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Effect of confinement on dense packings of rigid frictionless spheres and polyhedra
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We study numerically the influence of confinement on the solid fraction and on the structure of three-
dimensional random close-packed granular materials subject to gravity. The effects of grain shape (spherical or
polyhedral), material polydispersity, and confining wall friction on this dependence are investigated. In agreement
with a simple geometrical model, the solid fraction is found to decrease linearly for increasing confinement no
matter the grain shape. Furthermore, this decrease remains valid for bidisperse sphere packings, although the
gradient seems to reduce significantly when the proportion of small particles reaches 40% by volume. The
confinement effect on the coordination number is also captured by an extension of the aforementioned model.
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I. INTRODUCTION

Granular materials are well known for their wide range of
fascinating properties. Their theoretical description is difficult
for many reasons. One of them is the importance of the local
arrangement of grains within the material on its macroscopic
behavior. Real granular systems have boundaries, but for the
sake of simplicity, scientists often neglect them (see, for
example, Refs. [1,2]) and the system is then considered as
infinite. This assumption is not always justified since the
presence of boundaries modifies the system local arrangement
in their vicinity. Moreover, due to the intrinsic steric hindrance
of granular materials, those structure modifications often
propagate over distances in the order of several grain sizes.
As a consequence, the behavior of granular systems may be
strongly influenced by the presence of sidewalls even if the
confinement length is large compared to the grain size.

The crucial role of confinement on system properties has
been pointed out in many works dealing with gravity-driven
granular flows [3–8], granular segregation [9], structure and
mechanics of granular packings [10–12], granular systems in
narrow silos [13], or granular penetration by impact [14].
Those studies point out that two major physical properties
can be influenced by the presence of sidewalls. First, they
can induce friction that might be important in respect to
the internal friction of the system [7], explaining the well-
known Janssen effect [15], or unexpectedly high angle values
observed with confined granular heaps [16,17] or confined
chute flows [3]. Second, as mentioned above, they might also
alter the geometrical structure of the system near the wall,
where particles tend to form layers, giving rise to a fluctuating
local solid fraction with distance from the wall [11] and
affecting the properties of confined systems. Note that the
effect of confinement is not limited to the vicinity of the walls
but may propagate within the sample. This is more particularly
the case for confined granular chute flows for which it has
been shown that the good dimensionless number to quantify
the sidewall effect is not the number of grains per unit of width
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between sidewalls but the ratio of the flow height to the gap
between sidewalls [3].

Here, we focus mainly on the geometric effect of the
presence of sidewalls on quantities like the solid fraction
and the coordination numbers. Recently, Desmond and Weeks
used numerical simulations to study the effect of confinement
on binary atomic systems at the random-close-packing limit
[18]. Their numerical results agree with a simple geometrical
model [19–21] (hereafter called the geometrical model), which
captures the evolution of the solid fraction of random close
packings of spheres with confinement. It is based on the
following configuration: A packing of particles is confined
between two parallel and flat walls separated by a gap W .
It then assumes that such a confined system is made of
two boundary layers (of thickness h) and a bulk region and
that the solid fraction of the boundary layers, φBL, is lower
than that of the bulk region, φbulk. By writing the total solid
fraction φ as the average of both the bulk region and boundary
layers’ solid fractions (weighted by their relative thickness),
the geometrical model predicts that the average solid fraction
decreases linearly with 1/W ,

φ = W − 2h

W
φbulk + 2h

W
φBL = φbulk − C

W
, (1)

where C = 2h (φbulk − φBL). Note that this model can be easily
adapted to other boundaries, such as cylindrical ones [18]. The
three parameters of the geometrical model (φbulk, φBL, and
h) probably depend on grain shape, packing polydispersity,
and confining wall properties. Here we study the effect of
confinement on quasistatic dense frictionless granular systems
(i.e., grains interacting through hard core repulsion) subjected
to gravity. We test the validity of the geometrical model for
such systems and study the aforementioned dependencies.
Using numerical simulations, we investigate the actual effect of
grain shape by comparing packings of spheres with packings
of polyhedra. Furthermore, we assess the effect of packing
polydispersity by comparing monosized and binary packings.
In addition, we check the effect of grain-wall friction.
Eventually, we look into packing microstructure by studying
the effect of confinement on the coordination number.

The paper is organized as follows. Section II describes our
simulations with details as well as the numerical simulation
method used. After checking the state of packings in Sec. III,

061317-11539-3755/2012/86(6)/061317(14) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.061317


CAMENEN, DESCANTES, AND RICHARD PHYSICAL REVIEW E 86, 061317 (2012)

α

G

L

E

FIG. 1. Pinacoid, a model polyhedra characterized by its length
L, width G, height E, and angle α.

Sec. IV investigates how the solid fraction is modified by
confinement and how these modifications are influenced
by packing polydispersity, grain shape, and confining wall
friction. Then we examine in Sec. V the modification of the
packing microstructure with confinement. Finally, in Sec. VI,
we summarize our results and present our conclusions.

II. SIMULATION METHODOLOGY

A. Geometry of grains

The simulated system is a three-dimensional dense assem-
bly of n frictionless rigid grains of mass density ρ, interacting
with each other through totally inelastic collisions.

Since grain shape may influence the behavior of granular
materials [22–25], two types of grains have been studied:
spherical grains of average diameter d and polyhedra of
average characteristic dimension d. The polyhedra shape
(Fig. 1) is that of a pinacoid, with eight vertices, 14 edges,
and eight faces. This polyhedron has three symmetry planes
and is determined by four parameters: length L, width G,
height E, and angle α. According to an extensive experimental
study with various rock types reported by Ref. [26], the
pinacoid gives the best fit among simple geometries for an
aggregate grain. In order to have a similar aspect ratio for
both grain shapes, the pinacoid dimensional parameters were
taken to be identical (L = G = E), with the characteristic
dimension d expressed as d = L. In addition, angle α was
set to 60◦. For each grain shape, two grain diameters (or
characteristic dimensions) have been considered: large dL and
small dS = dL/2.

B. Samples preparation

The packing geometry is that of a parallelepiped (Fig. 2)
of dimensions Lx by Ly by Lz. Periodic boundary conditions
(PBC) are applied in the x direction to simulate an infinitely
long parallelepiped using a finite number of grains. The
packing is confined in the y direction between two fixed
parallel walls separated from each other by a Ly = W large
gap. In some cases, PBC are also applied along the y axis to
simulate unconfined reference state, with W set to 20dL. The
packing is supported on the xy plane by a fixed frictionless
bottom wall and delimited by a free surface at its top.

