated by the study of the interaction of colloid
clusters, the shape of individual cluster can be approximately
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FIG. 1. Sketch of the crack pattern resulting from directional
drying colloidal suspension on the rigid plate. Contact line is the
receding line of the suspension during drying process.

treated as a sphere [16]. We consider that the clusters
continuingly grow and separate each other with a distance
ζ in the solvent. This physical configuration is confirmed
by the x-ray scattering experiment for drying nanoparticle
suspension [15,17]. After k coalescences (k doublet reactions),
the number and radius of clusters in the suspension are

N = N0/2k, (1)

R = 2k/3r0, (2)

respectively, where N0, r0 are the initial number and radius of
colloidal particles, respectively.

During the period for completing one coalescence, we can
ignore the evaporation effect and consider that the number
concentration is controlled by cluster coalescence. However,
the evaporation effect on the concentration after relative long
time has been achieved by shortening the distance of clusters
ζ (Appendix subsection C).

III. PHASE SEPARATION OF COLLOIDAL CLUSTERS
AND SOLVENT

At the late stage of the drying process, with water con-
tinuously evaporating, the air-liquid interface approaches just
above the deposition, subsequently the air invades the upper
layer of clusters to form a meniscus (Fig. 2). The capillary
force results in water drainage from the clusters, leading to the
coalescence of adjacent clusters. The change of surface energy
in unit volume for the drainage of water from the clusters is

E = (γc − γwc)n4πR2 = 4πγnR2, (3)

where n is the number of clusters in unit volume, γc and γ are
the surface energy of cluster and water in air, respectively, γwc

is the interfacial energy between water and cluster.
The maximum van der Waals potential of the coalescence

of clusters is no more than 70KT ∼ 2.8 × 10−19 J at room
temperature [13], which is far less than the driving energy
here for phase separation of ∼3.1 × 10−11 J, released from
the surface energy (2γ 4πR2/6, as one spherical cluster can
coalesce with six neighboring spheres) for coalescing a pair
of typical clusters of 10 μm diameter. Therefore, compared
with the variation of surface energy in the process of phase
separation, the van der Waals energy can be neglected.

FIG. 2. Side view of the water drainage from the colloidal
clusters. The dashed line O1O2 represents the air-water interface as
the water drainage initiates. The meniscus forms as the air invades the
clusters, and continually proceeds forward as indicated by the arrow.

The total work for water drainage in unit volume is
(Appendix subsection D)

W = 4
3πγnR(2R + ζ ) cos θ, (4)

where θ is the contact angle of water on the spherical cluster.
To meet the energy criterion of water drainage W − E � 0,
the surface distance of adjacent clusters satisfies

ζ � R(3 sec θ − 2). (5)

During phase separating, water flow through the porous
medium (clusters) is described by Darcy’s law as [18]

Q = −kA

η

∂(�P )

∂x
, (6)

where Q is the flow rate, k is the permeability of the medium,
∂(�P )/∂x is the pressure gradient (negative value), A is
the cross-sectional area perpendicular to x, and the pressure
difference �P = �G/(xA) = �G/V = E − W ,where �G

is the fluid potential. Thus (Appendix subsection E)

∂n

∂t
= kγ [(2R + ζ ) cos θ − 3R]

ηR2

∂2n

∂x2
. (7)

This equation has the similar solution as that of Cahn’s
equation [12], thus the fluctuation of cluster concentration
due to inhomogeneous distribution can be represented as
(Appendix subsection E)

n − nc = cncexp[q(α)τ ] sin(αx + φ), (8)

where nc is the number of homogenously distributed clusters
in unit volume, τ is the time of the fluctuation, c is the decimal
coefficient determined by the initial and boundary conditions,
α is the wave number, q is the amplification factor,

q(α) = kγ α2[3R − (2R + ζ ) cos θ ]/ηR2. (9)

