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Reductive renormalization of the phase-field crystal equation
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It has been known for some time that singular perturbation and reductive perturbation can be unified from
the renormalization-group theoretical point of view: Reductive extraction of space-time global behavior is the
essence of singular perturbation methods. Reductive renormalization was proposed to make this unification
practically accessible; actually, this reductive perturbation is far simpler than most reduction methods, such as
the rather standard scaling expansion. However, a rather cryptic exposition of the method seems to have been the
cause of some trouble. Here, an explicit demonstration of the consistency of the reductive renormalization-group
procedure is given for partial differentiation equations (of a certain type, including time-evolution semigroup
type equations). Then, the procedure is applied to the reduction of a phase-field crystal equation to illustrate
the streamlined reduction method. We conjecture that if the original system is structurally stable, the reductive
renormalization-group result and that of the original equation are diffeomorphic.
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I. INTRODUCTION

Many models of pattern formation and phase transition
dynamics are described in terms of partial differential equa-
tions (PDEs) that are generally analytically intractable and
even numerically nontrivial. Thus, reducing them to simpler
equations while preserving the key features of the original
system describing particular situations of interest should be
desirable. The so-called reductive perturbation theory [1]
and other techniques have been devised and utilized, but
from a practical point of view, the convenient method for
system reduction is to use the proto-renormalization-group
(proto-RG) equation approach [2,3]. However, the method
has not been understood correctly [4] and some controversies
remain [5].

The purpose of this paper devoted to reductive renormaliza-
tion is twofold. Lingering controversy and misunderstanding
seem to be caused largely by a rather cryptic writing of the
theory part of Ref. [2]. Therefore, in this paper a formal
demonstration of the consistency of the method to all orders is
given explicitly. It is implicit in Ref. [2], and now at least for
ordinary differential equations (ODEs) mathematical proofs of
the consistency of the renormalization-group (RG) approach
to singular perturbation problems are available [6,7], but the
original demonstration behind Ref. [2] adapted to PDEs should
be more accessible for physicists, and its resultant recipe
should be practically useful. The second aim of this paper
is to illustrate the usefulness of the practical rule made explicit
in the theoretical exposition.

This paper is organized as follows. In Sec. II we present
a formal demonstration of the RG theoretical reduction result
for PDEs. It will be seen that, formally, the procedure is quite
parallel to the one for the ODE case [8]. The proto-RG equation
is then obtained (Sec. III). Subsequently, in Sec. IV the result is
applied to the reduction of the phase-field crystal equation [9].
This equation describes the evolution of the conserved field.
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It is the conserved analog of the Swift-Hohenberg equation
[10], which constitutes a paradigm of spatially periodic pattern
formation. In Sec. V we make general remarks about the proto-
RG equations and the reductive RG results. The Appendix
contains the demonstration of the consistency (to all orders) of
the RG condition that is employed in the proto-RG approach.
The demonstration is technically tedious, but do not confuse
its complication with the practical simplicity of the reductive
RG method. Those who are only interested in using the method
may read only the first paragraphs of Secs. II and III and the
last section.

II. RENORMALIZATION PROCEDURE

Since the main purpose of this paper is to show explicitly
the consistency of the reductive RG approach, many details
and higher-order general formulas appear. Those who simply
wish to reduce Eq. (1) below should look at the unperturbed
result (2) and formal perturbative result (4) (often to the
lowest nontrivial order), then use the procedure outlined at
the beginning of Sec. III. Those who wish to understand
the renormalization philosophy (background) and how it
straightforwardly leads to the reductive renormalization idea
should read Chap. 3 of Ref. [8]. Also there is an early
expository review [11].

We study the following equation whose independent vari-
ables are collectively denoted as x, which is often time and
space (t,r):

L(∂x)ψ = εN [ψ], (1)

where L is a constant coefficient linear differential operator
[12] with distinct eigenvalues and N is a certain nonlinear
operator. A small positive constant ε represents the smallness
of the nonlinearity. ∂x implies a set of (partial) differential
operators with respect to the independent variables. The
solution to the zeroth order equation

Lψ0 = 0 (2)
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may be written as

ψ0(x) =
∑

k

Akek(x), (3)

where ek(x) is the basis functions of the null space of L

[13]. Thus, needless to say, our formalism does not cover
all the partial differential equations but still covers evolution
equations that describe pattern formations and phase transition
dynamics. We write the formal expansion of the solution to
Eq. (1) as

