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Is axial dispersion within rotating cylinders governed by the Froude number?
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Axial dispersion rates of particles within horizontal rotating cylinders have been calculated for a decade of
cylinder diameters. Throughout the range studied the rate of axial dispersion was found to be independent of the
cylinder diameter. This phenomenon has been investigated further by spatially resolving the local contribution
to the axial dispersion coefficient. This analysis demonstrates that, although the highest rates of axial dispersion
occur at the free surface of the bed, there is a significant contribution to axial dispersion throughout the flowing
region of the bed. Finally, based on an analogy with a Galton board, a linear relationship is proposed between
the local rate of axial dispersion within a horizontal rotating cylinder and the product of the local particle
concentration and the local shear rate in a plane perpendicular to the cylinder axis.
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I. INTRODUCTION

The motion of particles within partially filled, horizontal,
rotating cylinders has attracted significant academic interest
in recent years [1–6]. These systems are also of significant
importance in industry, where they find application in pro-
cesses such as waste incineration, cement manufacture, and
the production of titanium dioxide. One area that is of both
academic and industrial interest is axial dispersion within
rotating cylinders [7,8].

Axial dispersion within horizontal rotating cylinders con-
taining glass ballotini was studied by Parker et al. [9] using
positron emission particle tracking. Using 1.5 and 3 mm
ballotini and cylinder diameters of 100, 136, and 144 mm,
Parker et al. [9] found that the rate of axial dispersion was
strongly influenced by the particle diameter but did not appear
to depend on the drum diameter.

Third et al. [10] used the discrete element method (DEM) to
calculate axial dispersion coefficients (Dax) for beds composed
of approximately monosized spheres. For a range of particle
diameters, rotation speeds, drum diameters, and gravitational
strengths, they found that their results could be described by
the correlation

Dax

d2−λ
p gλ�1−2λ

= K. (1)

Here dp is the particle diameter, g is the acceleration due
to gravity, � is the rotation speed of the cylinder, K is a
dimensionless constant, and λ is a parameter in the range
0.1–0.15. For cylinder diameters (D) between 75 and 200 mm,
Third et al. found that Dax was independent of D, whereas a
smaller value of Dax was obtained for a cylinder diameter of
50 mm.

Both Parker et al. [9] and Third et al. [10] found the rate of
axial dispersion to be independent of the drum diameter (D)
for sufficiently large values of D. This result is particularly
intriguing since it implies that the rotational Froude number
(Fr = �2D/2g), which is often used to characterize particle
motion within rotating cylinders [11,12], does not govern axial
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dispersion within these systems. However, neither Parker et al.
[9] nor Third et al. [10] were able to provide an explanation of
why Dax is independent of D. Furthermore, for large values of
D the particle motion within the bed will move from the rolling
regime observed at low Fr to the cataracting or centrifuging
regimes. Therefore, although it has never been reported, it is
expected that there is an upper limit for D above which the
observation that Dax is independent of D will fail.

In this work the DEM is used to examine the influence of
cylinder diameter on axial dispersion over a decade of drum
diameters. In addition, the axial displacement of particles is
spatially resolved, which provides insight into how and where
axial dispersion occurs within rotating cylinders. Finally, a
model is proposed which links the local rate of axial dispersion
in a rotating cylinder to the local shear rate.

II. SIMULATION METHOD

The soft-sphere DEM is well documented in the literature
[13–16] and will not be described here except to detail the
particular force laws used in this work.

The force in the normal direction Fn is modeled using a
damped linear spring and attractive forces between particles
are prevented. Therefore, for a collision between particles i

and j , Fn is given by

Fn = max
(
0,knij

δn − 2ηn

√
mijknvn

)
. (2)

Here ηn is the damping factor in the normal direction, δn is the
particle overlap, kn is the normal stiffness, vn is the relative
velocity in the normal direction, and mij is the effective mass
defined as 1/mij = 1/mi + 1/mj . In the tangential direction
static friction is modeled as a damped linear spring and the
magnitude of the tangential force is limited by Coulomb’s law
such that

Ft = min
(
μknij

δn,ktij δt − 2ηt

√
mijktvt

)
. (3)

Here μ is the coefficient of friction, ηt is the damping factor
in the tangential direction, kt is the tangential stiffness, and
vt is the relative velocity of the two surfaces in contact. The
tangential displacement δt is defined as

∫
vt dt . Table I shows

the parameter values used in this work. The fill level is defined
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TABLE I. Simulation parameter values.

