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Rotational ratchets with dipolar interactions
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We report results from a computer simulation study on the rotational ratchet effect in systems of magnetic
particles interacting via dipolar interactions. The ratchet effect consists of directed rotations of the particles in
an oscillating magnetic field, which lacks a net rotating component. Our investigations are based on Brownian
dynamics simulations of such many-particle systems. We investigate the influence of both the random and
deterministic contributions to the equations of motion on the ratchet effect. As a main result, we show that dipolar
interactions can have an enhancing as well as a dampening effect on the ratchet behavior depending on the dipolar
coupling strength of the system under consideration. The enhancement is shown to be caused by an increase
in the effective field on a particle generated by neighboring magnetic particles, while the dampening is due to
restricted rotational motion in the effective field. Moreover, we find a nontrivial influence of the short-range,
repulsive interaction between the particles.
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I. INTRODUCTION

Thermal Brownian ratchets or, as they are sometimes
called, Brownian motors, are devices that are able to extract
directional motion from Brownian random noise [1]. In
these out-of-equilibrium systems, it is possible to rectify the
Brownian noise into directional motion. In thermal equilib-
rium, such a phenomenon cannot exist as the second law of
thermodynamics would be violated [2,3].

Thermal ratchet effects have been known for a long time.
Recently, however, they have been attracting renewed attention
due to their possible applications in biological transport [4,5]
and nanotechnology [6,7].

Most of the research on Brownian motors has been focused
on directed translational motion. Exceptions are recent studies
of the so-called rotational ratchet effect in ferrofluids, which
has been investigated theoretically [8–10] as well as experi-
mentally [11].

Ferrofluids are suspensions of ferromagnetic colloidal
particles (with diameters of about 10 nm or larger) in a carrier
fluid such as water or oil [12,13]. These systems can be driven
out of equilibrium by, e.g., an oscillating magnetic field. The
ratchet effect reported in Refs. [8,9] consists of a noise-driven
directed rotation of the particles, which are exposed to a field
without a net rotating component. The rotations of the particles
are associated with an effective torque, which is transferred
to the solvent medium. This latter torque is of macroscopic
size, making the ferrofluid ratchet effect experimentally
detectable [11].

The theoretical investigations done so far have been
performed on the basis of the single-particle Langevin and
Fokker-Planck equations [9,10]. Interactions between the
ferromagnetic colloids have mostly been neglected [9], the
argument being that the concentration of magnetic particles
is extremely small in many ferrofluids (volume fraction
≈1%). In more concentrated samples, however, one would
expect the magnetic dipole-dipole interactions between the
particles to become important. Indeed, a well known effect
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is the chain formation of the particles triggered by the
anisotropy, particularly the head-to-tail preference, of the
dipole interactions. There is, to our knowledge, only one
theoretical study in which the impact of the dipolar interactions
on the ratchet effect has been investigated [10]. This study
approximates the interactions on a mean-field level, i.e., all
the particles experience a homogeneous effective field.

In the present paper, we will investigate the impact of the
true dipolar interactions on a particle level, i.e., by Brownian
dynamics (BD) computer simulations. In this way, we can not
only capture the full anisotropy and range of the interaction
(which is known to be crucial for self-organization processes
in dipolar systems [14–16]), but also the fact that the particles
are mobile.

This paper is organized as follows: In Sec. II, we present the
model and the simulation methods used throughout this study.
The next section deals with the rotational thermal ratchet effect
in noninteracting systems. Here, we will investigate the angular
trajectories of the particles and the influence of the strength of
the noise and the external field. In Sec. III B, we will then turn
to systems in which the particles interact via a short-range
repulsive and a dipole-dipole potential. We will show that
dipolar interactions can enhance as well as suppress the ratchet
effect, and we will analyze the mechanisms behind these
effects. Further, we will show that the short-range isotropic
repulsive potential has a significant influence on the ratchet
behavior. The paper is then closed with a brief summary and
conclusions.