Therefore, the number of clusters in the unit volume varies
in spatial space by sine function. As the evaporation proceeds,
ζ is continually decreasing until it satisfies W − E � 0,
i.e., 3R − (2R + ζ ) cos θ � 0. This leads to q � 0, i.e., the
fluctuation of cluster number amplifies with time. Thus the
cluster suspension is unstable and subjected to the separation
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FIG. 3. (Color online) (a) Fluctuation of the number concentration of clusters. (b) Cracks nucleating at the dried sites which originally are
water zones due to the phase separation. (c) Crack initiation from the periodical distribution of notches resulting from the phase separation.
Drying conditions: silica aqueous suspension (particle diameter: 80 nm) from Klebosol (AZ Electronic Materials) was used as received. A
drop of suspension (silica volume fraction: 27.5%) dried on glass substrate in condition: temperature: 31 ◦C; relative humidity: 38.5 RH%.
(d) The experiment and simulation show that crack pattern results from periodical notches in the monolayer of particles at air-water interface.
The periodical notches are observable using microscopic particles (diameter ∼50 μm). Upper right inset: the simulation result [25].

from water similar to the spinodal decomposition [12]. As
q = 0, the phase separation starts with the critical wave
number α. The critical wave number (at q = 0) is (Appendix
subsection F)

α = 2π

λ
= π cos θ

4cNcR
, (10)

where Nc is the cluster number at τ = 0.
Equation (9) indicates that amplification factor q increases

as ζ decreases, and this reduction of ζ results directly from
the evaporation. In fact, as the air invades the space between
the clusters, the drying process nearly completes, and the time
for further evaporation is short during the phase separation.
Therefore, we approximately consider ζ (or q) as the constant,
and use the critical wave number (at q = 0) to describe the fluc-
tuation process induced by the energy criterion W − E � 0.

From Eq. (10), the fluctuation wavelength is

λ = 8cNcR/ cos θ. (11)

When the drying has completed, the film of dried deposition
consisting of Nc clusters lies on the solid substrate of the
area L. Since the substrate area L is a constant for the
drying experiment, the cluster number Nc increases with film
thickness H increasing. Incorporating the factor of particle

size, thus, H ∝ NcR. Then Eq. (11) results in the relation

λ ∝ H. (12)

As the fluctuation of the cluster number proceeds during
the phase separating of water and clusters, the periodical
distribution of clusters forms [the cluster rich and water rich
zones shown in Fig. 3(a)]. The water zone finally dries out,
resulting in the periodical distribution of crevices. As know, the
crack pattern induced by the embedded flaws in thin film has
been theoretically analyzed [19–21] and experimentally found
[22–24]. In the present study, those crevices are the kind of pe-
riodical flaws which act as the sites where periodically parallel
cracks nucleate resulting from the stress in the deposition film
[Fig. 3(b)]. Our experimental result clearly displays that the
crack pattern was produced from the periodically distributed
notches (flaws) formed by the phase separation of clusters and
water [Fig. 3(c)]. The positions of notches correspond to the
dried water rich zones, displaying a wavelength.

Recently, Bandi et al. have also discovered that the crack
pattern results from periodical notches in the monolayer of
hydrophobic particles at the air-water interface [Fig. 3(d)] [25].
They dipped the surfactant (oleic acid) onto this interface with
Teflon-coated glass particles floating. The surfactant spread on
the interface, and pushed the particles outward along the radial
direction. Finally, notches formed on the ring resulting from
particles packing.
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It is generally considered that surfactant spreading on the
air-water interface is driven by Marangoni stresses resulting
from surfactant concentration gradient (along the spreading di-
rection). Surfactant concentration fluctuation in the spreading
front leads to the formation of the ramified fingers periodically
lying with a specific wavelength [26,27]. This spreading
front (fingers) can compress loose particles into the packing
with the wavelike front [28], which resembles the periodical
notches, suggesting the formation mechanism of the notch
shape. Although the experimental systems are different, Bandi
et al.’s results are helpful for understanding the physical
mechanism of the present work. In summary, the cracks in
the pattern initiate at the periodical flaws resulting from the
phase separation of colloidal clusters and water, then prorogate
under the law of fracture mechanics.