Parameter Symbol Value

Nominal particle diameter dp 3 mm
Particle size distribution ±5%
Particle density ρ 2500 kg/m3

Normal spring stiffness kn 1000 N/m
Tangential spring stiffness kt 500 N/m
Normal damping factor ηn 0.2
Tangential damping factor ηt 0.2
Particle coefficient of friction μp 0.7
Acceleration due to gravity g 9.81 m/s2

Length of cylinder L 152 mm
Cylinder rotation speed � 5.8, 10, 17.3 rpm
Fill level f 26%
Time step for numerical scheme dt 1 × 10−5 s

as the fraction of the cylinder taken up by particles and voids
between particles when the cylinder is rotating.

The cylinder in which the particles are rotated is modeled as
a smooth, but frictional, cylinder onto which “wall rougheners”
have been attached to prevent slip between the cylinder wall
and the bed [17]. The wall rougheners consist of lines of 3 mm
particles running along the length of the cylinder and they
are equally spaced around the cylinder circumference with
a center-to-center spacing of approximately five particle
diameters. The centers of the particles making up the wall
rougheners are located on the cylinder circumference. The
ends of the cylinder are modeled as frictionless plane walls.
With the exception of the friction coefficient of the end plates,
the physical properties of the cylinder, the wall rougheners, and
the end plates are identical to those of the particles. Gravity
acts in a direction perpendicular to the cylinder axis for all
simulations. The equations of motion are integrated using
a third-order Adams-Bashforth scheme with a time step dt ,
which satisfies dt � tcol/30, where tcol is the duration of a
binary collision.

III. AXIAL DISPERSION

In this work axial dispersion is quantified by calculating
the mean-square deviation in the axial position of a group of
particles as a function of observation time, �t . It has previously
been shown that axial dispersion within horizontal rotating
cylinders obeys Fick’s second law [8,10], allowing the axial
dispersion coefficient Dax to be related to the mean-square
deviation in particle position as shown by Eq. (4).

1

N ′

N ′∑

k=1

[zk(t + �t) − zk(t)]2 = 2Dax�t. (4)

Here zk is the axial position of particle k and N ′ is the
number of particles contributing to the mean-square deviation.
The dispersion coefficients presented here are calculated by
computing the mean-square deviation of a 50 mm axial pulse
of particles that is initially located axially in the center of the
cylinder. The motion of the particles in this pulse is tracked for
a 20 s time interval before a new pulse of particles is selected
and the process is repeated. The results presented here are

TABLE II. Axial dispersion coefficients for the systems studied
here. The mean of the product of the local shear rate and the local
particle concentration is also shown.

Drum diameter � Fr Dax C|εxy |
(mm) (rpm) (m2/s) (s−1)

100 10.0 0.0056 3.0 × 10−6 22.4
200 10.0 0.0112 3.0 × 10−6 24.2
300 5.8 0.0056 1.9 × 10−6 17.0
300 10.0 0.0168 2.9 × 10−6 24.4
300 17.3 0.0503 4.5 × 10−6 34.6
400 10.0 0.0224 2.9 × 10−6 24.4
500 10.0 0.0279 3.0 × 10−6 24.2
1000 10.0 0.0558 3.0 × 10−6 23.1

based on averaging nine such time segments, i.e., 180 s of
simulated time.

