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Periodic flow inversions have been shown as an effective means to eliminate both density (D system) and size
(S system) segregation. The frequency of these inversions, however, is the key to applying this technique and is
directly related to the inverse of the characteristic time of segregation. In this work, we study size segregation (S
system) and adapt a size segregation model to compliment existing work on density segregation and, ultimately,
aid in determining the critical forcing frequency for S systems. We determine the impact on mixing and segregation
of both the binary size ratio and the length of each leg of a “zigzag chute”. Mixing is observed when L < ŪtS ,
where L, Ū , and tS denote the length of each leg of the zigzag chute, the average streamwise flow velocity of the
particle, and the characteristic time of segregation, respectively.
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I. INTRODUCTION

Granular materials are widely used in industries such as
cement, fertilizers, pharmaceuticals, construction, mining, and
agriculture. These materials are often multicomponent and
exhibit differences in size, density, shape, and roughness. In
fact, even “pure” materials almost invariably exhibit a non-
trivial size distribution. These materials, therefore, typically
segregate, or demix, if they are subjected to flow or external
agitation in the presence of a gravitational field. Moreover,
even previously well-mixed particles will tend to segregate as
they are transported from one place to another through a chute
or conveyor, for example.

Segregation has been observed in most flows of granular
mixtures, including granular convection [1], heap flows [2–5],
and flows in rotating drums [6–8], to name a few. Despite this
ubiquity, our understanding of segregation in even the simplest
cases is incomplete, resulting in engineering approaches to the
mixing of granular materials that are developed on an ad hoc
basis and scale-up that is largely empirical.

Recently, a number of advances in segregation control and
reduction have been reported in the literature. Samadani and
Kudrolli [4] found that segregation could be reduced by adding
a small volume fraction of fluid to different-sized particles.
Similarly, Li and McCarthy [9] found that segregation could
be turned on or off by adding a small amount of moisture
to mixtures of particles with different sizes, densities, and/or
surface characteristics. Jain et al. [10], and Thomas [11],
performed experiments for binary mixtures composed of
different-sized and different-density particles and they found
that limited success in achieving mixing can be obtained if the
denser beads are bigger and also if the ratio of particles size is
greater than the ratio of particle density (sometimes requiring
extreme ratios). Hajra and Khakhar [12] found that segregation
could be eliminated by using a small rotating impeller placed
at the axis of rotation, where the size of the impeller is very
small when compared to the diameter of the cylinder.

In a complementary approach, Shi et al. [13] proposed
to adapt a fluid-mixing technique—specifically, the use
of periodic flow perturbations—to thwart segregation in a
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material-independent way. In particular, they showed that
periodic flow inversions either manually (in a chute) or
via selective baffle placement (in tumbler-type mixer) can
serve as a general method for eliminating segregation in
free-surface flows for either density-driven (D systems) or
size-driven (S systems) segregation. In their work, a simple
model of D-system segregation was used to predict the required
critical perturbation frequency as a function of shear rate
and density ratio that matched experiment and computational
(DEM simulation) results reasonably well.

In this work, we propose a model similar to that of Shi
et al. [13] based on a segregation velocity expression that can
be used to derive a critical frequency prediction for S-system
segregation (as opposed to D systems). A range of experiments
and DEM simulations are carried out to validate the critical
forcing frequency model.

II. BACKGROUND

Density segregation is often thought to arise due to an
effective “buoyant force” experienced by the particles [14,15].
Lighter particles may be considered to be immersed in an
effective medium of higher density corresponding to the
average density of the mixture, and heavier particles in a lower
density effective media.

