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Magnetic particle hyperthermia: Power losses under circularly polarized field
in anisotropic nanoparticles
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The deterministic Landau-Lifshitz-Gilbert equation has been used to investigate the nonlinear dynamics of
magnetization and the specific power loss in magnetic nanoparticles with uniaxial anisotropy driven by a rotating
magnetic field, generalizing the results obtained for the isotropic case found by P. F. de Châtel, I. Nándori,
J. Hakl, S. Mészáros, and K. Vad [J. Phys. Condens. Matter 21, 124202 (2009)]. As opposed to many applications
of magnetization reversal in single-domain ferromagnetic particles, where losses must be minimized, in this
paper, we study the mechanisms of dissipation used in cancer therapy by hyperthermia, which requires the
enhancement of energy losses. We show that for circularly polarized field, the energy loss per cycle is decreased
by the anisotropy compared to the isotropic case when only dynamical effects are taken into account. Thus, in
this case, in the low-frequency limit, a better heating efficiency can be achieved for isotropic nanoparticles. The
possible role of thermal fluctuations is also discussed. Results obtained are compared to experimental data.
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I. INTRODUCTION

The nonlinear dynamics of the magnetization in single-
domain ferromagnetic nanoparticle systems has been the
subject of intense study and is to date a challenging issue.
Examples are ferromagnetic resonance, switching of magne-
tization, data storage based on magnetic devices, spintronics,
etc. The applications that are strongly related to the present
work are ferrofluids, magnetic resonance imaging (MRI), and
other biomedical applications; see, e.g., Refs. [1–7]. While in
most cases the energy loss per cycle has to be minimized,
in cancer therapy by hyperthermia the goal is to enhance
the heating efficiency of magnetic nanoparticles driven by
an external magnetic field, preferably inside the malignant
tumors. The common practice is to use a linearly polarized
external magnetic field alternating at a frequency of the order
of 105 Hz. Indeed, in the case of the linearly polarized applied
field, the optimization of energy loss with respect to the
amplitude and frequency of the external field has been studied
in detail [4,8,9]. It is natural to ask what is the dependence
of the specific absorption rate on the nature of polarization,
i.e., whether a better heating efficiency can be achieved by
a circularly polarized applied field [5–7,10]. The study of
dynamical effects of a circularly polarized field has received
considerable attention [11–15]. Power losses for isotropic
nanoparticles under a rotating field have also been investigated
in the presence (see, e.g., Refs. [5,6]) or absence (see, e.g.,
Ref. [10]) of thermal effects, but no systematic analysis has
been performed in order to investigate the effect of anisotropy
on the energy absorption of nanoparticles in the low-frequency
limit suitable for hyperthermia.

The relaxation and the energy loss of a single isotropic
magnetic nanoparticle has been considered under a circularly
polarized applied field in Ref. [10] when no thermal effects
were included. In the low-frequency limit, the energy loss
per cycle was found to be larger in the case of the linearly
polarized applied field as compared to the circularly polarized
one. Thermal effects for an isotropic system were studied in
detail in Ref. [5]. In the limit of low frequency, the linearly

polarized field was found to produce more heat power for
higher temperatures, too. However, recent experimental results
[7] show a different picture; the linearly and the circularly
polarized external field produced an equal heat power, at least
for low frequencies. Since the immobility and the aggregation
of particles into chains is a known feature of ferrofluids when
the sample becomes very anisotropic, it is a natural question
to ask whether the anisotropy can be responsible for the
discrepancy between the theory and the experiment.

The goal of this paper is twofold. On the one hand, we
consider the role of anisotropy in the possible enhancement
of heat power of magnetic nanoparticles (in the absence of
thermal effects) by generalizing the results obtained for the
isotropic case found in Ref. [10]. On the other hand, we study
whether the anisotropy can be used to explain the experimental
results of Ref. [7]. The possible role of thermal fluctuations is
also discussed.