FIG. 2. (Color online) Typical 3D snapshots of packings made
of polysized spheres (a) and pinacoids (b). The confinement is
characterized by the gap W between sidewalls. The direction of
gravity is −z.

Grain samples are composed of various proportions of small
and large grains having the same shape. In order to reduce
the thickness of the crystallized layer commonly observed
inside confined packings at the interface with smooth walls
[27,28], each population of grain size is randomly generated
with a Gaussian distribution characterized by its mean d and
its variance d2/900. For the sake of simplicity, packings made
of a unique population of grains (either small or large) will
be called “monodisperse,” whereas packings made of small
and large grains will be called “bidisperse” in the following.
In the latter case, the proportions of small (xS) and large (xL)
grains expressed as percentages by volume are of course linked
through xS = 100 − xL.

Each sample is constructed layer by layer according to
the following geometrical deposition protocol inspired by
Ref. [29]: Spherical particles of a sufficient diameter to circum-
scribe the larger grains of the sample are sequentially dropped
along z in a parallelepiped box having the aforementioned
geometry. Each particle stops on the free surface made of
the underneath layer of particles (or on the bottom wall for
the first layer of particles) and is further moved so it lays
on three particles chosen to locally minimize its altitude z.
Finally, the sample actual grains are randomly substituted for
those spherical particles. For polyhedra samples, a random
orientation is further assigned to each pinacoid. Note that
according to this protocol, some of the deposited grains may
not be in contact with their neighbors depending on their size
and shape.

C. Initialization and solicitations

The system initialization is identical for spheres and
pinacoids samples. The first step consists in geometrically
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depositing n grains into a parallelepiped box and then PBC are
substituted for the lateral walls of the parallelepiped box along
the x direction (along the x and y directions for biperiodic
reference state). Finally, gravity �g (0,0,−g) is applied in order
to compact the sample.

D. Contact dynamics method

Discrete numerical simulations were performed using the
contact dynamics (CD) method [30,31], which is specially
convenient for rigid grains. This method is based on implicit
time integration of the equations of motion with respect to
generalized nonsmooth contact laws describing noninterpen-
etration and dry friction between grains. This formulation
unifies the description of lasting contacts and collisions
through the concept of impulse, which can be defined as the
time integral of a force. The generalized nonsmooth contact
laws are expressed in terms of impulse

−→
PC and formal relative

velocity
−→̄
VC at contact point C. If V −

CN , V −
CT , V +

CN , and V +
CT

denote the normal and tangential relative velocities at contact
point respectively before and after collision, the formal normal
and tangential relative velocities are defined as follows:

V̄CN = V +
CN + eNV −

CN

1 + eN

,

(2)

V̄CT = V +
CT + eT V −

CT

1 + eT

,

where eN and eT measure the inelasticity of collisions and
reduce to the normal and tangential restitution coefficients in
the case of binary collisions.

These generalized contact laws support momentum propa-
gation through contact networks inherent to dense assemblies
of grains. For a given time step, impulses and velocities are
determined according to an iterative process using a nonlinear
Gauss-Seidel–like method [32]. In the case of large size pack-
ings of rigid grains, the CD method supports larger time steps,
leading potentially to faster calculations than the molecular
dynamic method, for which small time steps are needed.

The CD method was applied using the LMGC90© platform
[33,34], which namely implements a 3D extension of a 2D
contact detection algorithm described with details in Ref. [35].
Basically, contacts with a given grain are sought exclusively
among its neighbors. When a neighbor is located closer to
the grain than a threshold distance called gap, a 3D extension
of the shadow-overlap method devised by Moreau [33,36]
is applied. In the case of overlap between the grain shades,
their contact plane is determined. Four contact situations
may be encountered (Fig. 3): vertex-to-face or edge-to-edge,
represented by a single point and called simple; edge-to-face,
represented by two points and called double; and, finally,

FIG. 3. (Color online) Two polyhedra can experience simple
contacts (a), double contacts (b), or triple contacts (c).

face-to-face, represented by three points and called triple
(vertex-to-edge and vertex-to-vertex being very unlikely to
happen). These situations allow identification of a contact
plane and compute the contact impulse and velocity compo-
nents at each contact point.

This method proved apt to deal with dense flows of
disks [37–39] as well as with quasi-static plastic deformation
[35,40–44].

E. Materials and system parameters

The present study focuses on monodisperse sphere packings
(MSP), bidisperse sphere packings (BSP), and monodisperse
pinacoid packings (MPP).

The spacing of lateral walls W takes discrete values between
5dL and 20dL, and the sample period along the x axis is 20dL.
With the final height h of the packing in the range of 16dL to
20dL, the number n of grains varies between 1900 and 30 400
for spheres, depending on the proportion by volume of small
grains, and between 3600 and 15 000 for pinacoids.

The time-step value �t is taken small enough to moderate
the grain interpenetration incumbent to grains displacement
between two successive implementations of the contact de-
tection algorithm but sufficiently large to keep the calculation
duration reasonable. In this perspective, limiting to dL/100
the translation of grains during �t seems appropriate. For our
grain packings subject to compaction under their own weight,
this leads to the following relation:

dL

100
= vmax�t, (3)

with vmax = √
2g�h the maximum speed reached by a grain

free falling from initial height of the deposited packing down
to the altitude of the packing free surface at the end of the
compaction. Hence, Eq. (3) leads to the following expression
for the time step:

�t = 1

100

√
dL

2�h

√
dL

g
. (4)

Although the between-grain friction is set to zero, that of
wall-grain contacts (μw) is assigned nonzero values in a few
simulations to study the influence of wall friction.

The simulated system parameters are summarized in
Table I for spheres and in Table II for pinacoids. They are
expressed as dimensionless quantities by defining the follow-
ing normalization terms: lengths and times are respectively
measured in units of dL and t0 = √

dL/g, the characteristic
free fall time of a rigid grain of diameter dL subject to
gravity exclusively. For a given set of system parameters, three
grain packings are simulated in order to average the various
measured quantities.