Size segregation, on the other hand, is considerably more
difficult to model and strongly depends on the flow regime—
i.e., dense versus dilute. Many works that focus on dilute
or moderately dense flows adopt a kinetic theory-based
approach. For example, Jenkins and Mancini [16] used a
revised Enskog theory to develop a kinetic theory model
for binary mixtures of smooth, nearly elastic spheres. They
suggested that size segregation is due to granular thermal
diffusion. Similarly, Hsiau and Hunt [17] considered the
shear flow of a binary mixture of different-sized particles and
showed that temperature-induced segregation can lead to the
smaller particles migrating to the regions of higher granular
temperature (irrespective of location) and is largely influenced
by the “regime” of the flow (i.e., dilute versus dense flow).
Recent work by Fan and Hill [18] experimentally confirmed
that the sense of size segregation can vary, based on the flow
regime examined. In work on dense flows in a chute, like
those examined here, Savage and Lun [19] proposed a size
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segregation model using a percolation argument. In short,
percolation can be understood in the following way. When
particles flow together in a dense flowing layer, small voids
are more likely to be formed than larger ones. Thus, small
particles move downward by dropping into the voids, and
consequently, the large particles travel upward. Finally, using
a phenomenological approach, Dolgunin and Ukolov [15]
proposed a model for size and density segregation that depends
on particle concentration and granular temperature.

While no unique model for segregation due to differences
in size has been established, the phenomenological impact of
the segregation is well known: for dense flows at reasonably
low values of the granular temperature (i.e., those exhibited by
the rolling regime of a tumbler mixer or in a nonaccelerating
chute flow) small particles sink to the bottom of a flowing
layer, while larger particles rise to the top. Coupled with the
original observation based on D systems—that is, that more
dense particles sink to the bottom of a flowing layer while
lighter particles rise to the top—we can argue that, at least
for rolling-regime tumblers and non-freely-accelerating chute
flows, segregation has a preferred direction. This observation,
along with the fact that segregation requires a finite time
to reach fruition, means that one can determine the critical
perturbation frequency required to thwart segregation (either
in D systems, S Systems, or mixed-mode systems) simply by
establishing a model of the segregation kinetics. In the next
section, we outline just such a model for S systems, based in
part on the work reviewed here, and then subsequently test
it for S systems both computationally and experimentally. It
is critical to point out here that the details and accuracy of
this model may be limited (for example, granular temperature
is included only indirectly via fitting parameters); however,
the generic approach of perturbing a segregating flow above
a critical forcing frequency (that can theoretically be tied to
the segregation velocity) will be applicable to general granular
flows and the details of the model can be enhanced as our
understanding of segregation kinetics improves.

III. MATHEMATICAL MODEL

Taking the mass concentration of the smaller (i.e., the
“segregating”) particles in a flow to be denoted as φ1 and that of
the larger particles to be φ2, we can define the mass fraction
of the smaller particles to be c = φ1/(φ1 + φ2). The variation
of c in a flowing layer is then governed by a convective
diffusion equation as

∂c

∂t
+ vx

∂c

∂x
+ vy

∂c

∂y
= ∂

∂y

(
D

∂c

∂y
− Js

)
, (1)

when we neglect the diffusion and segregation fluxes in the
flow direction (x). The first term on the right-hand side is the
diffusional flux with D being the diffusion coefficient, while
Js represents the segregating flux. As noted above, previous
researchers have come up with expressions for segregation
due to differences in particle sizes [19] and mixed-size and
density variation [15,20] that have taken similar form to that of
Khakhar et al. [14]. We propose, therefore, a size segregation
velocity from the following argument. If we assume that the
segregation velocity is proportional to the difference between
the small and segregating particle diameter and the average

diameter, we get

vs = −K(d1 − 〈d〉), (2)

where 〈d〉 = d1φ1+d2φ2

φ1+φ2
is the mass-averaged particle size,

d1 and d2 are the diameter of small and large particles,
respectively, and K is a constant to be discussed below.
Expanding 〈d〉 and simplifying yields

vs = −Kd2(1 − c)(d̄ − 1), (3)

where d̄ = d1/d2 is the size ratio. Finally, assuming that the
constant K has both an intrinsic and a concentration-dependent
component (KT and KS , respectively) that can be considered
complex functions of granular temperature, local void fraction,
gravity, particle sizes, density, shape, roughness, coefficient of
friction, coefficient of restitution, etc., we get

vs = [KT + (1 − c)KS](1 − c)(1 − d̄). (4)

Here, the parameters, KT and KS , will be considered fitting
constants that will be obtained on a case-by-case experimental
and computational basis. Using Eq. (4), we can obtain a
segregation flux of the segregating species as