II. MODEL AND SIMULATION METHODS

In this study, we consider a three-dimensional system of
dipolar colloidal particles that are immersed in a solvent. Only
the dipolar particles are handled explicitly. As a model, we use
a dipolar soft sphere (DSS) potential, which is comprised of a
repulsive part U rep and a point dipole-dipole interaction part
UD:

UDSS(rij ,μi ,μj ) = U rep(rij ) + UD(rij ,μi ,μj ). (1)

In Eq. (1), rij is the vector between the positions of the particles
i and j , rij is its absolute value, and μi is the dipole moment of
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the ith particle. The dipolar and repulsive interaction potentials
are given by

UD(rij ,μi ,μj ) = −3(rij · μi)(rij · μj )

r5
ij

+ μi · μj

r3
ij

(2)

and

U rep(r) = USS(r) − USS(rc) + (rc − r)
dUSS

dr
(rc), (3)

respectively. Here, U rep is the shifted soft sphere potential,
where

USS(r) = 4ε

(
σ

rij

)12

(4)

is the unshifted soft sphere (SS) potential for particles of
radius σ .

We investigate the system by making use of Brownian
dynamics (BD) simulations. These are based on the trans-
lational and rotational Langevin equations [14,17], which
are integrated twice over a time interval that is larger than
the inertial relaxation time and small compared to the time
at which the configuration changes [18–20]. This procedure
results in the equations [19,21,22]

ri(t + �t) = ri(t) + 1

kBT
DT

0 Fi�t +
√

2DT
0 �tξ t

i (5)

and

ei(t + �t) = ei(t) + 1

kBT
DR

0 Ti�t × ei(t)

+
√

2DR
0 �tξ r

i × ei(t), (6)

which form the basis of our BD simulations. Equations (5)
and (6) correspond to solving the Langevin equations in the
overdamped limit. In the equations above, ei = μi/μ is the
orientation of particle i. The conservative forces and torques
are given by

Fi = −∇ri

∑
j �=i UDSS(rij ,μi ,μj ), (7)

Ti = TDSS
i + Text

i , (8)

where

TDSS
i = −μi × ∑

j �=i ∇μi
UDSS(rij ,μi ,μj ), (9)

Text
i = μi × Bext, (10)

with an external field Bext. In Eqs. (5) and (6), DT
0 and DR

0 are
the translational and rotational diffusion constants, which are
given by

DT
0 = kBT

3πησ
, (11)

DR
0 = kBT

πησ 3
, (12)

where η is the viscosity of the solvent. The quantities ξ t
i and

ξ r
i are Gaussian random variables that satisfy〈

ξ t
i

〉 = 0,
〈
ξ r

j

〉 = 0, (13)〈
ξ t

iξ
t
j

〉 = δij ,
〈
ξ r

i ξ
r
j

〉 = δij ,
〈
ξ r

i ξ
t
j

〉 = 0. (14)

Regarding the external field Bext, we use the same ansatz
suggested previously in Refs. [9,10]. Specifically, the field has
a constant component in the x direction and an oscillating yet
asymmetric component in the y direction. A suitable ansatz is
given by

Bext(t) = Bxex + By[cos(ω0t) + sin(2ω0t + δ)]ey. (15)

The important point is that this field involves only oscillations,
but no full rotations, irrespective of the phase shift δ.
Nevertheless, it turns out that the particles can perform directed
full rotations. We note that the ansatz (15) is, however, by no
means the only field with which a ratchet effect can be realized.
In fact, a multitude of different fields are suitable if certain
certain conditions are met: Bx must be nonvanishing and there
cannot be a �t such that By(t) = By(−t + �t) (see Ref. [9]
for a detailed discussion of this issue).

Note that the particles we consider here are immersed in
a solvent. However, the solvent is only taken into account
implicitly and on a single-particle level, i.e., the random noise
and the diffusion constants do not depend on the configuration
of the particles.

We consider N = 500 particles in our simulation box
with periodic boundary conditions. The long-range dipolar
interactions are taken into account by using the Ewald
summation method [23].

For convenience, we make use of the following reduced
units: field strength B∗

α = (σ 3/ε)1/2Bα (α = x,y), dipole mo-
ment μ∗ = (εσ 3)−1/2μ, torque T∗ = T/ε, time t∗ = tDT

0 /σ 2,
temperature T ∗ = kBT /ε, and position r∗ = r/σ . In addition,
we will employ the parameter λ = μ∗2/T ∗ measuring the
dipolar coupling strength relative to kBT .