TABLE I. Sphere packings.

n xs(%) Lx/dL Ly/dL h/dL �t/
√

dL/g μw en,et

2300 0 20 5 16 3.10−4 0.0 0.0
to 10 10 to to 0.3
30 400 25 20 20 10−3 0.5

40 1.0
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TABLE II. Pinacoid packings.

n Lx/d Ly/dL h/dL �t/
√

dL/g μw en,et

3600 20 5 16 3.10−4 0.0 0.0
to 10 to to
15 000 20 20 10−3

III. STATE OF PACKINGS

In order to examine the influence of wall-induced confine-
ment on the solid fraction and structure of dense packings
for various grain shape and polydispersity, it is necessary
to adopt a reference packing state and to ensure that the
compaction method used allows us to approximate such
a state while providing sufficient repeatability for a given
set of materials and system parameters. As mentioned in
Sec. II C, the compaction method used consists in depositing
rigid frictionless grains (with or without wall friction) under
their own weight. For sphere packings with presumably
negligible confinement, several authors have experimentally
[45,46] or numerically [1,46,47] observed that this compaction
method led to random close-packed states characterized by
the generally agreed solid fraction value of 0.64. According
to Ref. [48], random close-packed states of rigid frictionless
grains (spherical or nonspherical) are equivalent to packing
states in which the grains are homogeneously spread and
in a stable equilibrium without crystallization or segregation
(observe that the notion of “stable equilibrium” refers to the
minimization of a potential energy that ensures maximum
solid fraction [49]). Furthermore, extensive investigation of
the random close-packed state carried out by the authors of
Ref. [2] with spherical particles has evidenced the uniqueness
of this state in the limit of infinitely large samples subject
to fast isotropic compression (to avoid cristallization). Hence,
the influence of wall-induced confinement on the solid fraction
and structure of dense packings may be assessed against the
random close-packed state taken as the reference. Keeping
in mind that our compaction method allows us only to
approximate the random close-packed state (our compression
is not isotropic) and that the uniqueness of this reference
state has only been evidenced for sphere packings, it is
expected that meeting as much as possible the criteria stated
by Ref. [48] will lead to sufficiently repeatable solid fraction
and microstructure characteristics for a given set of materials
and system parameters to observe confinement effects for var-
ious grain shapes and polydispersity. Therefore, preliminary
assessment consists in checking the state of our simulated
packings (both sphere and pinacoid packings) in terms of stable
equilibrium, homogeneity, and reasonable interpenetration
given the particularities of the contact dynamics method.
Further assessment will be undertaken in Secs. IV and V.

A. Equilibrium

According to Ref. [2], grain packings for which the
following criteria are met on each grain have reached a stable
equilibrium, ∑

F < 10−4d2P, (5)

∑
M < 10−4d3P, (6)

Ec < 10−8d3P, (7)

where
∑

F ,
∑

M , and Ec are, respectively, the net force, net
momentum, and total kinetic energy of the grain. Indeed, the
authors of Ref. [2] have observed that setting to zero all grain
velocities in such a state and letting the packing relax further
did not lead to any kinetic energy or unbalanced force level
regain beyond these threshold values.

As a consequence, these criteria were used to check the
attainment of a stable equilibrium state in our simulations,
which was the case for all of them.

B. Interpenetration

The grain interpenetration, calculated as the sum of inter-
penetrated volumes between neighboring grains divided by the
sum of grain volumes, was checked in the bulk region of the
packing at the end of each simulation.

For sphere packings, the interpenetration was calculated
analytically as the sum of interpenetrated volumes between
couples of spheres (for a given couple of spheres, the
interpenetrated zone consists of two spherical caps) and it
was found to be very low (in the range of 10−5 to 10−3% by
volume).

For pinacoids, a routine was designed to compute the solid
fraction as well as lower and upper bounds of the grain inter-
penetration. Basically, this routine consists of superimposing
a lattice on the grain packing and calculating the solid volume
in each cell of the lattice. For a given cell, this solid volume
is the sum of elementary volumes analytically calculated from
the intersection between any pinacoid and the cell. In order
to bound the grain interpenetration, one shall focus on cells
intersected by two neighboring pinacoids, leading to one of
the four situations depicted on Fig. 4 (in 2D for simplicity
reasons):

(i) In situations (a) and (b), the solid volume Vsol con-
tained by the cell is in excess of actual cell volume Vcell;
hence, the lower bound of actual interpenetrated volume is

FIG. 4. 2D simplified representation of the four intersection
situations between two pinacoids and a lattice cell: (a) solid
volume � cell volume and partial interpenetration in the cell; (b) solid
volume � cell volume and total interpenetration in the cell; (c) solid
volume < cell volume and interpenetration (partial as represented or
total); and (d) solid volume < cell volume and no interpenetration.
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TABLE III. Pinacoid packings interpenetration for MPP.

W/dL 5 10 20 PBC

Imin (% vol.) 4.6 4.5 3.4 3.5
Imax (% vol.) 5.0 4.7 3.6 3.7

(Vsol − Vcell)/2 [situation (a)], whereas the upper bound is
Vsol/2 [situation (b)].

(ii) In situations (c) and (d), the solid volume contained by
the cell is smaller than actual cell volume; hence, the lower
bound of actual interpenetrated volume is 0 [situation (d)],
whereas the upper bound is Vsol/2 [situation (c)].

Observe that Vsol/2 is the upper bound of the interpenetrated
volume no matter the situation. When their size decrease,
the lattice cells that are intersected by two pinacoids tend
to concentrate exclusively inside actual interpenetrated areas
(IA), where Vsol/2 = Vcell or astride their border (AB), where
0 < Vsol/2 < Vcell. Hence, the total interpenetrated volume of
the packing VI is bounded by the following interval:

VI ∈
[ ∑

cell∈IA

Vcell ;
∑

cell∈IA

Vcell +
∑

cell∈AB

Vcell

]
,

in which
∑

cell∈AB Vcell tends to zero with decreasing cell size.
For each pinacoid packing geometry, Table III gathers lower

Imin and upper Imax bounds of grain interpenetration, e.g.,
bounds of VI expressed as a percentage of the packing solid
volume. These values were computed in the bulk region using
a lattice with dL/20 large cubical cells, and each of them
was averaged over three simulations. The interpenetration
calculated in our pinacoid packings, in the range of 3 to 5%
by volume, is clearly much higher than the one calculated for
sphere packings.