Js = vsc. (5)

By substituting for vs from Eq. (4), we get

Js = [KT + (1 − c)KS](1 − d̄)c(1 − c). (6)

We should note that when d̄ = 1 we recover vs = 0 and Js =
0. Similarly, concentration values of c = 0 or c = 1 lead to
Js = 0. A final point to be made at this time is that while a value
of c = 1 leads to a vs of zero, the segregation velocity actually
increases as c approaches zero. This makes physical sense
because the most rapid segregation should happen when one
small particle trickles through a bed of large beads (although,
obviously, when c is identically zero this analysis becomes
meaningless).

Substituting the expression for the segregation flux Js using
Eq. (6) into our original convection-diffusion equation we
obtain

∂c

∂t
+ vx

∂c

∂x
+ vy

∂c

∂y

= ∂

∂y

[
D

∂c

∂y
− (KT + (1 − c)KS)(1 − d̄)c(1 − c)

]
. (7)

The focus of our present work is to establish the character-
istic segregation time, which is inversely proportional to the
critical forcing frequency that could be applied to eliminate
size segregation. Here we discuss the approach to derive
the critical perturbation frequency. The key to adapting this
approach in order to eliminate free-surface segregation lies in
recognizing that it takes a finite time for material to segregate
and that there is always a preferred direction that particles tend
to segregate. In order to exploit these two facts, one needs to
perturb the flow at a sufficiently high frequency, f , such that
f > t−1

s , where ts is the characteristic segregation time.
Using the model outlined above, the characteristic segrega-

tion time may then be written as

ts = R1/[(KT + (1 − c)KS)(1 − c)(1 − d̄)], (8)

where R1 is the radius of the small particles. Now, using this
value, we can define a segregation-based Peclet number by
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(a) (b) (c)

FIG. 1. A schematic representation of the (a) zigzag chute thought experiment, along with (b) the model simulation and (c) the experiment
used to approximate it. (a) In a vertical gravity field, the chute changes direction periodically so that the material becomes roughly inverted.
(b) In our simulations, we use a simple model of this, whereby the system is periodic in the flow direction and the inclined gravitational field,
�gf , has an oscillatory y component. (c) Experimentally, we put particles in a square tube, which is first rocked, then rotated in order to alter
the sense of gravity [taking advantage of particles’ tendency to behave like a solid during the rotate step by angling the tube at θ � α (repose
angle) during the rotate step].

defining a diffusion time scale as R2
1/D, so that we get

Pe = (KT + (1 − c)KS)(1 − c)(1 − d̄)R1

D
, (9)

where D is the collisional diffusivity. Because of the current
theoretical uncertainty and the time-varying nature of our
flow (as well as our granular temperature, local void fraction,
system nonuniformity, etc.), we treat β = KT R1/D and α =
KSR1/D as fitting parameters that should be a decreasing
function of fluctuation energy of the flow and should be close
to unity at small to moderate energies. This yields

Pe = [β + (1 − c)α](1 − c)(1 − d̄). (10)

Finally, the particle diffusivity in sheared granular flows
was obtained by Savage [21] from numerical simulations of
shear flow of nearly elastic hard spheres to yield a scaling of
the form D = F (ν)d2γ̇ , where d is the particle diameter, γ̇

is the shear rate, and F (ν) is a function of the solid volume
fraction (ν) (Hajra and Khakhar [22] confirmed the scaling
experimentally).

By using the diffusivity as given by Savage [23] (D =
0.01 R2

1 γ̇ ), we get ts written as

ts = tD

Pe
= R2

1

DPe
= 100

[β + (1 − c)α](1 − c)(1 − d̄)γ̇
, (11)

where γ̇ is the shear rate. This suggests that the critical
perturbation frequency, fc, will vary linearly with the shear
rate as

fc = 0.01γ̇ (1 − d̄)(1 − c)[β + (1 − c)α]. (12)

A simple geometry can be used to illustrate how one might
use this critical forcing frequency to “eliminate” segregation
as follows. Consider a chute flow that “zigzags” periodically
in such a way that, at each bend, the bottom of the previous
flow leg now becomes the top of the next flow leg, and so on
(see Fig. 1).