At a fixed time, the fluctuation of cluster number can be
represented as a sine function [Fig. 4(a)]. The wavelength
of the fluctuation is designed for the crack space (the
distance between two adjacent cracks) in the dried film. In
terms of the relation (12), the crack space linearly increases
with film thickness increasing [Fig. 4(b)]. This theoretical
predication is consistent with the well accepted experimental
results [7,10].

Combining Eqs. (1), (2), and (11), thus

λ ∝ N0r0 or n0V0r0. (13)

This formula indicates that the crack space increases with
the increment of the initial number and size of colloidal
particles [Fig. 4(c)]. This prediction is also consistent with
the experimental fact that as the particle size and suspension
volume are constant, the crack spacing and thickness of
deposition film linearly grow with the increase of initial
particle concentration n0 [4,11].

FIG. 4. Relationship between the parameters in the theory (pre-
senting in dimensionless quantities). Fluctuation of the number of
clusters displays the sine function (set initial phase φ as zero)
(a). Crack space linearly grows with the increase of film thickness
(>Hc, critical film thickness) (b), N0r0 (c), and t

−2/3
E (d), respectively.

Cracks are only produced in the deposition film whose
thickness exceeds a critical value in terms of fracture mechan-
ics [29]. There may be another reason for the production of
the crack-free thin film. From the formula (12), as H is very
small, so does λ. Thus the fluctuation needs too high energy
to occur [30], i.e., no crack (flaw) patterns produce. This
may provide the explanation for the following experimental
phenomenon of dried deposition film [31]: (1) Due to the lack
of flaws where cracks originated, the film was crack free when
its thickness was below the critical film thickness. (2) With film
thickness just reaching critical film thickness, some random
cracks appeared by the principle of fracture mechanics, but no
crack pattern produced since the corresponding λ was still too
small to develop. (3) As film thickness continuously increased,
a regular crack pattern formed since suitable λ could develop
for the fluctuation.

The whole process of drying colloidal suspension can be
classified into two stages. The first one is the evaporation
stage, whose time is denoted as the evaporation time tE . tE
is the time from evaporation beginning to air-liquid interface
reaching the top points of clusters (e.g., O1, O2 in Fig. 2).
Subsequently, in the second stage, the air-liquid interface
invades the clusters and forms the meniscus. The further
meniscus proceeding forward leads to the phase separation of
the solvent and clusters. This is the stage of solvent drainage
(or phase separation), lasting for the time td . In the experiment
of drying colloidal suspension, the drainage time td is far less
than the evaporation time tE, i.e., td � tE . tE can be represented
as (Appendix subsection G)

λ ∝ t
−2/3
E . (14)

Thus the fluctuation wavelength inversely changes with the
evaporation time [Fig. 4(d)]. For long time evaporation, i.e.,
the large tE , λ is too small to form the fluctuation. Therefore, no
periodical flaws produce for inducing the cracks. This agrees
with the experimental fact that crack-free thin film can be
achieved by the slow drying [29].

Therefore, the sequences of crack pattern formation are as
follows: First, the colloidal suspension is drying, and the col-
loidal clusters continually coalesce in this process. Second, in
the late stage of drying, air-liquid interface reaches just above
the deposition, water drainage from the clusters results in the
phase separation of the clusters and water. The water zones
become the periodically distributed flaws after the water has
dried out. Cracks then originate from the sites of flaws in terms
of fracture mechanics. Finally, the cracks develop and propa-
gate in the deposition under the law of fracture mechanics.