ψ(x,A) =
∑

k

Akek(x) + εψ1(x,A) + ε2ψ2(x,A) + · · · ,
(4)

where the Ak dependence of the higher order terms is
explicitly written; A denotes {Ak} collectively. Since each
ψn (n = 1,2, . . .) has its own secular terms Yn, let us write
ψn = ηn + Yn, where ηn denotes the nonsecular terms in ψn.
Now, we wish to renormalize this bare perturbation series
Eq. (4) by replacing Ak with Ak = ZkARk (no summation
convention implied) by choosing renormalization constants
Zk appropriately. Splitting all the monomials xm in the
secular prefactors of ek(x) in Yn as [xm − χm] + χm [as, e.g.,
x3 exp(ikx) → {(x3 − χ3) + χ3} exp(ikx)], we try to absorb
all these “squeezed-out” χ factors into Zk . Let us write the
x monomials in the secular prefactors in f (x,A) explicitly as
the second variable to denote f (x,A) as f (x,{xm},A) [i.e.,

f (x,A) = f (x,{xm},A), but the x monomials in the secular
prefactors are represented collectively by {xm} and are explic-
itly written as the second variable]. Then, we do the following
transformation: ψ(x,{xm},A) = ψ(x,{xm},Z(χ )AR(χ )) =
ψ(x,{xm − χm},AR(χ )), where Z(χ )AR(χ ) collectively
denotes {Zk(χ )ARk(χ )} (a simple concrete example may
be found in Sec. II of Ref. [2]). Eventually, we set χ = x

to obtain ψ(x,{xm},A) = ψ(x,{0},AR(x)). Notice that
ψ(x,{χm},A) = ψ(x,{0},AR(χ )).

To be systematic, let us expand the renormalization constant
in powers of ε:

Zk = 1 + εZk
1 + ε2Zk

2 + · · · . (5)

Also we expand ψ(x,{xm},A) in powers of ε:

ψ(x,{xm},A) =
∑

k

Akek(x) + εψ1(x,{xm},A)

+ ε2ψ2(x,{xm},A) + · · · . (6)

Then, we replace Ak in Eq. (6) with

Ak = ARk(χ ) + εZk
1(χ )ARk(χ ) + ε2Zk

2(χ )ARk(χ ) + · · · .
(7)

Using A in the form of Eq. (7), we wish to rewrite Eq. (6)
in terms of AR , which collectively denotes {ARk}. Assuming
needed differentiabilities, we have

ψ(x,{xm},A) =
∑

k

[
1 + εZk

1(χ ) + ε2Zk
2(χ ) + · · · ]ARk(χ )ek(x) + εψ1(x,{xm},AR(χ ))

+ ε2

[
ψ2(x,{xm},AR(χ )) +

∑
k

∂kψ1(x,{xm},AR(χ ))Zk
1(χ )ARk(χ )

]

+ ε3

[
ψ3(x,{xm},AR(χ )) +

∑
k

{
∂kψ2(x,{xm},AR(χ ))Zk

1(χ )ARk(χ ) + ∂kψ1(x,{xm},AR(χ ))Zk
2(χ )ARk(χ )

}

+1

2

∑
k,l

∂k∂lψ1(x,{xm},AR(χ ))Zk
1(χ )ARk(χ )Zl

1(χ )ARl(χ )

]
+ · · · , (8)

where ∂k implies the partial derivative with respect to Ak .
The renormalization condition of order ε reads∑

k

ARk(χ )Zk
1(χ )ek(x) + Y1(x,{χm},AR(χ )) = 0. (9)

This is obtained just by honestly following the procedure described between Eqs. (4) and (5): we must remove the secular terms
from

∑
k ARk(χ )Zk

1(χ )ek(x) + ψ1(x,{χm},AR(χ )), so we separate out the secular term Y1 from ψ1 as ψ1 = η1 + Y1. Then, as
noted above, we separate all the monomials xm in the secular prefactors of ek(x) in Y1 as [xm − χm] + χm, and the separated
Y1(x,{χm},AR(χ )) should be absorbed into Z. This is just the above condition Eq. (9). Note that at this stage AR are (formally)
understood as constants. Zk

2(χ ) must be determined to replace all the second variables {xm} as {χm} from the order ε2 term:∑
k

ARk(χ )Zk
2(χ )ek(x) + Y2(x,{χm},AR(χ )) +

∑
k

∂kψ1(x,{χm},AR(χ ))Zk
1(χ )ARk(χ ) = 0. (10)

Here, notice that in the third term on the left-hand side even the regular (i.e., nonsecular) contribution ∂kη1(x,AR) cannot be
ignored (for now) because it is multiplied by a χ -dependent factor Zk