If the length, L, of each leg is chosen such that L < Ūts , our
theoretical arguments suggest that segregation can be effec-
tively thwarted. While this simple explanation is theoretically
satisfying, physically implementing this model system, either

computational or experimentally, is cumbersome. Specifically,
in computations, the radius of curvature of the bend must
be tailored per simulation in order to not “choke” the flow.
Similarly, in the experimental case, the system would need
to be prohibitively large (roughly 20 m in height, based on
the slow segregation velocities that would be obtained for
size ratios close to 1) to reach an asymptotic concentration
profile. Instead of using this idealized system, therefore, we
instead examine two analogues of the “zigzag” chute that are
schematically depicted in Fig. 1 and discussed in detail in the
following two sections.

IV. EXPERIMENT

For the experimental analog of the zigzag chute, we perform
experiments in hollow square tubes of varying lengths (46, 76,
130, 185, and 246 cm). The flow height of the tube in all
cases is approximately 1.8 cm. Tubes are made of transparent
polycarbonate. Copper foil tape with conductive adhesive (one
end is grounded) is fixed on the backside of the tube to reduce
the electrostatic charge of the particles. Silicon carbide screen
cloth is attached on the top and bottom surface of the tube to
restrict particle slip on the tube surface. Particles are allowed
to flow on the surface of the silicon carbide screen cloth only.
One end of the tube is open initially and the other end is closed.
Once the particles are introduced into the tube, the open end
is covered with silicon carbide screen cloth.

Mixtures of monodisperse spherical acetate beads of
different diameter (2, 3, 4, and 5 mm) are used. In all
experiments, the tube is filled with mixtures composed of 1:1
(v/v) combinations of sizes as described above. The volume
of each size of particles in the mixtures is kept constant in
all experiments. Tubes are filled with a mixture of each type
of bead (individually monodisperse) in such a fashion as to
produce an initially mixed condition. That is, we “layer” small
volumes of each particle type sequentially in order to form our
initial condition. The list of experiments (size combinations)
conducted is summarized in Table I.

For each experiment, two trials are performed. In the first
case, the tubes are rocked to an angle of roughly 30o—say, to a
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TABLE I. Types of binary mixtures used are indicated. For all
size ratios, experiments are carried out in five different lengths of
tube, i.e., 46, 76, 130, 185, and 246 cm, respectively.

Small particle Large particle Size ratio
(mm) (mm) (dimensionless)

2 5 0.4
2 4 0.5
3 5 0.6
2 3 0.66
3 4 0.75

right-leaning configuration—in order to induce flow from left-
to-right down the inclined plane. Once the flow has stopped,
the tube is rotated 180o about its long axis in order to change
the orientation of the particles (relative to gravity) prior to the
next rocking event [Fig. 1(c)], where the tube will be inclined in
a left-leaning sense and so on. We call this a “rock and rotate”
experiment. To ensure that there is no movement of particles
during rotation of the tube, after the initial particle flow, the
tubes are inclined even further (to an angle of inclination >

angle of repose) prior to the rotation step (no particle flow
occurs during this step). This process is repeated until the
particle distribution no longer changes with time. In the second
case, the tubes are only rocked and the step involving rotation
of the tube is omitted. We call this a “control” experiment.

Photographs are captured after completion of each rocking
step for both “rock and rotate” and “control” trials. Two
digital cameras (Nikon D200) are used to capture left-leaning
and right-leaning images, respectively. The digitized images
are used to assess the extent of mixing in both trials. For a
quantitative comparison of the extent of mixing, the intensity
of segregation (Is) is calculated via image analysis, using the
expression

Is =
[∑N

i=1(C − Cavg)2

N − 1

]1/2

, (13)

where N is the number of useful cells, C is the concentration
of color pixels in a designated cell, and Cavg is the average
concentration of color pixels in the entire image. We should
note that, in each experimental image, we confirm both
quantitatively and qualitatively that the pixel measurements
accurately reflect the system. Quantitatively, we compare the
fraction of pixels identified as each color to the expected input
concentration while, qualitatively, we compare segregation
patterns between the “raw” and analyzed images.