In summary, we propose the theory for the origin of
crack pattern in the deposition film produced by drying
colloidal suspension. Before developing and propagating in
the deposition under the law of fracture mechanics, the cracks
initiate from the periodically distributed flaws with stress
acting, making up the regular crack pattern. Those flaws result
from the phase separation of the colloidal clusters and water.
This phase separation is characterized by the fluctuation of
cluster number with the wavelength corresponding to the crack
spacing. The crack spacing linearly grows with the increasing
of film thickness and initial particle concentration, which is
consistent with the experimental results.
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APPENDIX

(A) The DLVO theory is adopted to describe the interaction
energy between two colloidal particles (clusters),

φ =
(

2kBT

e
ln ζ + ψ0

)
− AR

12ζ
. (A1)

kB is Boltzmann’s constant, T is the temperature (K), e is
the electron unit charge, ζ is the surface distance of two
particles (clusters), ψ0 is the reference potential, A is the
Hamaker constant, R is the particle (cluster) radius. The first
term represents the electric potential derived from the Poisson-
Boltzmann equation on the condition of weak electrolyte (no
added electrolyte) [32], and the second term is the van der
Waals energy [33].

(B) In Fig. 5(a), consider particles diffusing across the
section area s [take unit length along x (Fig. 5(b)], then
the diffusion amount QD = ∫

J sdt . The diffusion flux J =
D(n/y) = Dn tan θs/s = Dns0/y0s, where n is the particle
number concentration, y is the distance between the contact
line and the reference position, y0 is the initial distance, s

is the height of the suspension at the reference position,
s0 is the initial height, θs is the contact angle of the
suspension on substrate. The diffusion constant D is given by
the Stokes-Einstein equation, D = kBT /6πηR (η, viscosity).
Consequently, QD = Dns0t0/y0, where t0 is the evaporation
time. The solute amount in the volume y0s0/2 [take unit length
along x, Fig. 5(b)] is M = ny0s0/2.

QD/M (=2Dt0/y
2
0 ) can be estimated by our experimental

data, drying the drop of silica aqueous suspension on glass
substrate under ambient conditions: particle diameter: 80 nm;
volume fraction: 27.5%; evaporation time: 80 s; y0 = 340 μm.
Get QD/M = 0.7%. Thus QD � M , the diffusion from the
right side of reference position to its left (the reaction area with
the volume y0s0/2) can be neglected.

(C) We study the strip area near the contact line with
the width δ [Fig. 5(b)]. Since δ is short, the difference of
suspension height along the y direction can be ignored (see
the section figure along XY in the inset). The suspension
volume can be represented as V = ∫

dV , the variable of

integration dV = (2R + ζ )3 [see Fig. 6(a); since dV is very
small, particles are approximately treated as locating on the
lattice sites]. For homogenously distributed particles with the
number of N during the kth coalescence process,

V = S
(
h0 − h′

t t
e
k−1

) = N (2R + ζ )3/4, (A2)

where S is the evaporation area, t ek−1 is the evaporation
(reaction) time for completing k − 1 coalescences (k − 1
doublet reactions). h0 is the initial suspension height at t e = 0,
h′

t (≈0.1 μm/s [7]) is the evaporation rate along the height
direction. Substitute Eq. (1) into (A2), get the cluster distance
in the process of the kth coalescence,

2R + ζ =
[(

2k+2

n0

)(
1 − h′

t

h0
t ek−1

)]1/3

, (A3)

where n0 = N0/Sh0 = N0/V0 is the initial particle number
concentration.

During the period for one coalescence, the concentration
increment resulting from the evaporation is �CE =

n0S�h

S(h0−�h) =n0
�h
h0

/(1 −�h
h0

) ≈ n0
�h
h0

(1 + �h
h0

) ≈ n0�h/h0, �h�
h0, where �h is the height reduction resulting from the
evaporation. As �h = h′

t tk (tk is the time for completing one
coalescence), we have

�CE = n0h
′
t tk/h0 = n0tk/t, (A4)

where t is the total evaporation time. For one coalescence,
the number concentration halves in terms of Eq. (1). The cor-
responding concentration reduction (represented by negative
sign) is �CC = −C/2, where C is the suspension concentra-
tion. For the typical cluster sizes of 10 μm and the experimental
data in subsection B, times (numbers) of coalescence are given
by Eq. (2), k = 21. The average evaporation time for one
coalescence,〈tk〉 = t/k = 80 s/21 = 3.8 s. From Eq. (A4),
�CE = 4.8% n0 � |�CC | = 50%n0. Thus in the period of
one coalescence, the number concentration is controlled by
cluster coalescence rather than the evaporation effect, but the
evaporation affects the concentration after relative long time by
shortening the distance of clusters ζ , as indicated by Eq. (A3).