The paper is organized as follows. In Sec. II, the deter-
ministic Landau-Lifshitz-Gilbert equation has been given in
the case of uniaxial anisotropy suitable for the description of
magnetization dynamics for single magnetic nanoparticles (in
the temperature range far from the Curie temperature). The
specific power loss and energy loss is studied in the case of
the circularly polarized applied field in Sec. III. Known results
of the isotropic case are briefly summarized and compared to
the findings of the present work done for nanoparticles with
uniaxial anisotropy. In Sec. IV, we study the linearly polarized
applied field in the limit of large anisotropy, and in Sec. V the
possible modification of the findings by thermal fluctuations
is discussed. Finally, Sec. VI stands for the summary.

II. LANDAU-LIFSHITZ-GILBERT EQUATION

In order to study the energy losses under repeated magne-
tization reversal, one can distinguish two different processes
related to the mobility of magnetic particles in ferrofluids.
Either the magnetic moment rotates within the particle (Néel
regime [16]) or the particle rotates as a whole (Brown
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regime). Another way to classify various types of relaxation
mechanisms is related to the temperature. For example, if
one considers relaxation far from the Curie temperature, then
the magnetization process in a single-domain particle can be
well described by means of the Landau-Lifshitz equation [17],
which is mathematically equivalent to Gilbert’s equation [18],
with the appropriate definition of its coefficient [19,20]. This
is referred as the Landau-Lifshitz-Gilbert (LLG) equation.
For a complete description of relaxations close to the Curie
temperature, thermal effects should be incorporated. However,
in some cases (such as a rotating applied field) the LLG
equation provides us reliable results on energy losses, even
at higher temperatures.

In this work the focus is on the relaxation based on the
dynamical effect obtained by the LLG equation for anisotropic
nanoparticles. We argue that at least for small and relatively
large anisotropy, findings of the present work can be used
to study energy losses in a temperature range relevant for
hyperthermia. An important feature of the LLG equation is
that the magnetization vector’s magnitude does not change
under the influence of the external field. Thus, it is convenient
to rewrite it in terms of the unit vector M = m/mS , where
mS is the saturation magnetization. Then the LLG equation
reads as

d

dt
M = −γ ′[M × Heff] + α′[[M × Heff] × M], (1)

with the coefficients γ ′ = μ0γ0/(1 + α2) and α′ = μ2
0γ

2
0 ηmS/

(1 + α2), where μ0 is the permeability of free space, γ0

is the gyromagnetic ratio, and η is the dimensionful and
α = μ0γ0ηmS the dimensionless damping constant. Let us
introduce an effective gyromagnetic ratio γ = γ0/(1 + α2).
Then the parameters of the LLG Eq. (1) can be rewritten as
γ ′ = μ0γ and α′ = μ0γα. It is important to note that the
effective gyromagnetic ratio γ used in this paper is positive
as opposed to the negative parameter of Ref. [10]. The cross
denotes the vector product and the effective magnetic field
acting on the magnetization M is defined as

Heff = Hext + Haniso, (2)

with the alternating or circulating applied (external) field Hext

and the anisotropy field Haniso. Let us note that in this work all
considerations have been done in the absence of a static field.

III. CIRCULARLY POLARIZED APPLIED FIELD

In this section we discuss the solution of the LLG equation
[Eq. (1)] obtained for an immobile single-domain (isotropic
and anisotropic) magnetic particle under circularly polarized,
i.e., rotating applied (external) magnetic field. The applied
field is assumed to rotate in the xy plane with an angular
frequency ω

Hext = ωL

γ ′ (cos(ωt), sin(ωt),0), (3)

where ωL = γ ′|H| is the Larmor frequency. (The angular
velocity vector is perpendicular the the xy plane.) For the sake
of simplicity we consider particles with uniaxial anisotropy,
where the easy axis of the magnetization is chosen to be the z

axis, i.e., the anisotropy field is defined as

Haniso = ωL

γ ′ (0,0,λeffMz), (4)

where Mz is the z component of the magnetization vector and
the parameter λeff describes the strength of the anisotropy. With
this particular choice of the anisotropy field, the arrangement
used in the paper is identical to that investigated in Refs. [11,
12]. For a more detailed analysis, specifically when the effect
of thermal fluctuations is also taken into account, the easy
axis of magnetization has to be chosen arbitrarily (for linearly
polarized case see, e.g., Ref. [22]), but this is out of the scope
of the present work.