V. DEM SIMULATION

Particle dynamics, a discrete method of simulation, cap-
tures the macroscopic behavior of a particulate system via
calculation of the linear and angular motion of each of the
individual particles within the mass; the time evolution of these
trajectories then determines the global flow of the granular
material. The equations that describe the particle motion,
therefore, are:

Linear motion:

mp

dυp

dt
= −mpg + Fn + Ft ; (14)

Angular motion:

Ip

dωp

dt
= Ft × R, (15)

where Fn and Ft are the interparticle forces—normal and
tangential, respectively—acting on the particle. The particle
trajectories are obtained via explicit solution of Newton’s
equations of motion for every particle [24]. The forces and
torques on the particles—aside from the effects of gravity—
typically are determined from contact mechanics consider-
ations [25]. In their simplest form, these relations include
normal (often, Herztian) repulsion and some approximation
of tangential friction (due to Mindlin [26]). A thorough
description of possible interaction laws can be found in
Refs. [27,28].

Computationally, we mimic the “zigzag” chute using a
vertically bounded, periodic box whose sense of gravity
oscillates vertically [Fig. 1(a)]. In these 3D simulations,
particles are initially randomly mixed, gravity is inclined at
angles ranging from 22o–26o with respect to the horizontal, and
(frozen) particle-roughened walls are used. Two particle bed
heights, 10 and 20 particle diameters, and two size ratios, d̄ =
0.66 and 0.75, are used in the simulations. In order to simplify
the analysis of our results, we examine only those chute
simulations that result in both a nonaccelerating asymptotic
flow and have a steady velocity profile that is reasonably
approximated as being linear (so that extracting an average
value for the shear rate is meaningful and the comparison
with model predictions is simplified). Our experiments use
cellulose acetate particles; however, in our simulations the
particle stiffness and other parameters used are reduced in
order to decrease the required simulation time (using so-called
“soft” particles; a practice shown to have essentially no impact
on flow kinematics [29]). Table II lists the material properties
used in the simulations.

VI. RESULTS AND DISCUSSION

In our related paper that included theory for density
segregation [13], we defined an experiment as yielding a mixed
result if the equilibrium Is value calculated from the “rock and
rotate” trial differed (was smaller than) that of the “control”
trial. This strategy was (and is) used in order to eliminate any
variation in mixing rates within this apparatus that might arise
from differences in the flow lengths as we increase the tube
sizes. That is, the absolute value of the Is was not considered

TABLE II. Material properties used in the simulations.

Parameter Value

Young’s modulus (E, GPa) 0.03
Density (ρ, kg/m3) 1000
Coefficient of friction (μ) 0.30
Poisson ratio (ν) 0.33
Yield stress (σy , MPa) 0.3
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FIG. 2. The intensity of segregation as a function of time for a
variety of particle size combinations for a tube length of L = 46 cm. In
each case, there is a clear step change between the Is values between
the “rock and rotate” and “control” regions of the experiments. In all
cases, we consider this to yield a mixing result.

to be significant, but the change in that value between the rock
and rotate versus the control was used as a discriminator.

In the current work, focused on size segregation, this
technique for analyzing the experimental results of the rock-
and-rotate apparatus works well for the “extreme” cases. For
example, Fig. 2 shows the Is profiles for various size ratio
combinations that yield results from the “rock and rotate” trial
that are substantially smaller than that of the “control” trial. In
other words, there is a clear step change (upward) in the value
of Is when we begin the control trials in each case shown, so
all of these size ratios are considered to yield a mixing result
for this tube length (L = 46 cm). Similarly, Fig. 3 shows the
Is profiles for various size ratio combinations where there is
no discernible difference in the equilibrium values of Is for
the “rock and rotate” versus the “control” trial. For this tube
length (L = 246 cm), all of these size ratios are considered to
yield a segregating result.