1(χ ). The third order renormalization condition requires∑
k

ARk(χ )Zk
3(χ )ek(x) + Y3(x,{χm},AR(χ )) +

∑
k

[
∂kψ2(x,{χm}AR(χ ))Zk

1(χ )ARk(χ ) + ∂kψ1(x,{χm},AR(χ ))Zk
2(χ )ARk(χ )

]

+ 1

2

∑
k,l

∂k∂jψ1(x,{χm},AR(χ ))Zk
1(χ )ARk(χ )Zl

1(χ )ARl(χ ) = 0. (11)
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Thus, we see that the renormalization condition such as Eq. (11) has the following structure (symbolically, since the third term
is not explicitly written out) for order εn:∑

k

ARk(χ )Zk
n(χ )ek(x) + Yn(x,{χm},AR(χ ))

+
∑

[derivatives with respect to AR(χ ) of ψs(x,{χm},AR(χ ))]
∏

Zj
m(χ )ARj (χ ) = 0, (12)

where ψs (s < n) in the third term are the results of the lower order calculations and Z
j
m (m < n) are the terms already determined

by the lower order renormalization conditions.
We have not yet considered whether Z can be determined to satisfy these requirements, although it is trivial to see that the

O(ε) requirement can be satisfied. In this section, first we assume that Z can be consistently determined and simplify these
renormalization conditions. Then, we look for the condition for simplification to be consistent with the original renormalization
condition. That this consistency condition is indeed satisfied is demonstrated in the Appendix. In Ref. [2] the simplified condition
was explicitly written. The reason why the simplification is legitimate was alluded to, but no explicit demonstration was published.
This in part explains why the proto-RG was regarded by some as a new RG scheme; as is explicitly written in this paper, our
scheme is nothing but the quite standard RG scheme.

In order to study in more detail the structure of the renormalization condition the nth order (n > 1) result ψn is dissected as

ψn(x,{xm},A) = Y [r]
n (x,{xm},A) + Y [nr]

n (x,{xm},A) + ηn(x,A). (13)

Here, the first term on the right-hand side (RHS), Y [r]
n (x,{xm},A), denotes the resonant secular terms, that is, a linear combination

of ek(x)’s with polynomial coefficients of x without a constant term (which may be absorbed in the unperturbed solution).
Y [nr]

n (x,{xm},A) is the nonresonant secular terms, that is, all other secular terms not included in Y [r]
n (x,{xm},A). This is generally

a linear combination of the products of ek(x)’s [that cannot be reduced to a single ej (x)] with polynomial coefficients of x

without constant terms. ηn(x,A) is the nonsecular terms, which is a linear combination of the products of ek(x)’s with constant
coefficients. ηn does not contain any linear combination of ek(x)’s (which can be absorbed into the zeroth order terms by the
redefinition of Ak’s).

We assume that the perturbation solutions belong to a ring generated by finitely many products of ej (x)’s (with polynomial
coefficients; note that all the examples illustrated subsequently in this paper satisfy this condition). Then, Eq. (12) must hold at
least for the individual coefficients of ej (x)’s. Namely, we find that∑

ARk(χ )Zk
n(χ )ek(x) + Y [r]

n (x,{χm},AR(χ ))

+
∑[

derivatives with respect to AR(χ ) of Y [r]
s (x,{χm},AR(χ ))

]∏
Zj

m(χ )ARj (χ ) = 0. (14)

Thus, condition (12) may be split into two parts, the resonant portion Eq. (14) and the rest:

Y [nr]
n (x,{χm},AR(χ )) +

∑{
derivatives with respect to AR(χ ) of

[
Y [nr]

s (x,{χm},AR(χ )) + η(x,AR(χ ))
]}

×
∏

Zj
m(χ )ARj (χ ) = 0. (15)

As could be seen from the calculation of concrete examples
and as was noted in Ref. [2], all the nonresonant secular
terms of order n come from secular terms of order less than
n [i.e., the secularity of Y [nr]

n (x,{xm},A) is solely due to the
lower order secular terms appearing in the perturbation series].
Thus, an order-by-order renormalization implies Eq. (15) since
the singularities in Y [nr] are already renormalized away. This
implies the key observation of the proto-RG approach that
Eq. (14) is the sole renormalization condition. An explicit
demonstration of the claim that the renormalization constants
determined by the resonant singular terms according to
Eq. (14) indeed remove all the singularities is given in the
Appendix.