It is convenient to use a coordinate system in which the
steady-state solution of the LLG equation [Eq. (1)] has the
simplest form: a time-independent magnetization vector [10–
12]. The transformation is done by an appropriate rotation [10]:

O1 =

⎛
⎜⎝

+ cos(ωt) + sin(ωt) 0

− sin(ωt) + cos(ωt) 0

0 0 1

⎞
⎟⎠ , (5)

which transforms the LLG equation into a coordinate system,
which rotates around the z axis with the applied magnetic
field. The transformed z axis then points in the direction of the
angular velocity vector ω. Denoting the Cartesian coordinates
of the transformed magnetization

(ux,uy,uz) = O1M, (6)

the LLG equation [Eq. (1)] can be written as

dux

dt
= ωuy + αNu2

y + αNu2
z

−ωLλeffuyuz − αNλeffuxu
2
z,

duy

dt
= −ωux − ωLuz − αNuxuy (7)

+ωLλeffuxuz − αNλeffuyu
2
z,

duz

dt
= ωLuy − αNuxuz + αNλeff

(
1 − u2

z

)
uz,

where αN = α′|H| is introduced. Let us note that λeff is
dimensionless but αN , ω, and ωL are of dimension 1/s.
However, by introducing a dimensionless time t̃ = t/t0, all
the frequency parameters can be rewritten as dimensionless
quantities such as α̃N = αNt0, etc. For the sake of simplicity,
we keep the original notation (without the tilde superscript),
but the time and consequently the frequencies are considered
as dimensionless parameters. Since the LLG equation retains
the magnitude of the magnetization vector, only two of the
Cartesian components are independent (u is a unit vector in
the rotating frame). In order to describe the orientation of the
magnetization, let us introduce angles following the definition
of Ref. [11]:

ux = sin θ cos φ,

uy = − sin θ sin φ, (8)

uz = cos θ.

Thus, in the rotating frame the LLG equation obtained for
the three Cartesian coordinates [Eq. (7)] reduces to a set of
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differential equations for the two angles

dθ

dt
= ωL sin φ + αN cos θ cos φ − αNλeff sin θ cos θ,

(9)
dφ

dt
= ωL cos φ

cos θ

sin θ
+ w − αN

sin φ

sin θ
− ωLλeff cos θ.

Let us note that the differential equations for θ and φ in
Eq. (9) are identical to Eqs. (2) and (3) of Ref. [11] in the
case of vanishing static field (haz = 0), if one makes the fol-
lowing identifications: ωL ≡ ha⊥/(1 + α2), αN ≡ αha⊥/(1 +
α2), and λeff ≡ κeff/ha⊥.

A. Isotropic case

In this subsection we briefly summarize the results obtained
for the isotropic case in Ref. [10]. Numerical solutions of
Eq. (9) derived for the isotropic case (λeff = 0) with various
initial conditions are plotted in Fig. 1 (for a set of parameters
given in the figure caption). Two fixed points, a repulsive
(circle) one and an attractive one, appear in the phase diagram.
Both can be determined by the analytical solution of the
algebraic fixed point equation derived from Eq. (7) in the case
of vanishing anisotropy, i.e., for λeff = 0. The solution for the
attractive fixed point is [see Eq. (25) in Ref. [10]]

ux0 =

√√√√α2
N − ω2

L − ω2 +
√

4α2
Nω2

L + (
α2

N − ω2
L − ω2

)2

2α2
N

,

uy0 = −
α2

N + ω2
L + ω2 −

√
4α2

Nω2
L + (

α2
N − ω2

L − ω2
)2

2ωαN

,

uz0 = −
√

1 − u2
x0 − u2

y0 (10)
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FIG. 1. Phase portrait in the rotating frame obtained by solving
the LLG equation [Eq. (9)] for the isotropic case (λeff = 0) with
the parameters αN = 0.1, ω = 0.01, ωL = 0.2. The circle indicates
the repulsive fixed point at φ = 3.12, θ = 1.53. The attractive fixed
point is at φ = 0.02, θ = 1.61.