A first reason to explain these differences lies with the
determination of contact between two grains. In the case of
sphere packings, this determination is very simple and requires
no interpenetration: grains are in contact when the distance
between their centers is lower or equal to the sum of their
radii. Such a contact is only one point, which is located on the
segment connecting the centers of spheres at a distance of each
sphere center equal to its radius. Besides, the orientation of the
contact normal is borne by the segment connecting the grain
centers. In the case of pinacoid packings, the determination
of contact between two grains is much more complex and
time-consuming and implies more or less interpenetration:
first, grains are in contact when their respective shadows
always overlap no matter the projection direction. Hence, much
more calculation than for sphere packings shall be performed
to prove the existence of a contact, and the simultaneous
achievement of these overlap situations generally implies some
interpenetration. Next, in the case of a contact, it may not be
a unique point but rather two (edge-to-face contact) or three
(face-to-face contact) points, as explained in Sec. II D, which
obviously leads to more interpenetration.

A second reason lies with the nonsmooth approach associ-
ated with the contact dynamics. In molecular dynamics [50],
contact forces increase proportionally to a power function of
the interpenetration, leading to high repulsion contact forces
and, thus, low interpenetration in the limit of rigid grains. In the

contact dynamics method where no such relation is applicable,
the interpenetration is namely monitored by the quality of the
convergence of impulses and velocities at contact points within
the range of permissible values on the generalized nonsmooth
contact laws. Hence, in addition to an appropriate time-step
value, a low level of interpenetration requires optimizing
both the convergence criteria and number of Gauss-Seidel
iterations while keeping the calculation time acceptable (for
more information, refer to Refs. [30,31,33,34]).

Anyhow, the contact dynamics method is known to give
interpenetration values in the order of a few percentages
by volume (see Ref. [51]), and our quest of the densest
possible disordered packing made of frictionless particles
unsurprisingly leads to interpenetration values in the higher
range. Hence, the interpenetration evidenced by our results is
acceptable.

C. Homogeneity of distribution

In order to ensure that the applied compaction method
leads to homogeneously distributed packings, we examine the
variations in the proportions of large (PL) and small (PS)
grains with distance z from the bottom wall [Figs. 5(a)
and 5(b)]. Therefore, we count the number of particles of
each size in dL-thick regions of the packing and divide
that number by the total number of grains. Although small
deviations (that may be due to segregation) close to the bottom
of our packings are observed, the proportion profiles are
almost constant, showing that grains in sphere or pinacoid
packings are reasonably vertically homogeneously distributed.
The absence of segregation along the y axis is also checked for
BSP in the homogeneous zone (e.g., far from bottom and free
surface). Figure 5(c) displays the variations of proportions
PL and Ps in dL-thick layers parallel to the sidewalls. The
proportion profiles are almost constant, showing reasonable
horizontal homogeneity.

IV. SOLID FRACTION

A. Average solid fraction

In this subsection, our aim is to study the effect of
confinement on the solid fraction of MSP, BSP, and MPP, that
is to say, for various proportions of small particles and various
grain shapes. For this purpose, we report the evolution of the
aforementioned quantity for several values of gap between
sidewalls. We will also test the geometrical model mentioned
in the introduction [cf. Eq. (1)]. The solid fraction is computed
from analytical calculation of the volume of each sphere or
each pinacoid present within a given volume. This volume
incorporates any particle located 3dL away from the bottom
wall and the free surface. For the solid fraction of sphere
packings, the use of the Voronoı̈ tessellation [52,53] gives the
same results.

Figure 6 reports the average solid fraction for BSP, MSP,
and MPP versus dL/W . A first observation is that for a fixed
dL/W value, an addition of small grains in a monosized
sphere packing increases the solid fraction. This well-known
phenomenon can easily be understood by considering two limit
cases. The first one consists of a monosized sphere packing
to which we add a few small particles (xs � 100%). In this

061317-5



CAMENEN, DESCANTES, AND RICHARD PHYSICAL REVIEW E 86, 061317 (2012)

0 5 10 15 20
z / dL

0

0.025

0.05

P
s a

nd
 P

L

0 5 10 15 20
z / dL

0

0.025

0.05

P
s a

nd
 P

L

1 2 3 4 5
y / dL

0

0.05

0.1

P
s a

nd
 P

L

(b)

(c)

(a)

FIG. 5. (Color online) (a) Homogeneity of MSP (◦) and MPP
(×) along the z axis, expressed as the ratio of the number of grains
to the total number of grains in dL-thick layers. (b) Homogeneity
of BSP along the z axis, expressed as the ratio of the number of
large (empty symbols) and small (solid symbols) grains to the total
number of grains in dL-thick layers for xs = 10% (�), xs = 25%
(�), and xs = 40% (	). (c) Homogeneity of BSP along the y axis
(same calculation method and same key). For (a)–(c), the gap between
sidewalls is W = 5dL and the data have been averaged over three
simulations.

case, small grains partially fill the porosity of the monosized
packing and increase the solid fraction. The second limit case
corresponds to a packing of small grains to which we add
a few large particles (xs ≈ 100%). The largest particles can
then be considered as islands in a sea of small grains whose
solid fraction is equal to that of a monosized packing: φmono.
Since the solid fraction of the islands is equal to 1, the average
packing fraction is greater than φmono.

More interestingly, an excellent agreement between our
data and the geometrical model is found. The corresponding
values of C and φbulk are reported in Table IV. It should
be pointed out that the value of φbulk obtained for MSP

0 0.1 0.2
dL / W

0.6

0.65

0.7

0.75

φ

spheres xs  = 0%

spheres xs  = 10%

spheres xs  = 25 %

spheres xs  = 40%

pinacoids xs = 0%

FIG. 6. (Color online) Plot of the average solid fraction versus
dL/W for MSP, BSP, and MPP. The lines are fits from the geometrical
model [Eq. (1)]. Error bars denote the standard deviation.

is consistent with that of the random close packing (0.64)
reported in the literature [54].

Note that in Ref. [18], Desmond and Weeks compare
the geometrical model with simulations of bidisperse sphere
packing (50-50 binary mixture with particle size ratio of 1.4)
in the absence of gravity. Our results show that the validity of
this model is much broader since it still holds in the presence
of gravity for monodisperse sphere packings, for bidisperse
sphere packings (independently of the fraction of small grains),
as well as for monodisperse pinacoid packings. This result is
important in the framework of real granular materials whose
grains are far from being perfect spheres. Let us recall that
the fit parameter C is equal to 2h(φbulk − φBL) (see Sec. I).
Our results show that when the fraction of small grains, xs ,
increases, C decreases. This can be the consequence of a
decrease of the distance of propagation of the sidewall effects
h and/or of the difference φBulk − φBL. To address this point
we will study the local variation of the solid fraction close to
the sidewalls. This is the objective of next subsection.