III. RESULTS

A. The thermal ratchet effect in a noninteracting system

As a background for our investigation of the impact of
dipolar interactions, we discuss in this section BD simulation
results for the rotational thermal ratchet effect in systems
of noninteracting particles. To this end, we analyze the
trajectories of the particles under the influence of the external
field (15) as well as the corresponding torque. Further, we
investigate the dependence of the ratchet effect on the strength
of the external field versus that of the noise. We note that
some of the points discussed in this section have already
been investigated in Ref. [9] via numerical integration of the
respective Fokker-Planck equation. Our present BD results
supplement these previous theoretical results.

The systems we consider in this section are characterized
by a temperature T ∗ = 0.2. The particles are driven by a field
of frequency ωσ 2/DT

0 = 15, a y-field component B∗
y = 1, and

various values of B∗
x . The dipole moment is set to μ∗ = 1, such

that the dipole-field coupling is μBy/kBT = μ∗B∗
y /T ∗ = 5.

Since neither repulsive nor dipolar interactions are taken
into account in this section, the density can be chosen
arbitrarily. With these choices of the variables, our results are
easily comparable to the ones from Ref. [9] (for the precise
relations between the dimensionless variables in our study and
those in Ref. [9], see the Appendix).
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FIG. 1. Mean orientation of the particles during one rotational
period of the field for noninteracting systems with B∗

x = 0.1 (black
lines) and B∗

x = 0.3 (gray lines) at δ = 0. The x and y components of
S̄(t) are indicated by solid and dashed lines, respectively. The dotted
line shows the field component in the y direction, Bext∗

y . The dots
are results from Ref. [9] for the B∗

x = 0.3 system (see the end of
Sec. III A).

To start with, we show in Fig. 1 the mean orientation of the
particles,

S̄(t) = 1

N

N∑
i=1

ei(t), (16)

for the external field (15) with B∗
x = 0.1 and 0.3 and δ = 0.

As can be seen, S̄x is essentially constant, while S̄y follows
(with a phase lag) the oscillating component of the external
field indicated by the dotted line in Fig. 1. Interestingly, while
S̄x is increased for the field with B∗

x = 0.3 over the field with
B∗

x = 0.1, S̄y remains essentially unchanged. We will later see
that this is of crucial importance for understanding the impact
of interactions.

The behavior of the mean orientation seen in Fig. 1
appears essentially deterministic. The actual ratchet effect
is illustrated in Fig. 2, where we plot two angles φi and
φ̄. The former is the angle that an (arbitrary) particle i

encloses with the x axis. It first remains close to a multiple
of 2π (indicated by the horizontal lines) corresponding to the
particle oscillating around the x direction of the field. This
behavior continues until a noise-induced full rotation (i.e., a

FIG. 2. The angular trajectories in terms of the polar angle φi of
an individual particle and the system-averaged angle φ̄ at B∗

x = 0.3
and δ = 0.

crossing of a horizontal line) occurs. One also sees that the
forward rotation, i.e., an increase by 2π , occurs more often
than the corresponding backward rotation. This illustrates the
directional character of the ratchet effect.

The second quantity φ̄ depicted in Fig. 2 corresponds to the
averaged value of the angles φi of all the particles,

φ̄(t) = 1

N

N∑
j=1

φj (t). (17)

In contrast to φi , this average angle φ̄ increases monotonically,
since individual fluctuations are smeared out.

Irrespective of these differences between φi and φ̄, Fig. 2
clearly demonstrates that there is a net rotational motion in one
direction. This corresponds to the presence of a net torque. We
calculated the net torque as an average of the time-dependent
torque over one period of the field, i.e.,

〈T̄〉 = 1

τ

∫ t0+τ

t0

T̄(t)dt, (18)

where

T̄(t) = 1

N

N∑
i=1

μi(t) × Bi(t) (19)

with

Bi = −∇μi

∑
j �=i

UDSS(rij ,μi ,μj ) + Bext. (20)

Numerical data for the net torque that the particles experience
for B∗

x = 0, 0.1, and 0.3 over the phase difference δ are
presented in Fig. 3 [cf. Eq. (15)]. It is seen that 〈T̄ ∗

z 〉 is indeed
nonzero and (at δ = 0) positive, reflecting the net rotation of
the particles to the right. Increasing the phase difference δ,
the value of 〈T̄ ∗

z 〉 changes and even assumes negative values.
This implies that the particles can perform forward as well as
backward rotations depending on δ.