(in the case of the repulsive fixed point ux0 and uz0 having
been multiplied by −1). The attractive fixed point of the
LLG equation in the rotating frame corresponds to the stable
steady-state solution obtained in the laboratory frame [Eq. (24)
in [10]]:

Mx(t) = ux0 cos(ωt) − uy0 sin(ωt),

My(t) = ux0 sin(ωt) + uy0 cos(ωt), (11)

Mz(t) = uz0.

The steady-state solution enables us to calculate the energy
loss for a single particle. The energy dissipated in a single
cycle can be calculated as [based on Eq. (11)]

E = μ0mS

∫ 2π
ω

0
dt

(
H

dM
dt

)
= μ02πmSH (−uy0) (12)

[see also Eq. (32) in [10]], which has the form in the low-
frequency limit, ω � αN ,

E = 2πμ0mSH

[
αNω

ω2
L + α2

N

− αNω2
Lω3(

ω2
L + α2

N

)3 + O(ω5)

]
. (13)

Let us note that in Ref. [10] the energy loss per cycle of
isotropic nanoparticles obtained by oscillating and rotating
external fields have been analyzed in the absence of thermal
effects; see, e.g., Fig. 2 in Ref. [10]. It was shown that in the
low-frequency limit the energy loss per cycle was found to be
larger in the linearly polarized case. In order to consider the
role of thermal fluctuations in the case of isotropic samples,
let us compare the findings of Ref. [5] (where thermal effects
were included) to the findings of Ref. [10]. Dashed lines on
Fig. 6 of Ref. [5] correspond to the limit T → 0 and agree
to the findings plotted in Fig. 2(a) of Ref. [10] qualitatively.
The important result is that in the limit of low frequency, the
linearly polarized field was found to produce more heat power
both for T = 0 and for T �= 0.

B. Anisotropic case

In order to study the role of anisotropy, let us follow the
strategy applied in the isotropic case. Namely, we calculate
the energy loss per cycle by determining the attractive fixed
point solution of Eq. (7) for nonvanishing anisotropy (λeff �=
0), which reads

0 = ωuy + αNu2
y + αNu2

z − ωLλeffuyuz − αNλeffuxu
2
z,

0 = −ωux − ωLuz − αNuxuy + ωLλeffuxuz − αNλeffuyu
2
z,

0 = ωLuy − αNuxuz + αNλeff
(
1 − u2

z

)
uz, (14)

which can be reduced for the following equation for uz:

0 = 1 − u2
z

u2
z

[(
uz − r ωL

λeff

)2

+
(

uz

r αN

λeff

)2
]

− 1

λ2
eff

, (15)

with r = ω/(ω2
L + α2

N ). Let us note that Eq. (15) is identical
to Eq. (3.8) of Ref. [12] (with zero static field H̃ = 0
and with ρ = 1) if the following identifications are used:
h̃ ≡ 1/λeff , κ ≡ rωL/λeff , and λ ≡ αN/ωL. The switching of
the nanoparticle magnetic moments and the dynamical effects
under the action of rotating field have been studied in Ref. [12]
with great details and further considered in Refs. [14,15];
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I. NÁNDORI AND J. RÁCZ PHYSICAL REVIEW E 86, 061404 (2012)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6

<

<
<

<

<<
<

<
<

<
<

FIG. 2. Phase portrait in the rotating frame obtained by solving
the LLG equation [Eq. (9)] in the limit of low frequency and small
anisotropy for the parameters αN = 0.1, ω = 0.01, ωL = 0.2, and
λeff = 0.05. It is similar but not identical to Fig. 1.

however, energy losses were not calculated, which is the goal
of the present work.