In contrast to the density segregation case, for size seg-
regation trials near the mixing and segregation boundary,
determining the proper interpretation of our experimental
outcome is more difficult. This is due, in part, to the fact
that these more strongly segregating materials (note that size
segregation is typically considered to be a dominant mode
when compared to density segregation) lead to segregation
in the direction parallel as well as perpendicular to the flow.
This difficulty is also due to the fact that size segregation is
strongly affected by the presence of boundaries so that our
experimental results (which rely on boundary images) need
to be interpreted with an eye toward “wall segregation” as
well. Thus, an additional quantitative discriminator is used in
assigning results as either mixed or segregated. That is, we
compare the rock-and-rotate results from the “right-leaning”
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FIG. 3. The intensity of segregation as a function of time for a
variety of particle size combinations for a tube length of L = 246 cm.
In each case, there is no discernible difference in the Is values between
the “rock-and-rotate” and “control” regions of the experiments. In all
cases, we consider this to yield a segregating result.

rock to those from the “left-leaning” rock. If we consider the
two relevant time scales, the segregation time (ts) and the flow
time (tf = L/Ū ), we have three possible scenarios: ts � tf ,
tf � ts , and ts ≈ tf . Interestingly, if the time scales are vastly
different both the right- and left-leaning rock results will be the
same. This is because the system either had more than enough
time to segregate in both halves of the rock cycle, or it had far
too little time to segregate in either case. In contrast, when we
are close to the mixing and segregation boundary, ts ≈ tf , so
that our materials may segregate somewhat on the right-leaning
rock (which started out mixed), but the left-leaning rock has
only enough time to “undo” that segregation. It does not
have enough time to segregate in the opposite sense. This
leads to the Is profiles for the right-leaning and left-leaning
results that are internally consistent for either a mixed or a
segregated result, but differ (from each other) when we are
near the mixing and segregation boundary. Figure 4 shows
Is profiles for a size ratio of 0.6 for a mixed result (a),
a “boundary” result (b), and a segregated result (c). Note
that the system we consider mixed (a) and segregated (c)
both have strong similarity between the “left-leaning” (solid)
and “right-leaning” (dashed) results, while the “border” case
shows a discrepancy between left and right results. Here,
we consider the right result (c) to be segregated since the
“left-leaning” (solid) and “right-leaning” (dashed) results are
similar and indistinguishable from the “control” portion. In
contrast, the result that is considered “mixed” (a) has similar
“left-leaning” (solid) and “right-leaning” (dashed) results, but
control portions of the experiment that differ from each other
as the system alternatively mixes then segregates (somewhat)
is each leg of the control (for this rather long chute, there
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FIG. 4. The intensity of segregation with times for the transition zone (mixed to segregated result) for “rock-and-rotate” and “control”
experiments for three different tube lengths for a size ratio of 0.6. The solid lines represent the results for the left-leaning images, while the
dashed line is for the right-leaning images. Note that the system we consider mixed (a) and segregated (c) both have strong similarity between
the left- and right-leaning results, while the “border” case shows a discrepancy between left and right results.

is substantial segregation in the flow direction once vertical
segregation is allowed to take place).

VII. MODEL PREDICTIONS

As discussed previously, we test our model by comparing
our predictions against both simulations in our infinite chute
flow as well as in our “rock-and-rotate” experiments. In both
cases, we have two fitted parameters—β and α—and a host
of trivially measured quantities [such as the tube height and
length, the initial (input) concentration of particles, the particle
size ratio, etc.].

Examining first our “flipped” infinite chute flows, we
empirically fit β = 0.2 and α = 3.5 (and recall that our initial,
input concentration is c = 0.5), so that Eq. (12), along with
a computationally measured shear rate for each simulation,
yields a prediction of the critical forcing frequency. We plot
the results of our simulations as a function of the ratio of the
gravitational “flipping” frequency to the calculated value of
fc. Here, since we allow the system to reach an asymptotic
state, the magnitude of the intensity of segregation (Is) is a
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FIG. 5. Shown is a comparison of our results with the theoretical
predictions. On the left (a) we summarize the experimental results
from the rock-and-rotate “chute”. Plotting our experimental results as
a function of tube aspect ratio versus size ratio, we obtain agreement
with theory [Eq. (16)] with β = 0.2, α = 4, and c = 0.5—the solid
circles denote mixed systems, and the open circles denote segregated
systems. On the right (b), we show computational results where high
(low) values of Is are found when f/fc is less (greater) than 1. We
use circles to denote a size ratio of 0.66 and squares for 0.75.

