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Viscoelasticity of two-layer vesicles in solution
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The dynamic shape relaxation of the two-layer vesicle is calculated. In addition to the undulation relaxation
where the two bilayers move in the same direction, the squeezing mode appears when the gap between the two
bilayers is small. At a large gap, the inner vesicle relaxes much faster, whereas the slow mode is mainly due to
the outer-layer relaxation. We have calculated the viscoelasticity of the dilute two-layer-vesicle suspension. It
is found that for a small gap, the applied shear drives the undulation mode strongly while the slow squeezing
mode is not much excited. In this limit, the complex viscosity is dominated by the fast-mode contribution. On the
other hand, the slow mode is strongly driven by shear for a larger gap. We have determined the crossover gap,
which depends on the interaction between the two bilayers. For a series of samples where the gap is changed
systematically, it is possible to observe the two amplitude switchings.
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I. INTRODUCTION

Vesicle dynamics has long been investigated both ex-
perimentally and theoretically [1–6]. The decay rate of the
thermally excited shape fluctuation provides information of
vesicle elasticity. The knowledge of the microscopic relaxation
can also be used to predict the macroscopic rheological
property of the vesicle solution [6].

The vesicles are mostly nonequilibrium system. The exter-
nal perturbation, be it thermal, electrical, sonication [7,8], or
flow [9,10], transforms the lamellar structure into the vesicles.
In such situation, one often obtains mixture of unilamellar
vesicle and multilamellar vesicles (MLV) of various sizes.
However, in sharp contrast with the very detailed calculations
and scattering experiments on the unilamellar vesicles, there
are relatively few studies of the MLV dynamics in the literature.
In this paper, we consider the two-bilayer vesicle which
is the simplest MLV. We calculate the dynamic relaxation
rates, as well as the rheological response of the two-layer
vesicles. From the experimental point of view, it is hard to
prepare vesicles with exactly two bilayers. Nonetheless, such
a concrete calculation provides a clear picture of how the
interaction between the two membranes affect the relaxation
rates, as well as the squeezing (lubrication) flow which arises
exclusively in MLV. Since our method can be extend to vesicles
with more than two bilayers, a more specific calculation can
be performed similarly.

The squeezing dynamics of the sandwiched solvent be-
tween the two layers has been analyzed in two related
problems. This relaxation process of the flat lamellar system
was calculated by Brochard and de Gennes as the “slip
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mode” [11] or later measured and called the “baroclinic
mode” [12–14]. In the soap film system, the “squeezing mode”
dispersion has been calculated and measured [15–17]. In this
work, we obtain a similar relaxation, in which the solvent
is squeezed between the two adjacent bilayers to relax the
bilayer curvature energy and the mutual interaction energy
between the two bilayers. As this mode arises only in MLV,
we are interested in its dispersion relation and its coupling
strength with the applied shear. Due to the strong lubrication
resistance, the squeezing mode is often the slowest relaxation
mode. This makes the squeezing mode an important candidate
for the vesicle rheology. However, not every relaxation mode
is equally excited by the applied shear. Therefore whether the
shear can drive the squeezing mode with a large amplitude is
an important problem to consider. In this work, we will try to
build our understanding of the coupling strength through the
concrete calculation.

Based on the analysis below, we find that the squeezing
mode makes the dominant contribution to the complex vis-
cosity for strongly interacting bilayers. Interestingly, when the
gap between the two bilayers is smaller than a characteristic
crossover gap, the fast undulation mode becomes the dominant
mode for the complex viscosity. We find that the crossover
gap gets very small when the bilayer interaction is strong.
On the opposite limit where the bilayer has extremely weak
interaction, the crossover gap becomes comparable to the inner
vesicle radius.

In Sec. II, we define our model. Section III discusses
the elastic force. In Sec. IV and the appendices, the flow
resistance between the bilayers is solved. In Sec. V, we
shall analyze the relaxation rate. In Sec. VI, we consider the
viscoelasticity of the dilute vesicle suspension. Section VII
includes further discussions of the results. Finally, in
Sec. VIII, we provide a nontechnical summary of our
results.
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FIG. 1. The vesicle consists of two bilayers with the radius r1 and
r2. The surrounding solvent viscosity is η everywhere.

II. THE MODEL

We consider a two-layer vesicle with two bilayers located
at the spheres with mean radius r1 and r2 as shown in Fig. 1.
The deformation of the bilayer shapes are described by the
radial layer displacements u1 and u2 relative to the two
reference spheres, respectively. Both of the bilayer membranes
are surrounded by a solvent of viscosity η. Let a denote the
area per molecule projected on the reference sphere and a0 the
averaged projected area per molecule. For each membrane,
we define the dimensionless surface density φn (n = 1,2)
given by the ratio a0/a. Notice that φn becomes unity at
equilibrium. In a fluctuating vesicle, φn is not uniform in
general. In this work we propose the free energy of a two-layer
vesicle as

F =
(
r3

2 − r3
1

)
3

B

2

∫ (
u2 − u1

r2 − r1

)2

d�

+
2∑

n=1

∫ [
γn + κ

2
H 2

n + E

2
(φn − 1)2

]
dAn, (1)

where B is the layer compression modulus, γn the surface
tension, κ the bending modulus, and E the area stretching
(compression) modulus. Here both κ and E are taken to be the
same for the two membranes. Moreover, d� is the differential
solid angle, and the surface area element is approximately
given by dAn ≈ [1 + (∇⊥un)2/2]r2

n d�. The mean curvature
Hn is given by

Hn ≈ − 2

rn

+ 2un

r2
n

+ ∇2
⊥un, (2)

up to linear order in un.
Two comments should be made about the first term of

Eq. (1). The compression modulus B should be a function
of r1 and r2. In principle, a microscopic statistical model
for MLV should provide the functional form. Here we focus
on the layer dynamics; to build such a model is beyond
the scope of this work. As a rough estimate for discussion,
below in Sec. III B, we will use the B, which is calculated
from the flat layers, and replace the distance d between two
layers by r2 − r1. This approximation is justified for d � r2,
while it may deviate considerably when d is comparable
to r2.