B. Solid fraction profiles

Figure 7 depicts the solid fraction profile as a function of
the distance y/dL to the left sidewall for MSP [Fig. 7(a)],
BSP [Fig. 7(b)], and MPP [Fig. 7(c)]. The local solid fraction
fluctuates with the distance from the wall, especially in the
neighborhood of sidewalls and, if W is large enough, it
reaches a uniform value away from the sidewalls. The inset of
Fig. 7(a) reports the packing fraction fluctuations as a function
of the nondimensional distance from the wall y/dL. The
aforementioned fluctuations clearly reflect the layering due
to the presence of sidewalls, i.e., an order propagation in the

TABLE IV. Values of C and φbulk obtained by fitting the data
reported in Fig. 6 with Eq. (1).

Spheres Pinacoids

xs 0% 10% 25% 40% 0%

C/dL 0.197 0.165 0.142 0.126 0.149
�bulk 0.643 0.661 0.676 0.676 0.772
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FIG. 7. (Color online) Solid fraction profiles as a function of
distance y/dL from the confining wall for (a) MSP with W = 4dL,
W = 5dL, W = 10dL, and W = 20dL; (b) BSP with W = 5dL and
xs = 0,10,25, and 40%; and (c) MPP with W = 5dL, W = 10dL,
and W = 20dL. Fluctuations of the local solid fraction are due to
the layering of particles in the vicinity of the sidewalls. The inset in
Fig. 7(a) is a zoom over 3dL. The inset in Fig. 7(b) shows the solid
fraction for BSP (here xs = 40%) and the corresponding fit [Eq. (8)].

y direction [11]. For MSP, the confinement effect propagates
over approximately 3dL to 4dL. As a result, packings for
which W < 6dL to 8dL are influenced by the presence of walls
over their full width. In other words, for such size, the order
generated by the sidewalls propagates in the whole packing. On
the contrary for BSP as well as for MPP, the propagation seems
to be shorter (approximately 1.5dL to 2dL for BSP and about
2dL for MPP). The presence of bidispersity or nonsphericity

0 0.1 0.2 0.3 0.4
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g

FIG. 8. (Color online) Characteristic length of confinement effect
λL versus fraction of small grains xs for MSP and BSP (circle) as
well as for MPP (diamond) with W = 10d . That length is defined in
Eq. (8). The effect of confinement is found to decrease with increasing
grain polydispersity or grain angularity. The inset reports the same
length versus that of the fit parameter in Eq. (1): C = 2h(φbulk − �BL).
The dashed line corresponds to a linear fit.

induces disorder in the vicinity of the sidewalls which mitigates
the layering. To quantify more precisely the sidewall effects,
we have fitted the solid fraction profiles reported in Fig. 7 by
the following empirical law:

φ(y) =
[

1 − exp

(
−y

α

)]⎧⎨
⎩φbulk

+
∑

i∈{S,L}
βi cos

[
π (2y − 1)

γi

]
exp

(
−y

λ i

)⎫⎬
⎭. (8)

In this expression, the characteristic lengths of the sidewall
effect propagation for large (L) and small (S) grains are
respectively λL and λS . Parameter α characterizes the solid
fraction increase close to the sidewalls, and γi and βi

respectively correspond to the period and amplitude of the
structuration oscillations caused to the solid fraction profile
by the layering of small and large particles. For monosized
packings, we use the aforementioned fit with βS = 0. An
example of the obtained fits is plotted in the inset of Fig. 7(b).
Let us stress that the fit used is purely empirical. Our aim is
to obtain a reasonable approximation for confinement effect
propagation rather than a precise description of the solid
fraction profiles by an equation.

The values of λL (those of λS are not statistically relevant
for xS < 0.25), normalized by the average grain size davg,
obtained this way are reported in Fig. 8 for W = 10dL.
For sphere packings, the normalized characteristic length is
found to decrease when the fraction of small spheres xs

increases. Indeed, for xs = 0, we have λL/davg ≈ 1.4, whereas
λL/davg ≈ 0.85 for xs = 40%. This decrease proves that the
polydispersity mitigates the confinement effect. Moreover,
the fact that λL/davg decreases with xs demonstrates that λL

decreases quicker than the mean grain size. For MPP we obtain
λ/davg = 1.2, which is smaller than the value obtained for
MSP. This indicates that the sidewall effect is also mitigated
by an increase in grain angularity. Hence, characteristic length
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λL is expected to correlate with the thickness h of the boundary
layers introduced in Eq. (1). In the inset of Fig. 8 we report
λL versus C= 2h(φbulk − φBL) and observe a good linear
correlation between these two parameters. Furthermore, the
data for both sphere and pinacoid packings collapse on the
same straight line whose intercept is equal to zero.

C. Effect of grain-wall friction

So far, the presented simulations were performed with
frictionless grains and sidewalls. However, additional simula-
tions were performed to investigate the influence of grain-wall
friction. For this purpose, the friction coefficient between
grains was kept equal to zero, whereas the grain-wall friction
coefficient μgw was successively set to 0.3, 0.5, and 1. As
before, three grain packings were simulated for each grain-wall
friction coefficient in order to average the measured quantities.
Our aim is not to address this point but just to mention that, in
our contact dynamic simulations, we found that the grain-wall
friction had no effect since neither the average solid fraction
nor the solid fraction profiles were affected by μgw. This result
demonstrates that the influence of confinement on packing
fraction is purely geometrical.

V. PACKING MICROSTRUCTURE

Section III established that our packings are homoge-
neous and that they have reached a stable equilibrium with
acceptable interpenetration. Then, in Sec. IV, we verified
that the simulated compaction method allows to accurately
achieve the 0.64 solid fraction characteristic of the random
close-packed state of monodisperse sphere packings when
PBC are substituted for sidewalls. Moreover, this method is
sufficiently repeatable to show significant influence of the
confinement on the solid fraction of various grain packings.
Now, Sec. V focuses on the internal state of our packings
in order to investigate the influence of confinement on their
microstructure. We first investigate the presence of textural
order (Sec. V A). Then we study a usual characteristic to
describe the microstructure of grain packings: the mean
number of contacts per grains (coordination number). For
various grain shapes and polydispersities, Sec. V B discusses
the influence of confinement on that characteristic.

A. Order

In this section, our aim is to investigate the presence of
long-range textural order in the packings. Let us point out here
that by long-range order we mean an order that extends to the
system size when this size tends towards infinity [55].