Equation (15) can be solved analytically, which is used to
calculate all the Cartesian coordinates of the attractive fixed
point (or fixed points) in the rotating frame. If uy0 (y axis
component of the attractive fixed point) is known, the energy
loss per cycle can be evaluated similarly to the isotropic case.
For biomedical applications such as hyperthermia, the low-
frequency limit is relevant. Therefore, let us first consider the
low-frequency ω � αN and small anisotropy λeff � 1 limit,
where one finds a single attractive fixed point with

uy0 ≈ − αNω

ω2
L + α2

N

+ αNω2
Lω3(

ω2
L + α2

N

)3 (1 + 2λeff). (16)

Inserting Eq. (16) into the expression of the energy loss per
cycle [Eq. (12)], one finds

E ≈ 2πμ0mSH

[
αNω

ω2
L + α2

N

− αNω2
Lω3(

ω2
L + α2

N

)3 (1 + 2λeff)

]
,

(17)

which shows that in the low-frequency limit, the small
anisotropy does not modify the energy loss per cycle obtained
for the isotropic case. At higher frequencies, in the case
of small anisotropy, a decrease is observed in the energy
dissipated in a single cycle compared to the isotropic case.
This analytic result is supported by the numerical integration
of Eq. (9) (low frequency, small anisotropy; see Fig. 2), which
is very similar to the isotropic case; see Fig. 1. Figures 1
and 2 are similar but not identical. Trajectories of the two
figures, far from the fixed points, differ from each other
(but the deviation is small). However, for low frequency and
small anisotropy, the attractive and the repulsive fixed points
of Figs. 1 and 2 coincide. The stability analysis done in
Ref. [12] also confirms the existence of a single attractive fixed
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FIG. 3. Phase portrait in the rotating frame obtained by solving
the LLG equation [Eq. (9)] (medium frequency and small anisotropy)
for the parameters αN = 0.1, ω = 0.05, ωL = 0.2, and λeff = 0.05.
According to numerical results, the attractive fixed point is at φ =
0.097995, θ = 1.77908, which gives uy0 = −0.0957.

point in this regime of the parameter space. The difference
between the positions of the attractive fixed point obtained
for the isotropic and anisotropic cases is more recognizable
at higher angular frequencies. For example, according to the
approximate expression Eq. (16), the attractive fixed point
of Fig. 3 is at uy0 = −0.0956; numerical results give uy0 =
−0.0957 and the corresponding isotropic case [see, Eq. (10)]
gives uy0 = −0.0961. Thus, the energy loss per cycle (which
is related to −uy0) is decreased for the set of parameters used
in Fig. 3 compared to the isotropic case (for the same ω, ωL,
and αN ).

Let us consider the low-frequency, large-anisotropy limit.
In this case, one finds two attractive fixed points; see Fig. 4. The
attractive fixed points are situated above (up) and below (down)
the equator. In the strong anisotropy limit, their φ-components
are the same and their θ components are symmetric to the
equator; thus, their Cartesian components are u

up
x0 = udown

x0 ,
|uup

z0| = |udown
z0 |, and u

up
y0 = udown

y0 . Therefore, both attractive
fixed points have the same y components in the rotating frame,
which reads as

uy0 ≈ − αNω

ω2
L + α2

N

1

λ2
eff

. (18)

Inserting Eq. (18) into the expression of energy loss per cycle
[Eq. (12)], one finds

E ≈ 2πμ0mSH

[
αNω

ω2
L + α2

N

1

λ2
eff

]
, (19)

which vanishes for λeff → ∞. In the limit of extremely large
anisotropy, there is no room for energy dissipation, since the
magnetization is aligned to the easy axis independent of the
applied field. Indeed, for λeff → ∞, the xy-plane components
tend to zero: ux0 → 0, uy0 → 0, and uz → ±1. In the (φ-θ )
plane, the attractive fixed points should tend to the “poles”;
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FIG. 4. Phase portrait in the rotating frame obtained by solving
the LLG equation [Eq. (9)] in the limit of low frequency and large
anisotropy for the parameters αN = 0.1, ω = 0.01, ωL = 0.2, and
λeff = 2.5. Two attractive fixed points appear in the figure. The
repulsive fixed point and the saddle point are indicated by a circle
and a solid circle, respectively.