IV. RESULTS

Table II summarizes the axial dispersion coefficients
obtained for drum diameters ranging from 100 to 1000 mm.
These data indicate that, for the system studied here, the drum
diameter does not influence the rate of axial dispersion. For
D = 300 mm simulations were performed at rotation speeds of
5.8, 10, and 17.3 rpm. The (dimensionless) Froude number of
the 300 mm drum with a rotation speed of 5.8 rpm is the same
as that of the 100 mm drum rotating at 10 rpm. Table II indi-
cates that Dax is very different for these two systems, highlight-
ing that axial dispersion cannot be characterized by the Froude
number. To understand better how and where axial dispersion
occurs, the spatially resolved contribution to the axial
dispersion coefficient is shown in Fig. 1 for an observation
time �t = 0.2 s. Plots are shown for the D = 200 and D =
500 mm cases. These data indicate that axial dispersion occurs
predominantly in the flowing or active region of the bed and
that very little dispersion occurs in the passive region close to
the cylinder wall. For both bed diameters the highest rates of
axial dispersion occur in a narrow band at the free surface of
the bed and at the shoulder and toe of the bed. However, since
these regions are relatively small compared to the total area
of the flowing region, they do not dominate the total axial
dispersion.

V. DISCUSSION

A Galton board consists of rows of pegs arranged on a
triangular pitch through which spherical beads are dropped.
When a bead collides with a peg it has an equal probability
of being diverted to either the left or the right of the peg with
the result that the variance in the horizontal positions of a
group of beads that have passed through the board increases
linearly with the number of rows of pegs in the board. Here we
propose an analogy between the Galton board and the motion
of particles within a horizontal cylinder by considering the
bed within a horizontal cylinder to be comprised of layers of
beads moving over one another with a relative velocity, vrel.
A sheet of spherical particles has a rough surface with peaks
corresponding to the tops of spheres and troughs corresponding
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FIG. 1. (Color online) Spatially resolved contribution to the axial
dispersion for a voxel size of 2 mm × 2 mm × 50 mm using
observation time �t = 0.2 s. The calculation is restricted to particles
initially located in a 50-mm-long axial pulse at the center of the
cylinder and the data have been averaged over 180 s of simulated
time. The beds have been rotated by the dynamic angle of repose
of the bed such that the upper surface of the bed is horizontal. The
shoulder of the bed (highest point on the free surface) is on the right
of the figures.

to the gaps between spheres. The peaks on this surface can be
thought of as acting in a similar manner to the pegs on a
Galton board since a particle approaching a peak will tend
to be diverted to the left or right in order to minimize the
dilation caused by its movement across the surface. Therefore,
the relative velocity between adjacent sheets of spheres will
lead to particles being displaced perpendicular to vrel, just as
particles undergo a horizontal displacement as they descend a
Galton board.

This analogy suggests that the local contribution to the
axial dispersion coefficient should be proportional to vrel since
this will govern how many “pegs” the particles will collide
with per second. Therefore, it is proposed here that the local
contribution to the axial dispersion coefficient is proportional
to the product of the local particle concentration and the local
shear rate in the x-y plane, Eq. (5).

1

2Vvox�t

∑
[zk(t + �t) − zk(t)]2 = kC|εxy |. (5)

Here Vvox is the volume of the voxels used to resolve the axial
dispersion, C is the local particle concentration, εxy is the local
shear rate, and k is a proportionality constant.

Figure 2 plots the local contribution to the axial dispersion
coefficient as a function of the product of the local particle
concentration and the local shear rate for drum diameters
of 200 and 500 mm. The local shear rates were calculated
from time-averaged velocity profiles as 1

2 | ∂u
∂y

+ ∂v
∂x
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FIG. 2. (Color online) Scatter plots showing the local contribution
to Dax against C|εxy |. Data are shown for drum diameters of 200 and
500 mm.

differences were applied to approximate the derivatives. From
Fig. 2 it can be seen that many of the data for both drum
diameters shown lie on a straight line that passes through the
origin and has a slope of k = 48 m−1, which demonstrates
the functional form proposed in Eq. (5). Furthermore, no data
lie below this line, indicating that Eq. (5) provides a lower
bound for the local contribution to the dispersion coefficient.
A similar trend is observed for the other drum diameters.
Table II shows the mean of the product of the local particle
concentration and the local shear rate for all the simulations
reported here.