We now consider in more detail the dependence of the net
torque on the strength of the constant field contribution B∗

x . At
B∗

x = 0, the external field simply performs an oscillation into
the y direction. In that case, no net torque can be observed.
With only one direction distinguished by the field, directional
rotational motion simply cannot occur [2]. For nonvanishing

FIG. 3. Averaged torque during one rotational period of the field
as a function of the phase difference δ for B∗

x = 0, 0.1, and 0.3 (and
B∗

y = 1). The dots are results from Ref. [9] for the B∗
x = 0.3 system.
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FIG. 4. The net torque as a function of the temperature for B∗
x =

0.1, 0.3, and δ = 0.

x components, the magnitude of 〈T̄ ∗
z 〉 depends strongly on the

value of B∗
x . As illustrated by Fig. 3, increasing B∗

x from 0.1 to
0.3 results in considerably larger torques 〈T̄ ∗

z 〉. We explain this
increase as follows: At higher values of B∗

x , the particles are
much more aligned into the x direction of the field, and thus in
the plane of the field. The latter point is illustrated by Fig. 1: S̄x

is considerably larger for B∗
x = 0.3 than for B∗

x = 0.1 while S̄y

remains essentially unchanged. In other words, higher values
of B∗

x ensure that the particles remain within the plane of the
field without dampening the oscillations of the dipole moments
in the y direction.

It is well established that ratchet effects, in general, depend
strongly on the strength of the noise relative to the deterministic
contributions to the equations of motion [2]. For the present
system, this interplay is illustrated in Fig. 4, where we plot
the torque as a function of the dimensionless temperature T ∗.
Inspecting Eq. (6), we see that the temperature T ∗ influences
the strength of the deterministic torque (due to the field) alone
if the diffusion constant is kept constant. In other words, T ∗
is a measure for the aforementioned ratio of conservative
torques to random noise. Small temperatures correspond to
systems that are dominated by deterministic torques, while
large temperatures correspond to noise-dominated systems.

In Fig. 4, we can see that the ratchet effect is strongest for
finite temperatures in the range T ∗ ≈ 0.05–0.2. This means
that the ratchet effect decreases in strength for too small or too
large noise contributions. If the temperature is too small, the
field dominates the rotational motion of the particles, which
are effectively unable to perform rotations against the field. At
large temperatures, on the other hand, the noise dominates such
that the influence of the field becomes insignificant. However,
without the nonequilibrium influence of the external driving
field, the ratchet effect cannot exist [2,3].

In Ref. [9], the behavior of a single dipole in the oscillating
field (15) was investigated on the basis of a Fokker-Planck
equation. Consistent with our results, the authors of Ref. [9]
found a maximum in the strength of the net torque at finite
values of the noise intensity. Moreover, for the particular
choice B∗

x = 0.3, our results for the mean orientation and the
net torque (see Figs. 1 and 3) are in quantitative agreement
with those in Ref. [9] (see the Appendix for the relationship
between the dimensionless units). As an illustration, some of
the results from Ref. [9] are plotted in Figs. 1 and 3. Moreover,

see Ref. [11] for a comparison of these theoretical results
(mean torque over phase difference) to experimental findings.

B. Influence of the particle interactions

In a ferrofluid, the particles interact with each other via
short-range repulsive as well as dipolar interactions. These
interactions can be neglected in strongly diluted ferrofluids,
however they do become important when the density of the
dipolar particles becomes higher.

As has been shown in previous studies, particle interactions
can indeed have a profound influence on ratchet effects [2,10,
24]: For instance, in a translational ratchet, they can reverse
the direction of the effect or even give rise to it in the first place
[2,25]. The latter is also true for the rotational ratchet effect.
It was shown in Ref. [10] that dipolar interactions treated on a
simple mean-field level can induce effective particle rotations
despite a vanishing field component Bx .

In the following, we choose a density of ρσ 3 = 0.2
corresponding to a dipolar fluid of moderate packing fraction
η = πρσ 3/6 ≈ 0.105 [26]. This choice ensures that the
dipolar interactions play a crucial role at higher coupling
strengths. The frequency of the oscillating field is again set
to ωσ 2/DT

0 = 15, and we use a phase difference of δ = 0.
Regarding the interaction parameters, we consider a range of
values for the dimensionless dipole moment μ∗ and different
values of the dimensionless temperature T ∗. In this way, we
can explore both the impact of the dipolar interactions (2) and
that of the repulsive interactions (3).