The interaction term proposed here is proportional to
(u2 − u1)2, which arises naturally at small d from the square

of the strain. At large d, the curvatures and the areas for
the two bilayers differ markedly. Presumably, a microscopic
model may derive a more suitable weighted interaction energy,
which is proportional to [u2 − (r1/r2)βu1]2 with a weighting
exponent β. Below we present the calculation without this
extra weighting factor. Nonetheless, the calculation procedure
is exactly the same for the case β �= 0.

At the dilute phase boundary of the lamellar phase, the
surface tension γn should vanish [18]. Inside the lamellar
phase, the tension depends on the applied osmotic pressure. To
simplify the discussion, we shall only consider the case where
the surface tension vanishes γn = 0. In fact, the calculation
with finite surface tension can be carried out in the same way.
The layer displacement un is related to the radial velocity vr

at r = rn by

∂un

∂t
= vr (rn), (3)

where we neglect the solvent permeation. The surface density
obeys

∂φn

∂t
= −2vr (rn)

rn

φn − ∇⊥ · [v⊥(rn)φn], (4)

where ∇⊥ is the two-dimensional (2D) surface derivative
and v⊥(rn) is the tangential velocity at r = rn. Here we
have neglected the amphiphile exchange flux between the
neighboring bilayer (the amphiphile permeation).

The flow field obeys the Stokes equation, which is presented
here as the form

η∇2v − ∇p = 0, (5)

where η is the viscosity and p the pressure. Here we write
down the force balance conditions that are satisfied on the two
layers. The normal force balance is given by

− δF

δun

+ σrr (r+
n ) − σrr (r−

n ) = 0, (6)

where σrr = −p + 2η∂rvr (r being the radial distance) and the
superscripts + and − indicate that the stresses are evaluated
at the exterior and interior of the bilayer, respectively. On the
other hand, the tangential force balance is given by

− δF

δxn

+ σ⊥(r+
n ) − σ⊥(r−

n ) = 0, (7)

where xn is the 2D tangent displacement of the layers, and the
2D stress is defined as σ⊥ = θ̂σrθ + ϕ̂σrϕ (θ and ϕ being the
polar and azimuthal angles, respectively).

The viscoelastic response of a dilute two-layer-vesicle
suspension can be calculated by considering the stress response
to an external flow at large distances from the vesicles

v∞(r,t) = 
∇[r2Y20(θ,ϕ)]eiωt , (8)

where 
 is the strength of the elongational flow, Ylm(θ,ϕ) are
the spherical harmonics, and ω is the angular frequency. Each
suspended vesicle contributes to the averaged stress. In the
dilute solution, the effective complex viscosity is calculated
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as [6,19]

η∗ = η

(
1 − pII

20

4η
r3
2

φv

)
, (9)

where φv = (4π/3)cr3
2 is the volume fraction occupied by the

vesicles (c is the number density of the vesicles) and pII
20 is

the frequency-dependent complex coefficient of the spherical
harmonic expansion of the pressure [see Eqs. (A10) and (B6)
later]. The effective viscosity can also be expressed in terms
of the complex modulus as G∗ = iωη∗.

III. THE ELASTIC FORCES

A. Force expressions

The elastic forces are calculated by evaluating the deriva-
tives −δF/δun and −δF/δxn. From Eq. (4), we see that the
bilayer tangential displacement and the radial displacement
produce the first-order surface density perturbation as

δφn = −2un

rn

− ∇⊥ · xn. (10)

The tangential elastic force is given by

− δF

δxn

= ∇⊥(δγn), (11)

where the tension perturbation δγn is induced by the surface
density perturbation, i.e., δγn = −E(φn − 1). Notice that the
2D gradient has the usual component form,

∇⊥(δγn) = θ̂
1

r

∂(δγn)

∂θ
+ ϕ̂

1

r sin θ

∂(δγn)

∂ϕ
. (12)

Up to linear order in un and δγn, the normal force on bilayer
1 is given by

− δF

δu1
= B(r3

2 − r3
1 )

3(r2 − r1)2

u2 − u1

r2
1

− 2(γ1 + δγ1)

r1

+ (γ1 − κ∇2
⊥)

(
∇2

⊥ + 2

r2
1

)
u1, (13)

whereas that for bilayer 2 is

− δF

δu2
= −B

(
r3

2 − r3
1

)
3(r2 − r1)2

u2 − u1

r2
2

− 2(γ2 + δγ2)

r2

+ (γ2 − κ∇2
⊥)

(
∇2

⊥ + 2

r2
2

)
u2. (14)

In the large stretching modulus limit (E → ∞), the tension
perturbations δγn become Lagrange multipliers, so they ensure
that the right-hand side of Eq. (10) vanishes. By using Eqs. (7)
and (11), the values of δγn are determined from the viscous
stress σ⊥ (see Appendix C).

B. The bilayer interactions

There are several interactions which contribute to the layer
compression modulus B. In this subsection, we indicate their
physical origins and give the simplest formulae to describe
them. For charged bilayers, the electrostatic interaction,

together with the counterion and coion entropy produce the
free energy per area [20–22],

Ve = 64CskBT

κD
tanh2

(
qψ

4kBT

)
e−κDd , (15)

where Cs is the salt concentration, qψ the potential energy of
the counterion q at the surface, κD the inverse of the Debye
screening length, d = r2 − r1 the distance between the two
surfaces, and kBT the thermal energy.

The van der Waals attraction potential per unit area can be
calculated by summing the dipoles to obtain

VvdW 
 − A

12π

[
1

(d − δ)2
+ 1

(d + δ)2
− 2

d2

]
, (16)

where A is the Hamaker constant and δ is the membrane
thickness. A more complicated Lifschitz theory calculation
can provide a more accurate description [20–23]. The sum
of these two interactions consists the standard DLVO theory.
When the electrostatic repulsion and van der Waals attraction
stabilize MLV, B can be evaluated from

B = d
∂2(Ve + VvdW)

∂d2
. (17)

For a flexible bilayer where the undulation entropy depends
strongly on the membrane separation d, Helfrich estimated the
free energy per area and B by a self-consistent argument to
obtain [21,24]

B = c0
(kBT )2

κd3
, (18)

where c0 is an order unity numerical constant. In the following
examples below, we use c0 = 36/π2. When the van der Waals
interaction becomes important, a more elaborate calculation
is required to combine the undulation entropy and the van der
Waals attraction [25].