(D) The work is needed to be done for the drainage
of water (from X to Y in Fig. 2) is w1 = ∫ −R

R
Fd(−z) =

− ∫ 0
R

4 2πrγ

4 cos(ϕ + θ )dz − ∫ −R

0 4 2πrγ

4 cos(ϕ − θ )dz, where
F is the capillary force along the z direction, θ is the
contact angle of water on the spherical cluster, ϕ is the angle
between the perpendicular and tangent lines at the contact
point of the cluster with water (Fig. 2), r is the projection
radius of the retreating contact line [Figs. 6(b) and 6(c)],
z = √

R2 − r2 [Fig. 6(c)]. Performing the integration to get

FIG. 5. (a) Sketch of suspension receding in
drying process. (b) Strip area with the width δ

close to the contact line. Inset: cross section of
the strip area (section line XY ).
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FIG. 6. (Color online) (a) Cubic rep-
resentation of clusters locating at lattice
sites. (b) Top view of the drainage. Small
bright circle is the projection of bare
spherical cap produced by the drainage.
(c) Section figure along O1P in (b).

w1 = 8
3πγR2 cos θ . The extra work needed to be done for

the drainage of the water between ζ (Fig. 2) is w2 = F̄ ζ =
4
3πγRζ cos θ , where F̄ is the average force (w1/2R) during
the drainage. The water drainage driven by the work w1 +w2

results in simultaneously releasing the surface energy of one
cluster, 4 × 1

4πR2γ [water drainage of the square zone in
Fig. 6(b)]. Thus the total work for water drainage in unit
volume is

W = n(w1 + w2) = 4
3πγnR(2R + ζ ) cos θ.

(E) The pressure driving the water flowing through the
porous medium (clusters) is

�P = �G/(xA)

= E − W = 4πγnR
(
R − 1

3 (2R + ζ ) cos θ
)
. (A5)

The flow rate can also be represented as

Q = ∂Vw

∂t
= ∂(1 − 4πR3n/3)Vs

∂t
= −4πR3Vs

3

∂n

∂t
, (A6)

where Vw is the change of water volume due to the drainage
of suspension volume Vs . Take the derivative of Eqs. (6) and
(A6) with x and combine with ∂Vs/∂x = A and Eq. (A5), we
get

∂n

∂t
= kγ [(2R + ζ ) cos θ − 3R]

ηR2

∂2n

∂x2
.

This equation has the similar solution as that of Cahn’s
equation [12], which represents Fourier components of the
fluctuation of cluster concentration due to inhomogeneous
distribution,

n − nc =
∑
αi

exp[q(αi)τ ][B(αi) cos αix + K(αi) sin αix],

(A7)

where nc is the number of homogenously distributed clusters
in unit volume, τ is the time of the fluctuation, αi is the
wave number. B and K are coefficients evaluated at τ = 0
by the boundary conditions. q is the amplification factor. In
the present study, as q = 0, the phase separation starts with
the critical wave number α. Thus, Eq. (A7) can be written as

n − nc = exp[q(α)τ ][B(α) cos αx + K(α) sin αx].

Thus,

n − nc =
√

B2 + K2exp[q(α)τ ]

×
(

B√
B2 + K2

cos αx + K√
B2 + K2

sin αx

)
,

(A8)

where
√

B2 + K2 = cnc, c is the decimal coefficient deter-
mined by the initial and boundary conditions. Make K√

B2+K2 =
cos φ, B√

B2+K2 = sin φ, write Eq. (A8) as

n − nc = cncexp[q(α)τ ] sin(αx + φ).