Note that while we vary μ∗ (and thus λ), we keep the
products μ∗B∗

x and μ∗B∗
y , i.e., the dipole-field coupling, fixed.

To indicate the used field strength, we therefore use the
notation B+

γ ≡ μ∗B∗
γ .

In the lower-temperature systems (T ∗ = 0.2) considered
here, we use B+

y = 1. With this choice, the interaction strength
between dipoles and field remains as in the previous section.
In the systems with T ∗ = 1, we use proportionally stronger
external fields with B+

y = 5. The relative strength of the
external field compared to the Brownian noise is then equal to
that in the low-temperature case.

In Fig. 5, we present results for the z component 〈T̄ ∗
z 〉 of

the averaged torque 〈T̄∗〉 for systems with different dipolar

FIG. 5. The z component 〈T̄ ∗
z 〉 of the averaged torque for different

coupling strengths λ at T ∗ = 1, B+
x = 0.5, B+

y = 5 (solid line, right
axis) and T ∗ = 0.2, B+

x = 0.1, B+
y = 1 (dashed line, left axis). As in

all the following figures, ρσ 3 = 0.2, ωσ 2/DT
0 = 15, and δ = 0 were

used.
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coupling strengths λ = μ∗2/T ∗ at B+
x = 0.5, T ∗ = 1 and

B+
x = 0.1, T ∗ = 0.2. At λ = 0, the particles interact with each

other via the soft-sphere interaction but not via the dipole-
dipole interaction. Note that pure soft-sphere interactions do
not affect particle rotations, and thus they should not influence
the ratchet effect. Therefore, the net torque found at λ = 0 for
the T ∗ = 0.2 system equals the one shown in Fig. 3 for δ = 0.

Starting from the noninteracting system, the net torque
plotted in Fig. 5 increases up to λ ≈ 1.5 (T ∗ = 1) or λ ≈ 2.5
(T ∗ = 0.2), respectively. In the high-temperature system, the
maximum of 〈T̄ ∗

z 〉 is approximately 30% larger than the
torque at λ = 0. For T ∗ = 0.2, the maximum is even more
pronounced: The torque is increased by nearly 40% compared
to the noninteracting system. For higher values of λ, 〈T̄ ∗

z 〉
decreases continuously.

Note that this behavior is consistent with the behavior found
in the mean-field investigation in Ref. [10]. In that study, the
authors considered particles that experience a (mean-field)
torque of the form

Tmf
i = ei × K

N

N∑
i=1,j �=i

ej , (21)

where K is the mean-field coupling strength. For nonvanishing
values of K , an increase in the ratchet effect was discovered
[10], which agrees with our observations.

The behavior of 〈T̄ ∗
z 〉 in Fig. 5 is also reflected by the change

in the (system-averaged) polar angle φ,

〈φ̄〉 = φ̄(t + τ ) − φ̄(t), (22)

during one rotational period of the field. As shown in Fig. 6, 〈φ̄〉
and 〈T̄ ∗

z 〉 behave almost identically, which can be understood
by looking at the BD evolution equation (6). This equation
corresponds to numerically integrating

ωi = 1

kBT
DR

0 Ti +
√

2DR
0 ζ i . (23)

Here, ωi = ei × ėi is the angular velocity of particle i, and ζ i

is a random Gaussian variable. Note that a differential equation
for ėi can be obtained from Eq. (23) by using the definition
of ωi and taking the vector product with ei . Equation (6) then
corresponds to integrating the resulting equation. Assuming
the rotational motion of the particles to be restricted to the plane

FIG. 6. The net torque 〈T̄ ∗
z 〉, the mean traversed angle 〈φ̄〉, and

the mean traversed angle 〈φ̄〉2d calculated from the torque [see
Eq. (24)] are shown for T ∗ = 1 and B+

x = 0.5.

of the field (denoted by the subscript “2d”) and neglecting the
random noise, we find

〈φ̄〉2d = τDR
0

kBT
〈T̄z〉2d (24)

from integrating both sides of Eq. (23) over one period of the
field. This equation relates the traversed angle of the particles
to the average torque. The dotted line in Fig. 6 demonstrates
this relation. We calculated the traversed angle via Eq. (24)
from the torque component 〈T̄z〉. It is seen that this equation
slightly underestimates the observed value of 〈φ̄〉, which can
be explained by the fact that Eq. (24) holds strictly only for
particle rotations in the plane of the field. Additionally, we
neglected the random noise, which is expected to introduce
further deviations from the observed relation. Nonetheless,
Eq. (24) predicts a change in the traversed angle close to the
observed one.