IV. THE NORMAL FORCE BALANCE

Using the spherical harmonic expansion, the Stokes equa-
tion can be solved in terms of the radial functions, which are
simple polynomial of the radius. The detailed calculation is
presented in Appendix A. In general, the solution depends
on the boundary velocities, which are the velocities of the
membranes and the applied external shear. In the usual case
where the bilayers have a large stretching modulus E, we can
simplify the discussion by considering the large stretching
modulus limit E → ∞. In this limit, the surface density
approaches unity, and the combinations E(φn − 1) become
the Lagrange multipliers to ensure that surface densities are
constant. Hence, the constant E can be eliminated. The detailed
calculation is presented in Appendix B. At the boundaries, this
limit also turns the tangential velocity into the function of the
normal velocity. This means that the normal stresses σrr (r+

n )
and σrr (r−

n ), as well as the tension perturbation δγn, are all
proportional to the bilayer normal velocities and the external
shear. The detailed calculation is presented in Appendix C.

The bilayer displacements and velocities are expanded
as the sum of the spherical harmonics Ylm(θ,ϕ) times the
time-varying amplitudes, i.e., un(θ,ϕ) = unYlm(θ,ϕ) and
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vr (rn,θ,ϕ) = vnYlm(θ,ϕ). Without cluttering the notation with
the angular quantum numbers l and m, hereafter we use un

and vn to express the time-varying amplitudes for an arbitrary
set of (l,m). After performing some calculations to express
σrr and δγn by vn [see Eqs. (C1), (C5), (B4), (B6), and (B9)],
we find that the normal force balance Eq. (6) at r1 and r2 can
be written as

E ·
(

r2
1 u1

r2
2 u2

)
+ D ·

(
r2

1 v1

r2
2 v2

)
= 20η
eiωt δl2δm0ê2, (19)

where ê2 = (0,1). Here we prefer to use the variables r2
1 u1

and r2
2 u2 which make the matrices E and D symmetric. With

this variable choice, the free energy per solid angle is then
the quadratic form of E. The components of the matrix E are
given by

E11 = B(1 − ρ3)

3r3
2 (1 − ρ)2ρ4

+
(
γ1r

2
2 ρ2 + κL̂2

)
(L̂2 − 2)

r6
2 ρ6

,

E12 = − B(1 − ρ3)

3r3
2 (1 − ρ)2ρ2

, E21 = E12, (20)

E22 = B(1 − ρ3)

3r3
2 (1 − ρ)2

+
(
γ2r

2
2 + κL̂2

)
(L̂2 − 2)

r6
2

,

where have defined ρ = r1/r2 (� 1) and

L̂2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂ϕ2
, (21)

whereas the components of the matrix D are

D11 = ηr4l+1
2 (2l + 1)

G0(l2 + l)
[−(l + 1)2(4l2 − 1)ρ2l+1

+ (l2 − 1)(2l − 1)(2l + 3)ρ2l−1

+ (l − 1)2(4l2 + 8l + 3)ρ2l−3 + (8l2 + 8l − 4)ρ−2],

D12 = ηr4l+1
2 (4l + 2)

G0(l2 + l)
[(2l3 + 5l2 + l − 2)(ρ3l+2 − ρl−1)

+ (2l3 + l2 − 3l)(ρl+1 − ρ3l)],

D21 = D12,

D22 = ηr4l+1
2 (2l + 1)

G0(l2 + l)
[−(l + 2)2(4l2 − 1)ρ2l+4

+ 2l(l + 2)(2l − 1)(2l + 3)ρ2l+2

+ l2(4l2 + 8l + 3)ρ2l + (8l2 + 8l − 4)ρ], (22)

where

G0 = r4l+4
2 [4ρ + 4ρ4l+3 − (2l + 1)2ρ2l+4

− (6 − 8l − 8l2)ρ2l+2 − (2l + 1)2ρ2l]. (23)

Notice that the components of D are the product of η/r3
2 and

the functions of ρ and l.
When the two bilayers are well separated, i.e., r1 � r2, they

are not hydrodynamically coupled. In this limit, D12 and D21

become small, and we recover the isolated vesicle damping
given by [4–6]

Dnn = η(2l + 1)(2l2 + 2l − 1)

r3
nl(l + 1)

. (24)

For the more general bilayer interaction which is propor-
tional to B[u2 − (r1/r2)βu1]2, the similar calculation will give
rise to an extra factor ρ2β for the B term in E11, and an extra
factor ρβ for the B terms in E12 and E21. The form of E22 is
not affected.

V. RELAXATION SPECTRUM

The relaxation rates, denoted as �j (j = 1,2), are the
eigenvalues of the matrix D−1 · E. The normal force balance
condition Eq. (6) on the two bilayers gives the eigenvector
equation

D−1 · E · dR
j = �j dR

j , (25)

where dR
j are the (nonorthogonal) right eigenvectors. To work

with the orthogonal eigenvectors, here we define the symmetric
decay rate matrix,

M = D−1/2 · E · D−1/2, (26)

which has the (normalized) eigenvectors dj ,

M · dj = �j dj . (27)

Here the eigenvalues are the same as in Eq. (25), and dj is
proportional to D1/2dR

j . We can decompose the decay rate
matrix as

M = �1d1d1 + �2d2d2, (28)

which will be used in the later discussion. Hereafter, the faster
and the slower rates are denoted by �1 and �2, respectively.