In a granular packing, textural order may take various forms
[56]: translational arrangements of grains that combine to
form patterns, preferential orientation of the contact network,
and preferential orientation of nonspherical grains themselves.
Each of these aspects is addressed in the following paragraphs.

First, translational arrangements are studied by means of
the pair correlation function g(r) [1]. This function is depicted
in Fig. 9 for MSP [Fig. 9(a)] and MPP packings [Fig. 9(b)]
and for several values of W . For both packings, local order
extends over a few particle diameters, slightly less for MPP
than for MSP due to the higher angularity of the former,
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FIG. 9. (Color online) Pair correlation functions of MSP (a) and
MPP (b) for several values of W/dL. These exhibit local order that is
stronger for MSP compared to MPP. When r/dL is large enough, g(r)
tends towards 1, indicating the absence of long-range translational
order.

resulting in a loss of rotational symmetry. As a consequence,
very confined packings exhibit ordering over their full size.
However, for lower confinement (e.g., when W/dL = 10 or
more), g(r) tends towards 1 when r increases beyond 3dL,
indicating the absence of translational long-range ordering
within our packings.

Next, the existence of preferential orientations of the
contact network is investigated. For this purpose, Fig. 10
displays for various confinements 2D representations of the
distributions of contact orientations in MSP away from
the bottom plane and the free surface. Given the sidewall-
induced layering evidenced in the h-thick boundary layers
(see Sec. IV B), contact from the boundary layers [Fig. 10(a)]
have been dealt with separately from those located in the bulk
region [Fig. 10(b)]. Note that no bulk region is present in
monodisperse packings where W/dL = 5 and, conversely, no
boundary layer occurs in PBC packings. Furthermore, inside
the boundary layers [see Fig. 10(a)], an anisotropy of contact
orientations is visible regardless of the confinement in the x,
y, and z directions, as well as at roughly 60◦ to the x direction
in the xy plane and 30◦ to the y direction in the yz plane
(corresponding to compact clusters of three spheres close to the
sidewalls). This anisotropy is fully consistent with the vertical
layering of monodisperse packings close to the sidewalls, with
a larger peak in the y direction due to the high proportion of
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(a)

(b)

FIG. 10. (Color online) Contact normal orientation distributions
for MSP inside the boundary layers (a) and inside the bulk region (b).
The upper half of each chart (e.g., from 0◦ to 180◦) corresponds to
the xy plane, while lower half corresponds to the yz plane. Several
gap widths are considered.

sidewall-sphere contacts. Unsurprisingly, in the bulk region,
Fig. 10(b) shows that the distribution of contact orientations
remains isotropic for all these confinements. In order to assess
the effect of polydispersity on the existence of preferential
orientations of the contact network, 2D representations of the
distributions of contact orientations are depicted in Fig. 11 for
W = 5dL-thick packings, away from bottom plane and free
surface. Observe that the substitution of xS = 40% by mass
of small particles for large ones results in the emergence of a
central 2dL-thick quasi-isotropic bulk region [see Fig. 11(b)].
Furthermore, note that the boundary layers remain anisotropic
[see Fig. 11(a)], although the presence of small particles
between large ones tends to disturb the vertical layering of
the latter (because the centers of inertia of small particles
are not necessarily coplanar with those of large particles).
Hence, the anisotropy along the axes x, y, and z is mitigated,
while other preferential orientations corresponding to various
patterns made of small and large grains each in contact with the
others are generated. Eventually, in order to assess the effect
of grain shape on the existence of preferential orientations of
the contact network, 2D representations of the distributions
of contact orientations in MPP away from the bottom plane

(a)

(b)

FIG. 11. (Color online) Contact normal orientation distributions
for MSP (xS = 0) and BSP (xS = 40%) inside the boundary
layers/closer than 1.5dL to a sidewall (a) and inside the bulk region
(b). The upper half of each chart (e.g., from 0 to 180◦) corresponds to
the xy plane, while the lower half corresponds to the yz plane. The
gap width is W = 5dL and the bulk region coincides with particles
located at least 1.5dL away from the sidewalls.

and the free surface are represented in Fig. 12 for various
confinements. As for sphere packings, contacts located in
boundary layers have been dealt with separately from those
located in the bulk region. Inside the boundary layers, an
anisotropy of contact orientations is visible regardless of the
confinement in the x, y, and z directions [see Fig. 12(a)], and
this anisotropy may be explained by the wall-induced layering
just like for sphere packings. In the bulk region, Fig. 12(b)
shows that pinacoid packings exhibit isotropic contact orienta-
tion distributions in the xy plane but not along the z axis where,
unlike for sphere packings, some anisotropy is visible even
for packings with PBC. This anisotropy may be explained by
the deposition under gravity protocol, with pinacoids rotating
around their center of inertia under steric hindrance contraints
in order to minimize their potential energy.

The anisotropy observed in Figs. 11(b) and 12(b), respec-
tively, for BSP with xS = 40% and MPP with PBC, may be
calculated and compared to that of the isotropic reference
state depicted in Fig. 10(b) with PBC. Given the rotational
symmetry of the contact normal orientation distributions in the
xy plane [see Figs. 10(b), 11(b), and 12(b)], the anisotropy may
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(a)

(b)

FIG. 12. (Color online) Contact normal orientation distributions
for MPP inside the boundary layers (a) and inside the bulk region (b).
The upper half of each chart (e.g., from 0◦ to 180◦) corresponds to the
xy plane, while the lower half corresponds to the yz plane. Several
gap widths are considered.

be quantified using a second-order development of the contact
orientation probability density function P (�n) (see Ref. [43] for
details),

P (�n) = 1

4π
[1 + a(3 cos2 θ − 1)], (9)

where
(a) a = 5(F3 − F1)/2 denotes the branch vector coefficient

of anisotropy derived from eigenvalues F3 and F1 of the fabric
tensor [34,43,56] and

(b) θ denotes the polar coordinate in the xy plane.
This coefficient may vary from 0 (perfectly isotropic pack-

ing) to 2.5 (perfectly anisotropic packing). Table V gathers
values of the branch vector coefficient of anisotropy calculated

TABLE V. Branch vector coefficient of anisotropy calculated for
MSP with PBC (W/dL = 20), in the bulk region of BSP with xS =
40% (W/dL = 5), and for MPP with PBC (W/dL = 20).