i.e., φ = 0 and θ = 0,π . If the anisotropy is decreased, they
“move away” from the poles and tend to the equator; see
Fig. 5. A critical value for the anisotropy parameter can be
identified where one of the attractive fixed points [the one
that corresponds to small θ , i.e., which lies above the equator,
Eq. (8)] vanishes. The other attractive fixed point remains
always below the equator. The phase diagram obtained in
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FIG. 5. Phase portrait in the rotating frame obtained by solving
the LLG equation [Eq. (9)] (low frequency, large anisotropy) for
the parameters αN = 0.1, ω = 0.01, ωL = 0.2, and λeff = 1.5. The
attractive fixed points are closer to the equator as compared to Fig. 4,
where the anisotropy was larger.
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FIG. 6. Phase portrait in the rotating frame obtained by solving
the LLG equation [Eq. (9)] in the limit of low frequency, slightly
below the critical value of anisotropy. The parameters are αN =
0.1, ω = 0.01, ωL = 0.2, and λeff = 1.175. There is only a single
attractive fixed point below the equator (large θ ). The other attractive
fixed point (above the equator, small θ ) of the large anisotropic case
and also the saddle point vanish in this regime of the parameter space.

the low-frequency limit, slightly below the critical value of
anisotropy, is plotted in Fig. 6.

Let us consider the energy loss as a function of the
anisotropy parameter. In Fig. 7, the energy loss is plotted
versus λeff (for a set of parameters given in the figure), which
shows that in the case of a rotating field the energy loss
is a monotonic function of the anisotropy parameter. Thus,
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E
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2
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cr 1.175

FIG. 7. The energy loss is plotted vs. the anisotropy λeff . There
are two scaling regimes: one is at small and the other is at large
anisotropy, which are separated by the critical value λcr. The solid
line corresponds to energy loss obtained at the stable fixed point
below the equator, and the dashed line represents energy loss at the
fixed point above the equator, which is stable only for λeff > λcr.
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FIG. 8. Phase portrait in the rotating frame obtained by solving
the LLG equation [Eq. (9)] in the limit of high frequency and large
anisotropy for the parameters αN = 0.1, ω = 0.15, ωL = 0.2, and
λeff = 2.5. There are two attractive fixed points in the figure similar
to the low-frequency case (Fig. 4). Here, the attractive fixed points
have different y components; thus, the corresponding energy losses
also differ from each other.

according to our results, the anisotropy (where the easy axis
is perpendicular to the rotating external field) cannot be used
to increase the heating efficiency of magnetic nanoparticles in
the low-frequency limit.

For the sake of completeness, let us consider the high-
frequency limit, although it is out of the scope of the present
work (irrelevant in case of cancer therapy by hyperthermia);
hence, we do not study this in detail. The phase diagram
obtained in the high-frequency and large-anisotropy limit is
shown in Fig. 8 and can be compared to the one obtained
for low frequencies (with the same anisotropy); see Fig. 4.
The similarity between the high- and low-frequency cases is
that two attractive fixed points appear. However, in the high-
frequency case they have different coordinates in the (φ–θ )
plane. Thus, the energy losses correspond to the attractive
fixed points differ from each other.

In summary, we conclude that the uniaxial anisotropy
(where the easy axis is perpendicular to the rotating external
field) either does not modify the energy loss per cycle (in the
case of small anisotropy) or the energy dissipated is decreased
as compared to the isotropic case.