The full expression of the decay rates are straightforward
but complicated. Hence, we shall obtain some simplified
expressions to gain some understanding on the nature of
the relaxation. We, first, discuss the fast mode �1. When
ρ = 1, the fast undulation mode has a well-known dispersion
relation [3,4,6],

�0 = 2κ(l − 1)l2(l + 1)2(l + 2)

ηr3
2 (2l + 1)(2l2 + 2l − 1)

, (29)

where the bending modulus is doubled as there are two
bilayers. For ρ slightly less than unity, a series expansion
can be made if desired. For ρ � 1, the decay rate can be
approximated by

�1 ≈ E11

D11
. (30)

This corresponds to a simple picture that the fast mode consists
mainly the inner bilayer relaxation, whereas the outer bilayer
does not move much.

Next we consider the slow mode �2. When ρ ≈ 1, the slow
mode can be approximately obtained by the series expansion
of 1 − ρ. Based on the relation �1 + �2 = tr(D−1 · E), in
which �2 only starts from the second-order term, we get
�1 
 tr(D−1 · E) for the zeroth and the first-order terms.
Because the product �1�2 is given by det(D−1 · E), we use
the leading two terms of det(D−1 · E)/�1 to obtain

�2 ≈ Bl(l + 1)

12η
(1 − ρ)2(2 − ρ)

+ κ(l − 1)l2(l + 1)2(l + 2)

24ηr3
2

(1 − ρ)3. (31)
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The leading term (B/12η)(1 − ρ)2l(l + 1) is similar to the
slip mode of the planar smectic, which has the decay rate
(B/12η)d2q2

⊥, where q⊥ is the wave vector projected onto the
bilayer plane [11]. This expression is also analogous to the
squeezing-mode dispersion obtained for soap film [15,16]. In
the other extreme of ρ = 0, the slow mode has the dispersion
such that

�2 ≈
[
B + 3(l − 1)l(l + 1)(l + 2))κ/r3

2

]
l(l + 1)

3η(2l + 1)(2l2 + 2l − 1)
. (32)

If we set the shear perturbation as l = 2, the numerator
contains a factor B + 72κ/r3

2 . Hence, the dimensionless
parameter Br3

2 /κ becomes important when its value is much
larger than 72.

We now discuss another approximate expression for the
slow mode valid for the whole range of ρ. Since the sum of
the two decay rates �1 + �2 = tr(D−1 · E) is dominated by
the fast mode for any ρ, the slow mode can be approximated
by the ratio

�2 ≈ det(D−1 · E)

tr(D−1 · E)

= E11E22 − E12E21

E11D22 − E12D21 + E22D11 − E21D12
. (33)

When the inner bilayer 1 relaxes fast, one can apply the
adiabatic approximation to the fast relaxing inner membrane.
The approximated expression has even a simpler denominator
given by

�2 ≈ E22 − E21(E12/E11)

D22 − D21(E12/E11)
. (34)

In Fig. 2, we plot the decay rates as a function of ρ = r1/r2

for l = 2, keeping a constant B. The two solid lines represent

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

j/
0

FIG. 2. The scaled relaxation rate �j/�0 as a function of the
dimensionless size ratio ρ = r1/r2 between the two layers. Here �0

is the vesicle relaxation rate with the rigidity 2κ given by Eq. (29). The
two solid lines represent the two vesicle relaxation rates �1 and �2

obtained numerically. The dotted line is an approximation for the fast
mode given by Eq. (30). The dashed line represents the approximate
slow relaxation rate �2 given by Eq. (34). In this plot, we set
B = 600 J/m3, κ = kBT = 4 × 10−21 J, η = 10−3 Pa s, r2 = 10−7 m,
l = 2, so Br3

2 /κ = 150.

the numerical calculated decay rates. The upper one is the fast
mode �1, which has the limit �0 at ρ = 1. It coincides with the
approximation Eq. (30) (dotted line) for ρ < 0.6. The lower
solid line represents the slow mode �2. The approximate slow
rate Eq. (34) follows qualitatively the exact value of �2 for
the full range of ρ. It also coincides with Eq. (32) in the limit
of ρ = 0. Incidentally, the inner layer relaxation Eq. (30) also
fits the slow mode �2 at ρ ≈ 1.

Figure 2 is useful to illustrate the nature of the relaxation
for the fast and slow modes. In a real system, B is a function of
r1 and r2 (or ρ and r2), which is difficult to keep as a constant.
One will make a plot with a function for B which is suitable
for the specific MLV system. If one uses the flat layer formulas
described in Sec. III B as approximations, caution should be
kept for the accuracy at small ρ. Given an accurate function
for B, together with the proper weighting factor (to combine
ρ2β and ρβ factors in E), the above decay rate approximations
should work better.

VI. VISCOELASTICITY

We now consider two-layer vesicles under the external
oscillatory shear flow. Rearranging Eq. (9) together with
Eq. (B6), we obtain

η∗/η − 1

φv
= 5

2
− v2

r2
eiωt
. (35)

It is apparent that the dilute hard-sphere limit is recovered
when v2 = 0. By putting un = vn/iω and solving Eq. (19) for
v2, we obtain

η∗/η − 1

φv
= 5

2
− iω

20η

r3
2

ê2 · (E + iωD)−1 · ê2, (36)

where one should set l = 2 for the matrices E and D. Here
ê2 appears twice, because the shear directly affects the bilayer
2 through Eq. (19), and the velocity of the bilayer 2 carries
the stress contribution of the vesicle according to Eqs. (9)
and (B6).

Considering the high-frequency limit, we now define
the dimensionless shear coupling strength S and the shear
deformation unit vector ŝ by

S1/2ŝ =
(

20η

r3
2

)1/2

D−1/2 · ê2. (37)

Notice that S and ŝ depend only on the ratio ρ as long as we
fix to l = 2. As shown in Fig. 3, S is weakly dependent on
ρ because its value varies only between 2.1 and 2.19. Hence
the right-hand side of Eq. (36) varies between 0.31 and 0.4,
whereas the hard-sphere case gives 2.5. This means that, at
high frequencies, the coupling of a vesicle to the flow is weaker
compared to that of a hard sphere.