Configuration MSP (PBC) BSP (W/dL = 5) MPP(PBC)

a 0.028 ± 0.011 0.032 ± 0.005 0.081 ± 0.032

FIG. 13. (Color online) Distribution of the orientations of simple
(a), double (b), and triple (c) contacts for MPP in the yz plane.
Periodic boundary conditions are used in the x and y directions.

for MSP with PBC, in the bulk region of BSP with xS = 40%
and for MPP with PBC. These values show no significant
differences between the bulk region of BSP with xS = 40%
and MSP with PBC. Furthermore, the coefficient of anisotropy
of branch vectors obtained for MPP with PBC remains below
0.1, denoting a rather small anisotropy. Last, Fig. 13 shows
the distributions of the orientations of simple (face-vertex),
double (face-edge), and triple (face-face) contacts, whereby
the vertical anisotropy in MPP with PBC is identical no matter
the contact type. As a consequence, no long-range contact
orientation anisotropy is generated in our frictionless grain
packings by the grain deposition protocol used, except a weak
anisotropy generated in pinacoid packings along the z axis.

Finally, the orientations of particles that are not symmetric
by rotation may also be a source of anisotropy within the
packing. To detect a preferential orientation of pinacoids in
such a packing, one may use the nematic order parameter Q2

00.
Here, we recall briefly how this parameter can be determined
(for details, refer to Refs. [57,58]). For each particle, if we
call −→u ,−→v ,−→w the unit vectors of its base of inertia (which, in
our case, align with its axes of symmetry) we can define the
following tensor [58]:

Quu
αβ = 1

n

n∑
i=1

(
3

2
uiαuiβ − 1

2
δαβ

)
with α,β = 1,2,3,

where n is the number of particles and δ the Kronecker symbol.
We apply the same definition with Qvv

αβ and Qww
αβ . From those

tensors, the nematic order parameter can be determined,

Q2
00 = t−→Z Qzz−→Z ,

where
−→
Z is the eigenvector corresponding to the larger

eigenvalue of the three tensors Quu, Qvv , and Qww. Qzz is
the corresponding diagonalized tensor. By construction, this
parameter varies between 0 and 1. For each of our pinacoid
packings, two values of the nematic order parameter have
been calculated, one corresponding to particles located in a
boundary layer, and one corresponding to particles located in
the bulk region. Whatever the confinement, the nematic order
parameter ranges between 0.05 and 0.07 in the bulk region,
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FIG. 14. (Color online) Coordination number as a function of
dL/W for MSP and MPP. Error bars on pinacoid packings results
denote the standard deviation (not represented for sphere packings
because errors are smaller than symbol size). The linear relationship
between Z and dL/W suggests that the geometrical model, initially
derived for the packing fraction, is also valid for the coordination
number.

which is quite low and shows the absence of privileged grain
orientation, whereas it is slightly higher in the boundary layers
(between 0.105 and 0.128).

As a conclusion of this subsection, frictionless grain
packings used in the present work do not exhibit significant
long-range order, except a weak anisotropy of the contact
orientation distributions observed in pinacoid packings along
the z axis. Furthermore, sidewalls induce order close to their
location that, in the case of very confined packing, propagates
over the whole system.

B. Coordination number

Figure 14 shows the variations of the coordination number
with dL/W for MSP, BSP, and MPP. Each value is aver-
aged over three simulations and the error bars denote the
corresponding standard deviation. Preliminary examination
of our results obtained with biperiodic boundary conditions
(unconfined state with dL/W → 0) suggests the following
remarks: For sphere packings, the calculated coordination
number is 6.027 ± 0.012, which is very close to the 6.073 ±
0.004 value calculated by Ref. [48] in the RCP state. For
pinacoid packings, the calculated coordination number is
8.581 ± 0.068. Although no study of pinacoid packings could
be found in the literature, such a high coordination number
value has already been observed in disordered packings of
particles having a similar shape (8.6 ± 0.1, calculated by
Ref. [59] for packings of tetraedra on extrapolation to the
jamming point).

When confinement increases, the coordination number
decreases linearly for both MSP and MPP, which is consistent
with the linear decrease of the solid fraction evidenced in
Fig. 6. Though MPP coordination number values tend to
be more scattered than MSP ones, which could be due to
a combination of finite-packing-size effects with the higher
level of interpenetration observed in pinacoid packings.
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FIG. 15. (Color online) Coordination number profiles (along y)
for MSP (a) and for MPP (b) for several gap width. These profiles
evidence a constant central zone and two drop zones in contact with
the sidewalls.

Nevertheless, the aforementioned linear relation between Z

and 1/W suggests a generalization of the geometrical model
to the coordination number. For this purpose, let us define
Zbulk and ZBL, respectively, the coordination number for the
bulk region and the coordination number for the boundary
layers. By writing the coordination number as the average of
Zbulk and ZBL weighted by the thicknesses of their respective
zones (respectively, W − 2hZ and 2hZ), we obtain

Z = W − 2hZ

W
Zbulk + 2hZ

W
ZBL = Zbulk − CZ

W
, (10)

with CZ = 2hZ(Zbulk − ZBL).
Figure 14 also shows that the influence of polydispersity

on packing coordination number Z decreases to zero when the
confinement diminishes, which is consistent with Ref. [60].
Indeed, in the unconfined state, the lack of contacts of small
spheres with others (due to the steric hindrance of large ones)
is compensated by the excess of contacts of large spheres with
small ones.

To investigate the coordination number decrease with
increasing confinement, Fig. 15 depicts coordination number
profiles in the y direction (normal to the sidewalls) for sphere
and for pinacoid packings. Each of these profiles is averaged
over three simulations and is determined on subdividing the
packing into slices perpendicular to the y direction and calcu-
lating for each slice the average number of contacts per particle
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having its center of inertia in the slice. In confined state, all
these profiles evidence a central zone where the coordination
number is almost unchanged compared to the unconfined
reference state (except for sphere packings with W = 5dL)
and two “drop zones” in contact with the sidewalls where
the coordination number symmetrically drops by 1.4 (for
sphere packings) to 1.5 contacts (for pinacoid packings) from
their respective unconfined reference state. The thicknesses
of these drop zones look identical to that of the boundary
layers described in the geometrical model [18], leading to the
same conclusion that grain angularity mitigates the effect of
sidewalls on the coordination number drop in their vicinity.