IV. LINEARLY POLARIZED APPLIED FIELD IN
THE LIMIT OF LARGE ANISOTROPY

One of the goals of this paper is to investigate the role of
anisotropy in the possible enhancement of heat efficiency of
magnetic nanoparticles driven by a rotating magnetic field. On
the one hand, in the previous section it was obtained that in
the case of circularly polarized applied field if the uniaxial
anisotropy (perpendicular to the rotating external field) has
been taken into account, the energy loss per cycle either
remains unchanged (small anisotropy) or decreases (large

anisotropy). On the other hand, in Ref. [10] it was shown that
for isotropic nanoparticles the linearly polarized external field
provides us a larger heat power in the limit of low frequency.
Furthermore, the latter statement was shown by Ref. [5] to
be reliable in the presence of thermal effect, too. Thus, the
circularly polarized applied field cannot be used to achieve
a better heating efficiency by nanoparticle systems (neither
for isotropic nor for anisotropic nanoparticles with uniaxial
anisotropy) if the effect of thermal fluctuations is negligible.
The role of thermal effects is discussed in Sec. V, where it
is argued that the possible modification of the above finding
by thermal fluctuations can only be expected in the case of
moderate anisotropy. Thus, the results of the present work
indicate that the heating efficiency cannot be increased by the
rotating field, at least for small and very large anisotropy in
the limit of low frequencies (independently whether thermal
effect are included or not). This finding does not require any
further analysis of the linearly polarized applied field.

However, the study of energy loss in the case of the linearly
polarized applied field for anisotropic nanoparticles enables us
to consider whether the large anisotropy can be used to explain
the experimental results of Ref. [7]. Let us note the formation
of chains by nanoparticles is a known feature of ferrofluids and
the chains of particles represents a very large anisotropy [21].
Therefore, in this section we discuss the solution of the LLG
equations [Eq. (1)] obtained for a single-domain magnetic
nanoparticle under linearly polarized, i.e., alternating applied
(external) magnetic field in the limit of large anisotropy. The
applied field is assumed to oscillate along the x axis with an
angular frequency ω,

Hext = ωL

γ ′ (cos(ωt),0,0), (20)

where ωL = γ ′|H| is the Larmor frequency. Similar to the
circularly polarized case, here we consider particles with
uniaxial anisotropy. The easy axis of the magnetization is
chosen to be the x axis (similar results can be obtained if
it is chosen to be perpendicular to the x axis),

Haniso = ωL

γ ′ (λeffMx,0,0), (21)

where Mx is the x component of the magnetization vector and
the parameter λeff describes the strength of the anisotropy. Note
that in the case of alternating applied field, it is convenient to
study the original LLG equation [Eq. (1)] instead of the rotated
one [Eq. (7)]. The LLG equation for the Cartesian coordinates
of the magnetization reads as

dMx

dt
= αN [λeffMx + cos(ωt)]

(
1 − M2

x

)
,

dMy

dt
= −(ωLMz + αNMxMy)[cos(ωt) + λeffMx], (22)

dMz

dt
= (ωLMy + αNMxMz)[cos(ωt) + λeffMx],

which has in general no analytic solution. In the limit of
extremely large anisotropy [cos(ωt) � λeffMx], however, the
time-dependence of Mx can be determined as

Mx(t) = ± exp(αNλeff t)√
exp(2αNλeff t) − C

, (23)
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with C = 1 − 1/M2
x0. If t → ∞, the solution of Eq. (23) tends

to ±1 and the energy loss per cycle vanishes.
We conclude that in the case of a very large anisotropy the

heat power of a magnetic nanoparticle driven by a linearly
polarized applied field vanishes. The same was observed in
the case of the circularly polarized external field. Thus, it
is a natural requirement to obtain a comparable heat power
given by the linearly and the circularly polarized applied
fields if the anisotropy is large enough, which can explain
the experimental results of Ref. [7]. Indeed, if the ferrofluid
was not prepared appropriately, the nanoparticles can form
chains and, consequently, the anisotropy could become large
and the energy loss tends to zero rapidly.