We now discuss the origin of the maximum in Figs. 5
and 6. The initial increase in strength of the ratchet effect
for increasing values of λ can be understood by considering
the average effective field

Beff = Bext + 1

M

M∑
i=1

∑
j �=i

Bdip
ij (25)

felt by the particles, where M is the number of particles
considered and

Bdip
ij = 3rij (rij · μj )

r5
− μj

r3
. (26)

This effective field is depicted in Fig. 7 for particles with λ =
1.44, T ∗ = 1 and λ = 2.45, T ∗ = 0.2. These temperatures
and coupling strengths roughly correspond to the maxima
in the net torque and the averaged traversed angle (see
Fig. 5). The plots in Fig. 7 show that, due to the dipolar
interactions, the effective field components Beff∗

x and Beff∗
y are

increased as compared to the components of the external field.
The fact that an enhancement of the (effective) field acting on
the particles can support the ratchet effect is already suggested
by our results for a noninteracting system in Sec. III A: As
shown in Figs. 3 and 4, an increase in Bx alone or in both Bx

and By can lead to larger values of the net torque.

FIG. 7. Mean values of the x and y components of the averaged
effective field Beff∗ over one rotational period of the field at λ = 2.45,
T ∗ = 0.2, and B+

x = 0.1 (top) and λ = 1.44, T ∗ = 1, and B+
x = 0.5

(bottom). The solid lines represent the respective external fields, i.e.,
B+

x = 0.1, B+
y = 1 (top); B+

x = 0.5, B+
y = 5 (bottom).
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FIG. 8. Mean orientation of the particles during one rotational
period of the field for λ = 1.44 (black lines) and λ = 9 (gray lines)
at T ∗ = 1 and B+

x = 0.5. The x and y components of S̄ are indicated
by the solid and dashed lines, respectively.

For coupling strengths higher than λ ≈ 1.5 (T ∗ = 1) or
λ ≈ 2.5 (T ∗ = 0.2), respectively, the magnitude of the ratchet
effect (as measured by 〈T̄ ∗

z 〉) begins to decrease. We relate
this behavior to the increase of the ratio of conservative
torques induced by the dipolar interactions and the external
field relative to the strength of the noise. However, in contrast
to the (corresponding) decrease described in Sec. III A (see
Fig. 4), a large contribution to the torque now stems from
the dipole-dipole interaction and not from the particle-field
interaction. This can be seen in Fig. 8, where we compare the
functions S̄x(t) and S̄y(t) [cf. Eq. (16)] for a system at λ = 1.44
(T ∗ = 1) and a more strongly coupled one at λ = 9 (T ∗ = 1).
It is seen that S̄x is significantly larger for the latter system
(S̄x ≈ 0.58) than for the former one (S̄x ≈ 0.16). Recalling
the discussion in Sec. III A (noninteracting system), one would
thus expect the ratchet effect at λ = 9 to be even larger than
at λ = 1.44. However, the amplitude of S̄y is considerably
smaller. Indeed, the maximum of |S̄y | for the strongly coupled
system is about 0.31, while it is about 0.72 for the one with
λ = 1.44.

This means that the particles at λ = 9 are much more
aligned along the x direction (i.e., the constant part of the field)
without closely following the oscillations in the y direction. In
conclusion, the behavior seen at λ = 9 is in stark contrast to
what is shown in Fig. 1 for a noninteracting system. There, an
increase in B∗

x does not automatically damp out the oscillations
in the y direction. Consequently, the ratchet effect is increased
rather than damped.

Finally, we note that, for relevant values of λ, the relative
increase in the net torque is larger for the low-temperature
system than for the high-temperature one. Indeed, Fig. 5 shows
that the value of T ∗ influences the entire behavior of 〈T̄ ∗

z 〉 as
a function of λ. Therefore, not only the dipolar but also the
short-range repulsive interactions between the particles have
an impact on the ratchet effect.