To confirm this observation, we may consider the geomet-
rical model and compare ζφ = C/φbulk with ζZ = CZ/Zbulk.
For MSP, we obtain ζφ = 0.304 and ζZ = 0.305 and for MPP
ζφ = 0.186 and ζZ = 0.193. Note that the values of ζφ and ζZ

are also comparable in the case of BSP. The strong correlation
between those two quantities shows that the propagation of
the confinement effect is comparable for the two studied
quantities: φ and Z. As described in Sec. II D, pinacoid
packings incorporate simple, double, and triple contacts and
it is of interest to investigate the effect of confinement on
their respective distribution. Therefore, Fig. 16 depicts the
coordination number profiles of MPP for simple [Fig. 16(a)],
double [Fig. 16(b)], and triple contacts [Fig. 16(c)]. Like
in Fig. 15, all these profiles evidence a central zone where
coordination number values are almost unchanged compared
to the unconfined reference state (except for sphere packings
with W = 5dL). These values are Zs ≈ 5, Zd ≈ 1.7, and
Zt ≈ 1.8, respectively, for simple, double, and triple contacts.

In order to check the relevance of these coordination
number values, one shall observe that packings of n frictionless
rigid grains at equilibrium obey the following relation [49]
among the degree of hypostaticity k0, the degree of hyper-
staticity h0, the number of contacts that carry forces Nc =
n
2 (Zs + 2Zd + 3Zt ), and the number of degrees of freedom
Nf = 6n of the packing:

Nf + h0 = Nc + k0 ⇔ 12 + 2
h0

n

= Zs + 2Zd + 3Zt + 2
k0

n
. (11)

If we assume that the pinacoids in our packings are
randomly oriented, which seems reasonable according to the
values of the nematic order parameter (see Sec. V A), then
no motion is possible without generating work in the contacts
network, which means that the degree of indeterminacy of
contact forces in the packing is zero; therefore, k0 should
be set to 0 in Eq. (11). On incorporating in Eq. (11) the
aforementioned coordination number values as well as that
of k0, one obtains

2
h0

n
= 13.8 − 12 = 1.8. (12)

Observe that, for isostatic pinacoid packings (e.g.,
h0 = 0), Eq. (11) would lead to Zs + 2Zd + 3Zt = 12.
Here, it is clear that Zs + 2Zd + 3Zt > 12. The level
of interpenetretation calculated in Sec. III B together
with the finite size of packings may lead to a sum
Zs + 2Zd + 3Zt slightly higher that 12, but it is doubtful
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FIG. 16. (Color online) Coordination number profiles (along y)
of MPP for simple (a), double (b), and triple contacts (c) for confined
(W ∈ [5dL,20dL]) and unconfined packings.

that this sum would reach 13.8 on this sole explanation.
The presence of hyperstaticity in our pinacoid packings seems
more realistic and at least consistent with Eq. (12) and with our
finding of as much as 2 triple contacts per grain (Zt ≈ 1.8).
Although interesting, further investigation of the presence of
hyperstaticity falls beyond the scope of the present paper.

Coming back to Fig. 16, the profiles show that MPP
exhibit more simple contacts than the sum of double and triple
contacts. They also evidence that confinement primarily affects
the simple contact profiles, whereas double and triple contact
profiles remain unchanged. As a consequence, the vicinity
of sidewalls is not a privileged location for edge-to-face or
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FIG. 17. (Color online) Coordination number profiles (with y)
for BSP. The gap between sidewalls is W = 5dL.

face-to-face contacts, although a drop in the simple contact
profiles tends to make them look over-represented.

For a fixed confinement, Fig. 17 shows the influence
of polydispersity on coordination number profiles in the y

direction (normal to the sidewalls) for sphere packings. As
before, each of these profiles is averaged over three simulations
and is determined on slicing the packing perpendicular to
the y direction. As observed in Fig. 7(b), an increasing
polydispersity does not seem to impact the bulk region but
rather reduces the thickness of the boundary layers and,
hence, mitigates the effect of sidewalls confinement on the
coordination number.

Finally, like for the solid fraction, we have not observed any
effect of the grain-wall friction coefficient on the coordination
number of MSP.

VI. CONCLUSION

In this work, we have shown how a confining boundary
alters the solid fraction as well as the internal structure of

static frictionless granular materials compacted under their
own weight using the nonsmooth contact dynamics simulation
method. We did not restrict ourselves to sphere packings but
extended our work to packings made of a particular type of
polyhedra: pinacoids.

As previously reported, the presence of sidewalls induces
short-range order in their vicinity. Except for a weak contact
orientation anisotropy observed with pinacoid packings in the
vertical direction, no long-range order was observed in our
packings. We have demonstrated that both the polydispersity
and the angularity of grains lower the confinement effect.
This effect has been observed for the solid fraction and for
the coordination number. Our results have shown that the
geometrical model [18–21] that captures the linear evolution
of the solid fraction versus −1/W is valid for sphere packings
as well as for pinacoid packings and that it holds whatever the
packing polydispersity.

Interestingly, this model, initially derived for the packing
fraction, can be extended to capture the effect of confinement
on the coordination number. The characteristic length quanti-
fying the effect of the sidewalls is found to be the same for
those two quantities.

Finally, we have shown that the effect of wall friction is
negligible, indicating that the major influence of the confining
sidewalls is geometric.

Several perspectives arise from this study, among which the
need to address with more details the presence of hyperstaticity
in our packings of frictionless pinacoids.
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[21] G. Combe, Ph.D. thesis, École Nationale des Ponts et Chaussées,
2001, http://gael.combe.pagesperso-orange.fr/these.pdf.

[22] A. P. F. Atman, P. Brunet, J. Geng, G. Reydellet, G. Combe,
P. Claudin, R. P. Behringer, and E. Clément, J. Phys.: Condens.
Matter 17, S2391 (2005).

[23] P. Ribière, P. Richard, R. Delannay, and D. Bideau, Phys. Rev.
E 71, 011304 (2005).

[24] P. Ribière, P. Richard, D. Bideau, and R. Delannay, Eur. Phys.
J. E 16, 415 (2005).

[25] K. Szarf, G. Combe, and P. Villard, Powder Technol. 208, 279
(2011).

[26] C. Tourenq and A. Denis, Les Essais de Granulats (Rapport de
Recherche du Laboratoire Central des Ponts et Chaussées, Paris,
1982), Vol. 114.

[27] C. Murray, MRS Bul. 23, 33 (1998).
[28] Lee-Wen Teng, Pei-Shan Tu, and Lin I, Phys. Rev. Lett. 90,

245004 (2003).
[29] R. Laniel, Ph.D. thesis, Université de Montpellier 2, 2007,
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[43] E. Azéma, F. Radjai, and G. Saussine, Mech. Mater. 41, 729
(2009).
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