The high-frequency viscosity asymptotically approaches

η∞ = η
[
1 + (

5
2 − S

)
φv

] = η0 − ηSφv, (38)

where η0 = η[1 + (5/2)φv]. Using the eigenmode decom-
position I = d1d1 + d2d2, we can separate the viscosity
contributions from each mode as

ηj = Sη(ŝ · dj )2, (39)
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0 0.2 0.4 0.6 0.8 1
2.1

2.12

2.14

2.16

2.18

2.2
S

FIG. 3. The shear coupling strength S defined by Eq. (37) as a
function of the dimensionless size ratio ρ between the two layers.

so we have

ηS = η1 + η2. (40)

The full expression for the complex viscosity then is given by

η∗(ω) = η0 − φv

2∑
j=1

ηj

iω

iω + �j

. (41)

The relative strength of the two modes are shown in Fig. 4.
Alternatively (but equivalently), the complex modulus can be
expressed as

G∗(ω) = iωη∞ + φv

2∑
j=1

Gj

ω2 + iω�j

ω2 + �2
j

, (42)

where the two modes have the positive amplitudes Gj = �jηj .
Even for different bilayer interaction strength B, we always

find that the slow mode has the larger viscosity amplitude
at ρ ≈ 0, and smaller one at ρ ≈ 1. The latter is reasonable
because the shear perturb the two bilayers similarly for ρ ≈ 1,
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1
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2)

FIG. 4. The relative viscosity strengths defined by Eq. (39) as a
function of the dimensionless size ratio ρ between the two layers. The
solid and the dashed lines corresponds to η1 and η2, respectively. We
chose the value Br3

2 /κ = 150. The crossing of the two modes occurs
at ρ∗ ≈ 0.733.
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/

FIG. 5. The polar angle α (divided by π ) of various 2D vectors as
a function of the dimensionless size ratio ρ between the two layers.
The solid line represents ŝ, while the dotted and the dashed lines
represent d1 and d2, respectively. We chose the value Br3

2 /κ = 150.

where ŝ is along the (1,1) direction. In terms of the polar
angle α between ŝ and the first axes on the (r2

1 u1,r
2
2 u2)

plane, the (1,1) direction corresponds to α = π/4. Notice that
this direction also corresponds to the undulation eigenmode
direction. Since the sum of the two viscosity amplitudes is
roughly a constant, as shown in Eq. (40), the slow squeezing
mode takes a small viscosity amplitude η2 for ρ ≈ 1. In the
other limit of ρ ≈ 0, the shear mainly perturbs the outer layer.
In this limit, we have ŝ = (0,1) or α = π/2, and the slow mode
is due to the outer layer relaxation. As a result, η2 becomes the
dominant contribution for ρ ≈ 0. In Fig. 5, we plot the angle α

as a function of ρ. The shear vector ŝ always coincides with the
fast mode at ρ = 1 and the slow mode at ρ = 0. Therefore, the
mode switching always takes place between 0 � ρ � 1. It is
also worth mentioning that Figs. 4 and 5, like Fig. 2, are plotted
by assuming a constant B. These plots are used to analyze the
behavior of the mode amplitudes. The more physical plots will
be the ones using a suitable function for B.

Here we define a crossover size ratio ρ∗ at which the two
modes have the same viscosity amplitude, i.e., η1 = η2. In
Fig. 6, we plot the calculated ρ∗ as a function of Br3

2 /κ . When
Br3

2 /κ � 1, the crossover happens at ρ∗ ≈ 0.52. This means
that for the noninteracting case B = 0, the crossover happens
when d = r2 − r1 is roughly the same as r1. When Br3

2 /κ � 1,
on the other hand, ρ∗ approaches unity. As mentioned in
Eq. (32), the parameter Br3

2 /κ will have a noticeable effect
only when it is greater than 72. At the lower right corner
of Fig. 6, where the layer interaction is strong and the layer
separation is not too small, the slow mode has the dominant
viscosity contribution. At the upper left corner where the layer
interaction is relatively weak, the fast mode is more excited as
compared to the slow mode.

VII. DISCUSSION

We have determined the crossover ration ρ∗ in Fig. 6. The
actual bilayer interaction strength B depends on the separation
d = r2(1 − ρ). For the qualitative discussion at nonsmall ρ,
we use the flat layer results in Sec. III B. In Fig. 7 we
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FIG. 6. The crossover size ratio ρ∗ as a function of the dimen-
sionless bilayer interaction Br3

2 /κ . For ρ > ρ∗, the fast mode is the
dominant contribution to the viscosity, while the slower relaxation is
dominant for ρ < ρ∗.

present both information in the (ρ,Br3
2 /κ) plot to compare

a series of systems with the same outer bilayer size r2 but
with different size ratios ρ. As one varies ρ, the dimensionless
bilayer interaction strength Br3

2 /κ changes according to the
DLVO theory Eq. (17) (two convex blue lines) or the Helfrich
repulsion Eq. (18) (two concave red lines). If such lines happen
to cross the line ρ∗ (thick black line), one expects that the
two viscosity amplitudes change their relative magnitudes. We
have indicated such scenarios by the dashed lines.

As shown in the convex blue dashed line in Fig. 7, an
electrostatically stabilized system may get large B by having

0.4 0.5 0.6 0.7 0.8 0.9 110
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B
r 23 /

FIG. 7. (Color online) The dimensionless bilayer interaction
Br3

2 /κ as a function of the size ratio ρ. The crossover ratio ρ∗ in Fig. 6
is plotted by the thick solid black line. The two convex blue lines are
from the DLVO theory Eq. (17) with Cs = 0.01 M, κD = 3 × 10−8 m,
A = 10−21 J, δ = 3 × 10−9 m, and kBT = 4 × 10−21 J. The surface
potentials are 12 and 24 mV for the convex blue thin solid and
dashed lines, respectively. The concave red lines are the Helfrich
repulsion Eq. (18) with c0 = 36/π 2, r2 = 10−7 m. The concave red
thin solid and dashed lines are for κ = 0.75kBT = 3 × 10−21 J and
κ = 7.5kBT = 3 × 10−20 J, respectively.

a high surface charge density. At small gap, the van der Waals
attraction may also lower B, causing an interesting multiple
crossing. This means that the viscosity amplitudes switch
their magnitudes more than once. For a sterically stabilized
system (concave red lines), we find that the dimensionless
interaction parameter depends strongly on the bending rigidity
as Br3

2 /κ ∼ κ−2 [see Eq. (18)]. For a soft surfactant bilayer of
κ = 0.75kBT , we find that the slow mode always dominates
the viscosity. Whereas for a lipid bilayer whose bending
rigidity κ = 7.5kBT is one order of magnitude larger, the
concave red dashed line indicates that the squeezing mode
is not much excited by shear when ρ > 0.526.