The sensitivity against T ∗ can be explained by the fact
that the soft-sphere interactions affect the effective distance
between the dipolar particles. In Fig. 9(a), the radial distribu-
tion functions of two systems at identical coupling strength
λ = 4 but different temperatures (T ∗ = 1 and 0.2) are shown.
Judging from the position of the main peak, two neighbors are
typically closer to one another in the T ∗ = 1 system than in

FIG. 9. (a) Pair correlation functions of systems (B+
x = 0.5, 0.1)

at different temperatures (T ∗ = 1, 0.2) but identical dipolar coupling
strengths λ. (b) The local field b(r) [see Eq. (27)] for the two different
systems.

the low-temperature one. As a result, the particles experience
a considerably stronger effective field in the high-temperature
system. This is illustrated by Fig. 9(b), where we plot the
function

b(r) = 1

Sr

∫
Sr

dS
1

N

〈
N∑

i=1

∑
j �=i

δ(r − rij )Bdip
x,ij

〉
, (27)

where Sr is the surface of a sphere of radius r . From a physical
point of view, the function b(r) corresponds to the local field
in the x direction that is generated by neighboring dipolar
particles with distance r∗ from the central one. From Fig. 9(b),
we see that the local field at short distances is significantly
increased in the T ∗ = 1 system as compared to the field in
the T ∗ = 0.2 system. Hence, as argued above, the rotational
motion is much more restricted in the former system, resulting
in a less pronounced ratchet effect at a fixed coupling strength.
Additional test simulations indicate that we can generally
expect a relative increase of the ratchet effect when T ∗ is
decreased.

C. Relation to self-assembly

It is well established that strongly coupled dipolar particles
can self-assemble into a variety of structures including chains,
networks, and sheets [14,16]. Moreover, for dense systems
of dipolar spheres, theory and computer simulations predict
a phase with spontaneous long-range, parallel (i.e., ferromag-
netic) order [27]. It is therefore an interesting question whether
these phenomena have any relevance in the context of the
rotational ratchet effect.

The answer from our present BD simulations is essentially
negative. Indeed, in the conditions where we found an increase
in the ratchet effect (T ∗ = 1, 0 � λ � 3.5; T ∗ = 0.2, 0 � λ �
5.5) there is no global parallel order. Moreover, significant
local ordering of the particles only occurs for dipolar coupling
strengths λ � 9 (T ∗ = 1), which is outside of the range where
we observe enhancement of the ratchet effect. The structures
seen in such a highly coupled systems are illustrated by the
simulation snapshot in Fig. 10. Similar to ferrofluids subject
to constant, homogeneous external fields, the oscillating field
favors chain formation of the particles. Systems of lower
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FIG. 10. Snapshot of a system at λ = 9, T ∗ = 1, and B+
x = 0.5.

coupling strength lack any such order. In particular, no local
order can be observed at λ = 1.44, T ∗ = 1, i.e., where the
ratchet effect is maximal.

Another interesting aspect is the (possible) impact of the
ferromagnetic phase transition occurring at higher densities. In
Ref. [10], this question was investigated on a mean-field level
[cf. Eq. (21)]. For sufficiently large coupling strengths K , one
finds a spontaneous ferromagnetic ordering of the particles,
resulting in an effective nonvanishing field component in the
x direction [10]. Due to this net field, the ratchet effect can
occur even in the absence of an external x component of the
field.

We have searched for a similar phenomenon in our many-
particle system. However, at the parameters considered, we
were not able to find a net particle rotation. Not even at
high densities, where the dipolar soft spheres undergo a
ferromagnetic phase transition [27], did we detect such a
rotation.

This could be due to several reasons: First, the true effective
field within the ferromagnetic phase is inhomogeneous and
typically much weaker than any average “mean field” (this is
also the reason that the isotropic-ferromagnetic transition in a
true dipolar system occurs at much larger coupling strengths
than those predicted by mean-field theory [10,27]).

Second, in a dense dipolar system, the orientations of the
particles are strongly coupled over large distances. In other
words, the dipole orientations are severely restricted, which
further suppresses the ratchet effect.