V. THERMAL EFFECTS

In this work we studied the influence of anisotropy on
the energy losses in the framework of the deterministic LLG
equation in the absence of thermal fluctuations for rotating
applied field. In this subsection, we discuss briefly how
thermal effects (see, e.g., Refs. [22–24]) can possibly modify
the results obtained by considering purely dynamical effects
based on the LLG equation. Let us follow Refs. [12,14,15].
In case of a rotating field, the steady-state solutions of the
dynamical problem are independent of the initial conditions of
the individual particles. Therefore, the average magnetization
can be easily determined by these (stable) steady states.

In the case of two steady-state magnetizations (up and
down states), due to thermal effects, a nonzero probability of
a transition from one stable state to another appears. This type
of relaxation mechanism is missing in the present work due to
the lack of thermal effects. We showed that large anisotropy
is needed in order to have more than one stable state. It was
also shown that if the anisotropy is not large enough, only a
single fixed point appears in the phase portrait; thus, one has to
consider only a single stable state. In this case, the modification
caused by thermal effects is less important. Thus, thermal
effects can only modify the determination of energy losses
(in the case of a rotating applied field, for low frequencies
relevant to hyperthermia) if the anisotropy is large enough but
not too large (otherwise the barrier between one state to an
other becomes too large).

Furthermore, let us compare Refs. [5,10] in order to
consider the role of thermal effects in the case of isotropic
samples. In these articles, energy losses were investigated both
for alternating and for rotating applied field. Thermal effects
were included in Ref. [5], while these are absent in Ref. [10].
For example, the dashed lines on Fig. 6 of Ref. [5] correspond
to the limit T → 0 and agree to the findings plotted in Fig. 2(a)
of Ref. [10] qualitatively. Let us turn the attention of the reader
to the logarithmic scale used in Fig. 2(a) of Ref. [10]. The
modification caused by thermal effects (solid lines in Fig. 6) are
less important for the rotating case but very significant for the
alternating case in the limit of low frequencies. Nevertheless,

for low frequencies, the linearly polarized field was found to
produce more heat power for both T = 0 and T �= 0.

According to Refs. [12,14,15], for small and for very large
anisotropy the thermal effects are less important. It was shown
in Ref. [5] that for isotropic samples, even for T �= 0, the
energy absorption per cycle for a nanoparticle was larger in the
case of a linearly polarized applied field. Thus, if anisotropy
(at least if it is small or very large) does not increase the
energy losses obtained in the case of a rotating external field
(which is one of the findings of the present work), a better
heating efficiency can be achieved for isotropic nanoparticles
using a linearly polarized field. This indicates that possible
modification caused by thermal effects can only be expected
in the case of moderate anisotropy. Therefore, the study of the
present work is relevant for applications in hyperthermia, at
least for small and very large anisotropy.

VI. SUMMARY

The nonlinear dynamics of magnetization and the energy
loss of a single magnetic nanoparticle with uniaxial anisotropy
have been considered under a circularly polarized applied
field in the absence of thermal fluctuations. The easy axis
of magnetization has been chosen to be perpendicular to the
rotating applied field. We solved the deterministic Landau-
Lifshitz-Gilbert equation in order to determine the energy
loss per cycle in the case of the rotating applied field and
the findings were compared to those of the isotropic case in
Ref. [10]. Comparison between the linearly and circularly
polarized applied fields has also been performed, and the
results were analyzed in terms of the experimental data [7].

Our goal was twofold: (i) to study whether anisotropy can
be used to achieve a better heating efficiency in the case of a
rotating external field, and (ii) to use anisotropy to resolve
the discrepancy between theory [10] and experiment [7].
We showed that for a circularly polarized field, the energy
loss per cycle is decreased by anisotropy, compared to the
isotropic case. Thus, in the low-frequency limit, more heat
power can be achieved by alternating applied field for isotropic
nanoparticles, at least the rotating applied field produces lower
energy absorption for small and very large anisotropy. It was
also shown that in the limit of extremely large anisotropy,
the experimental results of Ref. [7] can be explained. The
possible role of thermal fluctuations discussed here indicates
the necessity of the extension of the present study for the case
of moderate anisotropy when thermal effects are taken into
account appropriately.
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