Caution should be kept when analyzing the MLV when ρ

is close to unity. When the gap d = r2 − r1 is smaller than the
distortion amplitude |u1| + |u2|, our result should be modified
by the extra steric constraint, r1 + u1 � r2 + u2. Given a small
but finite gap d, our linear calculation should be valid for small
distortion amplitudes, |u1| + |u2| < d. This means that the
linear response regime is restricted by the gap. As ρ becomes
closer to unity (or d → 0), the linear regime shrinks toward
zero. Nonetheless, at a given ρ (but ρ �= 1), our result should
still be valid within the linear regime.

In this paper, we have only presented the calculation for
two-layer vesicles. For MLV with more than two layers, the
calculation can be performed in the same procedure but with
a greater algebraic complexity [26]. For MLV with N layers,
we expect that there are N relaxation modes. When the gap
is small (rN−1/rN ≈ 1), we expect that the majority of the N

relaxations to bear some resemblance to the squeezing mode
or the spherical version of the “slip mode” [11]. For larger gap,
on the other hand, the relaxations of the N layers may decouple
from each other. As for the viscoelasticity, we speculate that
the viscosity amplitudes of the squeezing modes are small for
weakly interacting MLV. Neutral or weakly charged lipid MLV
should be an interesting system to investigate in this direction.

In polymer rheology calculation, one may consider a step
strain for t � 0, where the time relaxation of the stress gives
the relaxation modulus G(t). This quantity can be further
converted to the complex modulus G∗(ω) by the Fourier
transform. Right after the step strain, one often assumes that the
polymer deforms in an affine way [27]. Do we implicitly use
the affine deformation approximation for the MLV rheology?
A step strain for vesicle solution will induce a short but fast
bilayer movement, where the D terms dominate the left-hand
side of Eq. (19). Therefore, the initial layer displacements
will be proportional to D−1 · ê2 ∝ (−D12/D11,1), which is
compatible with the incompressible constraints [see Eq. (B1)]
at both layers. In the small gap limit, D−1 · ê2 behaves like
(ρ2,1). Compared with the affine deformation un ∝ rn, or
in terms of our chosen variables (r2

1 u1,r
2
2 u2) ∝ (ρ3,1), it is

clear that our theory does not use the affine deformation
approximation.

VIII. SUMMARY

In this work, we have calculated the slow relaxation rates
and the viscoelasticity of a dilute two-layer-vesicle solution.
In the model, the two vesicles are assumed to have the
spherical equilibrium shape, which makes the analytic flow
field tractable. We focus our discussion in the case where there
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is no osmotic pressure so the tension for both layers vanishes.
We also restrict our discussion to the case where the fluid in
the three compartment has the same viscosity. To relax these
two restrictions does not require a new calculation. Should a
need arise, the present calculation procedure can be carried
to those cases without any technical difficulty. Nonetheless,
the commonly encountered situations often obey these two
restrictions.

We have found the following results. (i) When the gap
between two vesicles is small, the two relaxation modes
consist of a combination between the squeezing and undulation
characters. The former involves the opposite layer distortions,
where the layer interaction drive the lubrication flow between
the two layers as expressed in Eq. (31). The latter, calculated
in Eq. (29), describes a relaxation driven by the layer bending
elasticity, whereas the lubrication flow is not required. We find
that for MLV with a small gap (ρ ≈ 1), the slowest mode is
the squeezing mode for which the Poiseuille flow mobility
vanishes at the limit ρ → 1. The undulation mode appears to
be faster at a small gap.

(ii) At the other limit where the inner bilayer radius is small
ρ ≈ 0, it is easier to understand the relaxation in terms of the
original variables u1 and u2. Here the slow mode becomes the
relaxation of the outer bilayer, Eq. (32), and the faster mode is
the relaxation of the inner bilayer, Eq. (30).

(iii) When one decreases ρ, the relaxation spectrum changes
from (i) to (ii). The two dispersions change their characters
with ρ to avoid the relaxation rate crossing. The slow mode
can be approximated by Eq. (34) for the full range of ρ, where
an adiabatic approximation for the fast u1 variable is made.
When the gap is mall, the slow mode is the squeezing mode.
As the gap increases, the slow mode eventually becomes the
outer layer relaxation mode.

(iv) At the low-frequency limit, the real part of the complex
viscosity approaches that of the corresponding hard-sphere
reference system. On the other hand, the real part of the
complex viscosity shows that the high-frequency viscosity
increment is between 12 and 16% of the hard-sphere viscosity
increment. The difference between the two limits comes from
the contributions of the two relaxation modes discussed above.

(v) For a fixed interaction strength Br3
2 /κ , we find that

there is a crossover size ratio ρ∗ which describes the crossover
gap size. The slow mode is more difficult to excite when the
gap is smaller than ρ∗. At a small gap, ρ > ρ∗, the slow
(squeezing) mode has a small viscosity amplitude, while the
fast (undulation) mode has a large viscosity amplitude. For
large gap, ρ < ρ∗, on the other hand, the slow mode has the
dominant viscosity amplitude. This shows that, for the MLV
with small gaps, the slow mode is not the most important mode
for viscoelasticity. In other words, the shear is not efficient to
excite the slow mode when the gap is too small.