To identify the regions of the bed where Eq. (5) under-
estimates the dispersion rate, the local contribution to Dax

predicted by Eq. (5) is plotted in Fig. 3 for k = 48 m−1 and
a voxel size of 2 mm × 2 mm × 50 mm. Data are shown
for drum diameters of 200 and 500 mm. These data indicate
good agreement between the calculated local dispersion rates
and those predicted by Eq. (5) for large portions of both
beds. The largest discrepancies between the model and the
calculated values are coincident with the regions of highest
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J. R. THIRD AND C. R. MÜLLER PHYSICAL REVIEW E 86, 061314 (2012)

FIG. 3. (Color online) Local contribution to Dax predicted by
Eq. (5) with k = 48 m−1 and a voxel size of 2 mm × 2 mm × 50 mm.

axial dispersion, i.e., on the free surface and the shoulder and
toe of the bed. To confirm that deviations from Eq. (5) are
predominantly located in these regions, the local contribution
to the axial dispersion coefficient was plotted against the
product of the local particle concentration and the local shear
rate for areas excluding the free surface and the shoulder
and toe of the bed. These data, termed the “subset,” are
shown in Fig. 2 for drum diameters of 200 and 500 mm.
For D = 200 mm the subset was defined as 40 mm < x <

160 mm, y < 52 mm and for D = 500 mm the subset was
defined as 100 mm < x < 400 mm, y < 130 mm. Figure 2
shows good agreement between the subset and Eq. (5) for
both drum diameters, confirming that deviations from this
linear behavior are largely located at the free surface and
at the shoulder and toe of the bed. A possible explanation
for this deviation may be as follows: Particles located on
the free surface of the bed are less constrained than particles
within the bulk since they have no particles above them. This
difference may result in a different relationship between shear
rate and axial dispersion for these particles. At the toe of
the bed the particles undergo a deceleration approximately
parallel to the free surface of the bed and there is a similar
acceleration at the shoulder of the bed. These accelerations will
produce additional strain rates (predominantly εxx), which may
result in additional axial dispersion. However, a quantitative
analysis of the influence of εxx is beyond the scope of this
paper.

Equation (5) was proposed without a detailed consideration
of the particle motion within the cylinder. Therefore, this
relation should be expected to hold for a range of operating
conditions. Above we have demonstrated that, away from
the free surface and from the shoulder and toe of the bed,
Eq. (5) appears to hold for a large range of D and that the
proportionality constant k is independent of D. To demonstrate
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FIG. 4. (Color online) Scatter plot showing the local contribution
to Dax against C|εxy |. The drum diameter is 300 mm and data are
shown for rotation speeds of 5.8, 10, and 17.3 rpm.

further the robustness of this relation, the effect of rotation
speed has been considered for D = 300 mm. Figure 4 shows
the local contribution to the axial dispersion coefficient plotted
against the product of the local particle concentration and the
local shear rate for rotation speeds of 5.8, 10, and 17.3 rpm. All
three rotation speeds demonstrate the same behavior observed
in Fig. 2: a large number of the data are located on a straight
line with a proportionality constant of k = 48 m−1 and no data
is located below this line.

The data presented in Figs. 2 and 4 indicate that there is
a strong relationship between the local axial dispersion and
the product of the local shear rate and the local concentration.
For rotating cylinders operating in the rolling regime, particle
velocities are expected to scale approximately linearly with
the drum diameter [18]. Therefore, the shear rate within the
cylinder, which is O( u

D
), is approximately independent of the

drum diameter. Thus, the data presented here suggest that
the rate of axial dispersion within rotating cylinders is
independent of D because the shear rate within these systems
does not depend on D.

VI. CONCLUSIONS

Axial transport within horizontal rotating cylinders has
been studied using the DEM for drum diameters ranging from
100 to 1000 mm. Throughout this range of D the rate of axial
dispersion was found to be independent of the drum diameter.
By spatially resolving the local contribution to Dax, it was
shown that the highest local contribution occurs on the free
surface of the bed but that there is a significant contribution
to Dax throughout the flowing region of the bed. A model
for axial dispersion within rotating cylinders operating in the
rolling regime has been proposed based on an analogy with
a Galton board. This model has been shown to give good
agreement with calculated values for the local contribution to
Dax for a large portion of the bed for all drum diameters and
rotation speeds studied here.
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