IV. CONCLUSIONS

In this study, we have investigated the rotational thermal
ratchet effect for noninteracting particles as well as particles in-
teracting via long-range dipolar interactions. With our particle-
based simulations, we looked at the angular trajectories of the
dipolar particles, which conclusively illustrate the net rotating
behavior of the driven particles. For noninteracting particles,
we found that a finite ratio of deterministic torques to random
noise yields a maximally pronounced ratchet effect.

The main focus of this study, however, was the investigation
of the influence of dipolar interactions on the rotational

behavior of the particles. In particular, we showed that dipolar
interactions can have an enhancing as well as a dampening
effect depending on the dipolar coupling strength λ. The
enhancement found at small values of λ is due to the fact that
the effective field acting on a particle is larger (than without
interactions), but not too large to suppress rotations. This
finding is consistent with the mechanism found in Ref. [10].

However, it would be difficult to directly compare these
two results, since the prediction from Ref. [10] is based on
particles interacting via a mean-field interaction. This causes
two problems. First, density is irrelevant in the mean-field
theory. In our simulations, however, it is expected to play
a role. Closely related to this is the second point: The
mean-field interaction is not distance-dependent, which means
that the coupling parameter used in Ref. [10] cannot be
easily compared to the dipolar coupling strength used in our
study.

Interestingly, we were not able to attribute the increase in
the ratchet effect in systems of dipoles to a synchronization
phenomenon, i.e., a coupled rotation of two neighboring dipo-
lar particles. It is, however, possible that such synchronization
phenomena occur at thermodynamic and field parameters that
differ from the ones investigated here.

At higher values of λ, i.e., stronger dipolar couplings,
we find a decrease in the ratchet effect. In this region, the
particles start to aggregate into clusters along the direction
determined by the constant contribution to the external field.
As a consequence, the effective field becomes too strong and
the dipole moments can follow the oscillatory motion of the
field less and less, leading to a pronounced dampening of
any rotations. We note that the values of λ considered in this
work are in the range typical for real ferrofluids (as are the
considered densities).

As a somewhat counterintuitive effect, we have found
that not only the anisotropic dipolar interactions but also
the isotropic repulsive interactions between the particles have
a significant influence on the ratchet effect. At constant
dipolar coupling strength, the steepness of these interactions
determines the average distance between the particles and
thus the magnitude of the effective local field. In this way,
short-range interactions can “tune” the effective torque.

Two interesting remaining questions concern the influence
of the density and the driving frequency on the ratchet effect. In
test simulations, the net torque seems to slightly increase with
increasing density (0.05 � ρσ 3 � 0.5). We speculate that this
density-induced increase is due to the increasing number of
neighbors around a particle, which, in turn, could enhance the
local effective field (similar to the coupling strength-induced
mechanism discussed in Sec. III B). A detailed investigation of
the impact of the density will be the subject of a future study.
The influence of the driving frequency, on the other hand,
has already been investigated experimentally [11] as well as
theoretically [9]. However, the theoretical predictions seem to
conflict with the experimental data. In the experiment, the net
torque saturates at high frequencies, the reason for which is
still not understood. This point will also be addressed in a
future study.

In summary, our results show that the conservative
interactions typical of real ferrofluids strongly influence
noise-induced phenomena such as the ratchet effect. So far, we
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have not taken into account the fact that the solvent, which is
omnipresent in a ferrofluid, induces additional hydrodynamic
interactions between the magnetic particles. These long-range
interactions have been shown to play a significant role in
translational ratchets (see, e.g., Refs. [28,29]) and related syn-
chronization phenomena [30]. The interplay of hydrodynamic
and dipolar interactions in the context of the present ratchet
effect will be the subject of a future study.
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APPENDIX : REDUCED UNITS

Here, we show how the reduced units used in our study
are related to the ones used by Engel et al. [9]. The latter are

denoted by a superscript “†.” For the reduced temperature we
find

T ∗ = μ∗
0D

†B
∗

B† . (A1)

The frequency is related by

ω
σ 2

DT
0

= 3

D† , (A2)

the time by

t∗ = 1
3D†t†, (A3)

and the torque by

T ∗
z = T †

z

T ∗

D† . (A4)

Using D† = 0.2, μ∗
0 = 1 [cf. Eq. (10)], and choosing B† =

B∗ and �t† = 0.0015 yields T ∗ = 0.2, �t∗ = 0.0001, and
ωσ 2/DT

0 = 15. This means that T ∗
z = T

†
z .
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