(vi) The crossover size ratio ρ∗ depends on the interaction
between the two bilayers. If Br3

2 /κ increases, ρ∗ will increase
from 0.52 toward unity. The interaction parameter B can be
tuned, e.g., by adding block copolymers [28]. For strongly
interacting MLV which has large Br3

2 /κ , the crossover gap is
vanishingly small (ρ∗ → 1) so the slow mode is important for
viscoelasticity. For noninteracting MLV, the crossover gap is
0.48r2, about half of the outer bilayer radius. In this weakly
or noninteracting case there should be a higher possibility of

finding MLV whose viscoelasticity is dominated by the faster
interbilayer relaxation. For neutral bilayers whose interaction
arises from the Helfrich repulsion, the more rigid lipid system
with a smaller gap might be a good candidate to observe the
fast-mode-dominated viscoelasticity, as discussed in Fig. 7.
For charged bilayers, a weakly charged system can also be used
for such study. As suggested in a recent theoretical paper [26],
the shear excited squeezing modes are important for MLV size
selection. It will be interesting to study a lamellar system where
the squeezing mode cannot be excited efficiently by shear.
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APPENDIX A: SOLUTION OF STOKES EQUATION

For the incompressible solenoidal flow, the velocity can be
expressed as

v = ∇ × (∇ψ × r) + ∇ × (ζr), (A1)

where the scalar functions ψ and ζ are the defining function
for the poloidal and toroidal flow fields, respectively. Note
that our definition of the defining function differs by a factor
r compared with the ones in the book by Chandrasekhar [29].

For an incompressible fluid, the divergence of the pressure
gradient vanishes, i.e.,

∇2p = 0. (A2)

Therefore, the pressure gradient is also a solenoidal field
and can be described by the above decomposition. Since
the toroidal part can be written as (∇ζ ) × r, the con-
dition ∂θ (∂ϕp) = ∂ϕ(∂θp) requires that ∂θ (− sin θ ∂θζ ) =
∂ϕ(∂ϕζ/ sin θ ) or L̂2ζ = 0, where

L̂2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂ϕ2
. (A3)

Hence, the pressure gradient is only poloidal and written as

∇p = ∇ × (∇� × r)

= r̂
L̂2�

r
+ θ̂

1

r

∂

∂θ

∂(r�)

∂r
+ ϕ̂

1

r sin θ

∂

∂ϕ

∂(r�)

∂r
, (A4)

where � is the defining function of ∇p. Comparing the θ̂ and
ϕ̂ directions, we can set

p = ∂(r�)

∂r
(A5)

for these two directions. The Laplace equation for the pressure
Eq. (A2) then implies that

1

r2

∂

∂r

(
r2 ∂2(r�)

∂r2

)
− L̂2

r2

∂(r�)

∂r
= 0. (A6)
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Therefore, the radial component of the gradient pressure can
be either expressed as L̂2�/r or ∂2

r (r�). The latter expression
is consistent with the identification Eq. (A5).

For the velocity field, we will drop the toroidal part by
setting ζ = 0. This is justified because the tangential force field
is a surface gradient and drives only the poloidal flow. To obtain
the defining function ψ , we take the curl of Eq. (5) to get ∇ ×
∇2v = 0. Since ∇2v = −∇ × ∇ × v holds for incompressible
flow, we have

∇ × ∇ × ∇ × ∇ × [∇ × (ψr)] = 0, (A7)

where, in the square bracket, an equivalent form of ∇ψ × r is
used. As detailed in Ref. [29], each curl will switch poloidal
and toroidal parts. The double curl will preserve the type and
modify the defining function by −∇2. The curl of Eq. (5)
becomes ∇ × (r∇4ψ) = 0 or

∇4ψ = 0. (A8)

To find the coupling between the pressure p and the velocity
poloidal function ψ in Eq. (5), we rewrite −∇2v = ∇ × ∇ ×
v = ∇ × [∇(−∇2ψ) × r]. Equation (5) then is satisfied when

−� + η∇2ψ = 0.

Here we prefer to use p instead of �. Operating the above
equation by L̂2/r and substituting the combination L̂2�/r by
∂rp, we obtain

r
∂p

∂r
= ηL̂2∇2ψ. (A9)

Using the standard method of separation of variables, the
general solution of Eqs. (A2), (A8), and (A9) are

p = p0 +
∑
lm

(
pI

lmrl + pII
lmr−l−1

)
Ylm, (A10)

ψ =
∑
lm

(
ψ I

lmrl + ψ II
lmr−l−1

)
Ylm

+
∑
lm

(
pI

lmrl+2

η(2l + 2)(2l + 3)
+ pII

lmr−l+1

2ηl(2l − 1)

)
Ylm,

(A11)

where Ylm(θ,ϕ) are the spherical harmonics.

APPENDIX B: THE SURFACE INCOMPRESSIBLE LIMIT

The surface incompressibility condition also constrains the
velocity field as

2vr (rn)

r
+ ∇⊥ · v⊥(rn) = 0 (B1)

at both r = r1 and r2. Because the fluid is incompressible, i.e.,
∇ · v = 0, Eq. (B1) can also be expressed as the equivalent
form,

∂vr (rn)

∂r
= 0, (B2)

at the bilayers. We prefer this condition because it simplifies
the calculation.

We now consider the relaxation rates of a small perturbation
described by the spherical harmonics Ylm(θ,ϕ). To simplify
the notation, we drop the subscript “lm” of the coefficients
ψ I

lm, ψ II
lm, pI

lm, and pII
lm. For the region within the bilayer 1

(0 � r � r1), we set ψ II
lm = 0 and pII

lm = 0 to drop the
functions which are singular at r = 0. We denote ψ I

lm and
pI

lm as ψ I
A and pI

A, respectively. The 2D incompressibility
condition Eq. (B2) relates the two remaining coefficients as

ψ I
A = r2

1

2η(2l + 3)(l − 1)
pI

A. (B3)

In terms of the radial velocity amplitude v1, we can further
express the pressure coefficient as

pI
A = −η(2l + 3)(l − 1)r−l−1

1

l
v1. (B4)

For the region exterior to the bilayer 2 (r2 � r < ∞), the
coefficients ψ I

lm are zero, except ψ I
20, which needs to be chosen

to give the far flow Eq. (8). Comparing the radial component
vr from Eq. (8) and L̂2ψ/r , we set ψ I