valid measure of the mixedness and we consider high values
(typically greater than 0.25) to imply a poorly mixed system
while low values correspond to good mixing. This suggests
that the plot of our simulation results in Fig. 5(b) should yield
points with high values of Is for f/fc < 1 and low values
of Is when f/fc > 1. The results of a number of “zigzag”
simulations of size segregation—with varying conditions as
described above—are shown in Fig. 5(a). We should note that,
although the results for a size ratio of 0.66 agree with our
predictions, the results for 0.75 are somewhat at odds. The
trend of an inverse relationship between Is and f/fc is seen,
but the small values of f/fc do not lead to a segregated system
(perhaps due to the fact that the segregation driving force
for such a high size ratio is negated by the diffusive mixing
inherent in the relatively high energy chute flow).

Analyzing the results of the experiments, one notes that
the ratio f/fc is a function of the size ratio and aspect ratio
of the tube only. That is, there is no need to measure either
the flow velocity or the shear rate. This can be understood as
follows. We first verified [13] that the flow down the inclined
plane is essentially linear (using metallic particles and “streak
line” measurements [14]). This suggests that the shear rate can
be simply expressed as γ̇ = 2Ū/H , where Ū is the average
streamwise flow velocity and H is the radial height of the rod.
We then note that the effective forcing frequency is given as
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FIG. 6. Shown are representative computational results for both
a mixed (c) and segregating (b) system. The left side (a) shows the
time-variation of the Is values corresponding to the inset images.
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f = 2Ū/L, so that [using Eq. (12)] our values of Ū cancel
and we are left with a primarily geometric expression:

f

fc

= 100H

[β + (1 − c)α]L(1 − c)(1 − d̄)
. (16)

Fitting our β and α values to the results obtained at the
size ratio d̄ = 0.6, we obtain β = 0.2 and α = 4. We then
plot the results of all of the experiments with mixtures of
different-sized cellulose acetate beads in Fig. 5(a). We note
that, as predicted, the categorization of the system as either
mixed or segregated agrees with the boundary curve suggested
by Eq. (16) (using the fitting parameters from the the size ratio
of 0.6 only, as this one included our “boundary” case as seen
in Fig. 4).

Finally, in Fig. 6 we depict representative results for mixing
and segregation trials of the computational zigzag chute. On
the left we show the time evolution of the Is values for the
duration of the simulations. Note that the segregating system
exhibits a time-periodic tracing of the Is and the system
must reverse the sense of segregation after each “flipping”
event. This means that after each “flipping” event the system
passes through an unstable “mixed” configuration on its way
to the new segregated state (much like what is exhibited in
the discrepancy between the right-leaning and left-leaning
rock-and-rotate systems that are close to ts = tf ). On the right
(b and c) we show a snapshot of the left-hand systems with the
segregating system at the bottom (b) and the mixed system at
the top (c).

VIII. CONCLUSION

In this work we apply flow perturbations in order to
eliminate segregation due to size differences (S systems) in
surface-dominated granular flows. We develop an approximate
theory applicable to S systems that is analogous to that devel-
oped by Shi et al. [13] for D systems and show that it matches
both computational results in a chute flow and experimental
results in a “rock-and-rotate” tube. Experimentally, a mixed
result is obtained for all size ratios when a short length of
tube is used; however, a segregated result is obtained for a
sufficiently long length of tube. Adapting our approximate
theory to this simple geometry allows us to develop a model
for the critical perturbation frequency that is only a function of
size ratio and tube aspect ratio. Thus, by controlled duration of
chute flow lengths, one might limit free surface segregation in
a simple way. This work could be extended for combined size
and density coupled mixtures, where particles are completely
segregated due to combined effects of “void-filling” and
“effective buoyancy” mechanisms. Finally, this concept of time
modulation could be applied for a wide range of industries,
where the finished product strictly depends on the quality of
mixing of the bed materials, such as pharmaceuticals, food
stuffs, ceramics, etc.
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