(F) Take the derivative of two sides of Eq. (A2), we have

(2R + ζ )
dN

dx
+ 3N

dζ

dx
= 0. (A9)

The coordination x can be represented as x = N (2R + ζ ).
Take its derivative,

N
dζ

dx
= 1 − (2R + ζ )

dN

dx
. (A10)

Substitute (A10) into (A9) to get

(2R + ζ )
dN

dx
= 3

2
. (A11)

To evaluate dN/dx, multiply V and take the derivative of
two sides of Eq. (8) at τ = 0; it gives

dN/dx = αcNc cos(αx + φ). (A12)

Substitute Eq. (A12) into Eq. (A11) to get

(2R + ζ ) cos(αx + φ) = 3

2cαNc

. (A13)

To evaluate 2R + ζ , make β = αx + φ and integrate equation
(A13) with β in the interval [−π/2, π/2], that is, 2R + ζ =

3π
4cαNc

. Substitute it into Eq. (9), we get

q = 3kγ α2

ηR2

(
R − π cos θ

4cαNc

)
.

The critical wave number α corresponds to q = 0, thus,

α = 2π

λ
= π cos θ

4cNcR
.

(G) In the RLCA process, a number of collisions lead to one
coalescence. The coalescence probability of particle collision
is P = number of coalescence/number of collision [34]. The
characteristic time for doublet formation has been derived from
the probability density theory [35]. Combining P into this
result, we get the time for completing one coalescence,

tk = πηWR3

kBT Pν
, (A14)

where the stability ratio W = 2R
r2
m

( 2πkBT

−(∂2φ/∂r2)rm
)1/2eφm/kBT , φm

is the maximum potential evaluated by the derivative
of Eq. (A1), satisfying (dφ/dr)rm

= 0, rm(=2R + ζm) is
the distance between the centers of two adjacent clus-
ters (as φ = φm), (∂2φ/∂r2)rm

(negative value) is the sec-
ond derivative of φ at rm. The cluster volume fraction
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ν = N 4
3πR3/N

4 (2R + ζ )3 = 16π
3 ( R

2R+ζ
)3, thus

tk = 3ηW (2R + ζ )3

16kBT P
. (A15)

Combining Eqs. (A3) and (A15), the total time for finishing k

times (numbers) of coalescences is

t =
k∑

k=1

tk = 3ηW

16kBT Pn0

k∑
k=1

2k+2

(
1 − h′

t

h0
t ek−1

)
. (A16)

As the kth coalescence proceeding, the evaporation time
having been experienced (since t e = 0) is the sum of the time
for k − 1 times of coalescences,

t ek−1 =
k−1∑
k=1

tk. (A17)

Substitute Eq. (A17) into Eq. (A16), perform series expansion
and make approximation, we reach an equation

t ≈ 2k3ηW

2kBT Pn0

(
1 − h′

t

h0
t

)
. (A18)

Solving the equation, we get the times (numbers) of
coalescences before the phase separation of water and
clusters,

k = log2
2kBT Pn0h0t

3ηW (h0 − h′
t t)

. (A19)

Combining Eqs. (1), (2), (11), and (A19) results in the
relation

λ ∝
(

3ηW (h0 − h′
t t)

2kBT Pn0h0t

)2/3

. (A20)

Define the constant I = ( 3ηW

2kBT Pn0
)2/3, t = tE as the evapo-

ration time before the water drainage occurs, and impose
the conditions h′

t

h0
tE < 1, 2

3
h′

t

h0
� 1, the formula (A20) can

be written as λ ∝ t
−2/3
E I (1 − h′

t

h0
tE)2/3 ≈ t

−2/3
E I (1 − 2

3
h′

t

h0
tE) ∼

t
−2/3
E I . Consequently,

λ ∝ t
−2/3
E .
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