20 = 
/3. We also set
pI

lm = 0 so p does not diverge at r → ∞, and denote ψ II
lm and

pII
lm as ψ II

C and pII
C, respectively. Then the 2D incompressibility

condition Eq. (B2) relates the two remaining coefficients as

ψ II
C = − r2

2

2η(2l − 1)(l + 2)
pII

C + 1

12
r5

2 
δl2δm0. (B5)

Using the radial velocity amplitude v2, we can express the
pressure coefficient as

pII
C = η(2l − 1)(l + 2)rl

2

l + 1
v2 − 10ηr3

2 
δl2δm0. (B6)

For the region between the two bilayers (r1 � r < r2),
the expressions are more complex. The incompressibility
Eq. (B2), evaluated at r1 and r2, provides two conditions
between the four coefficients,

ψ I
B = F11p

I
B + F12p

II
B,

(B7)
ψ II

B = F21p
I
B + F22p

II
B,

where

F11 = − r2l+3
2 − r2l+3

1

2η(2l + 3)(l − 1)
(
r2l+1

2 − r2l+1
1

) ,

F12 = r2
2 − r2

1

2η(2l − 1)(l − 1)
(
r2l+1

2 − r2l+1
1

) ,

(B8)

F21 = − r2l+1
1 r2l+1

2

(
r2

2 − r2
1

)
2η(2l + 3)(l + 2)

(
r2l+1

2 − r2l+1
1

) ,

F22 = − r2
1 r2l+1

2 − r2
2 r2l+1

1

2η(2l − 1)(l + 2)
(
r2l+1

2 − r2l+1
1

) .

We prefer to use the variables v1 and v2 instead of pI
B and pII

B.
The pressure coefficients then can be expressed as

pI
B = G11v1 + G12v2,

(B9)
pII

B = G21v1 + G22v2,

where

G11 = η

lG0

{
(−8l2 − 4l + 12)r3l+2

1 r2

− (4l + 6)rl+1
1 r2l

2

[
l(2l + 1)r2

1 − (l + 2)(2l − 1)r2
2

]}
,
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G12 = η

lG0

{
(−8l2 − 4l + 12)r1r

3l+2
2

− (6l + 4)r2l
1 rl+1

2

[
l(2l + 1)r2

2 − (l + 2)(2l − 1)r2
1

]}
,

G21 = (4l − 2)η

(l + 1)G0

{−(2l2 + 3l + 1)r3l+4
1 r2l

2

+ (2l2 + l − 3)r3l+2
1 r2l+2

2 + (2l + 4)rl+1
1 r4l+3

2

}
,

G22 = (4l − 2)η

(l + 1)G0

{−(2l2 + 3l + 1)r3l+4
2 r2l

1

+ (2l2 + l − 3)r3l+2
2 r2l+2

1 + (2l + 4)rl+1
2 r4l+3

1

}
,

(B10)

with

G0 = r4l+4
2 [4ρ + 4ρ4l+3 − (2l + 1)2ρ2l+4

− (6 − 8l − 8l2)ρ2l+2 − (2l + 1)2ρ2l]. (B11)

When the two bilayer are well separated (r1 � r2), both
G11 and G22 become small. In this limit, G12 becomes the
coefficient of Eq. (B4) with r1 replaced by r2, whereas G21

becomes the coefficient of Eq. (B6) (without the 
 term) with
r2 replaced by r1.

APPENDIX C: THE STRESS AND THE TENSION
PERTURBATION

The radial component of the normal stress appears in
Eq. (6). From its component form σrr = −p + 2η∂rvr and the
2D incompressibility condition Eq. (B2), it is just the negative
pressure. Therefore, the stress differences at the two bilayers
are

σrr (r+
1 ) − σrr (r−

1 ) =
∑
lm

[(
pI

A − pI
B

)
rl

1 − pII
Br−l−1

1

]
Ylm,

σrr (r+
2 ) − σrr (r−

2 ) =
∑
lm

[
pI

Brl
2 + (

pII
B − pII

C

)
r−l−1

2

]
Ylm.

(C1)

The large bilayer stretching modulus E suppresses the
surface density perturbation. For the slow relaxation, we will
take the limit E → ∞ to eliminate the parameter E. Within
this limit, both φ1 and φ2 approach unity, so the tension
perturbations δγ1 and δγ2 become the Lagrange multipliers.
The values of the Lagrange multipliers then are determined
by Eqs. (7) and (11) instead of their original definitions, as
discussed below.

In Eq. (7), we are interested in the difference between the
tangential stress across the bilayer. We express the tangential
stress as a function of ψ ,

σ⊥ = θ̂σrθ + ϕ̂σrϕ = η∇⊥

[
r
∂2ψ

∂r2
+ (L̂2 − 2)

ψ

r

]
. (C2)

We now replace ∂2
r ψ using Eq. (A9), and limit our discussion

to the l �= 0 mode. The velocity field ∇ × (∇ψ × r) has
components similar to those of Eq. (A4). We can use
the r component vr = L̂2ψ/r to eliminate ψ as (r/L̂2)vr

so

σ⊥ = ∇⊥

[
r2

L̂2

∂p

∂r
+ η

(
2 − 4

L̂2

)
vr − 2η

r

L̂2

∂vr

∂r

]
, (C3)

where L̂2 → l(l + 1) for spherical harmonics with nonzero l.
Because vr is continuous across the bilayer and ∂rvr vanishes
on the bilayer, only the first term can differ across the bilayer.
This is the only important term for the tension perturbation in
Eqs. (7) and (11),

δγn = − r2
n

L̂2

(
∂p

∂r

)
r+
n

+ r2
n

L̂2

(
∂p

∂r

)
r−
n

. (C4)

We then obtain

δγ1 =
∑
lm

(
pI

A − pI
B

l + 1
r2l+1

1 + pII
B

l
r−l

1

)
Ylm,

(C5)

δγ2 =
∑
lm

(
pI

B

l + 1
r2l−1

2 + pII
C − pII

B

l
r−l

2

)
Ylm.
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