Adding all the orders of Eq. (14) [recall that the third term
in Eq. (14) is from the Taylor expansion of ψ around AR], we
see that the renormalization condition must satisfy

∑
k

[Ak − ARk]ek(x) + Y [r](x,{χm},A) = 0, (16)

where Y [r] = ∑∞
n=1 Y [r]

n . When this is used to determine
Zk(χ ), Ak’s are interpreted as Eq. (7) and ARk’s are regarded
constant. After determining Zk(χ ) we can determine the χ

dependence of ARk by Zk(χ )ARk(χ ) = Ak , which is constant,
and rewrite Eq. (16) as

∑
k

[Ak − ARk(χ )]ek(x) + Y [r](x,{χm},A) = 0. (17)

Combining all these equations determining the renormal-
ization constants order by order, we obtain

ψ(x,{χm},A) =
∑

k

ARk(χ )ek(x) + η(x,AR(χ )). (18)

As expected, the singular terms in the perturbation series are
completely removed and are absorbed in the renormalized
coefficients ARk . If we set χ = x, ψ(x,{χm},A) is just ψ(x,A),
so we have obtained the renormalized perturbation result.
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III. PROTO-RG APPROACH

Before going to give a general method with justifications,
the resultant practical procedure is outlined for practitioners.
To reduce Eq. (1) to order ε, which is usually the most
important application of the reduction methods, we first
introduce the operator L as defined by (19) [see also Eq. (20)]
and then arrive at Eq. (27). As is illustrated in Sec. IV, this is
the proto-RG equation (to the lowest nontrivial order) for ARk ,
i.e., the renormalized Ak . As noted in Sec. V, the derivation of
the proto-RG equation is not the final goal of system reduction.
We must further demand that the obtained equation describes a
certain intermediate asymptotic process allowed by the system
under study. Read the final remarks in Sec. V to finish the
reduction.

Let us introduce a linear operator L as

L(∂x,∂χ ) = L(∂x + ∂χ ) − L(∂x), (19)

where ∂x = ∂/∂x and ∂χ = ∂/∂χ . Notice that if it is applied
to a function that does not contain χ , it gives zero. For an
eigenfunction ek(x) of L with its characteristic root λk we
define a new operator Lk(∂χ ) by

L[f (χ )ek(x)] = {[L(λk + ∂χ ) − L(λk)]f (χ )}ek(x)

= [Lk(∂χ )f (χ )]ek(x). (20)

Applying L to Eq. (17), we have

0 = −
n∑

k=1

[Lk(∂χ )ARk(χ )]ek(x) + LY [r](x,{χm},A). (21)

Since Y [r](x,{χm},A) has the structure

Y [r](x,{χm},A) = ε
∑

k

P k
1 (χ,A)ek(x)

+ ε2
∑

k

P k
2 (χ,A)ek(x) + · · · , (22)

Eq. (21) implies∑
k

[
Lk(∂χ )

{−ARk(χ ) + εP k
1 (χ,A)

+ ε2P k
2 (χ,A) + · · ·}] ek(x) = 0, (23)

or

Lk(∂χ )ARk(χ ) = Lk(∂χ )P k(χ,A), (24)

where P k(χ,A) = ∑
n εnP k

n (χ,A). Notice that Ak =
Zk(χ )ARk(χ ) on the RHS of Eq. (24) are constants (χ
independent), so when Lk is applied, they are intact. After
this procedure, we replace Ak with ARk(χ )Zk(χ ). This
replacement should have eliminated all the secular terms, so
there must not be any χ left. Therefore, after this replacement
there must not be any χ on the RHS; AR depends on χ , but the
equation governing AR does not explicitly depend on χ . Thus,
we can simply set χ = 0 and Zk = 1 [14]; we have reached
the proto-RG equation:

Lk(∂χ )ARk(χ ) = Lk(∂χ )P k(χ,AR)|χ=0. (25)

Here, on the RHS the differential operator Lk applies only
to χ (not AR), and after differentiation χ (if any left [15])
is set to zero. The reason why it is called the proto-RG

equation will become clear from the discussion in Sec. V.
Incidentally, Eq. (25) reminds us of the method of variation
of coefficients to solve inhomogeneous equations. Notice,
however, the inhomogeneous terms on the RHS of Eq. (25)
contain only secular terms in the present case.

The RHS of Eq. (25) can be calculated from the perturbation
equation. For example, the first order proto-RG equation can be
read off immediately from the first order perturbation equation
Lψ1 = N [ψ0], which is itself rewritten as

L(∂x + ∂χ )Y [r]
1 (x,{χm},A)|χ=x = PN [ψ0], (26)

where P is the projection to the linear space spanned by {ek}.
From this equation, comparing the coefficients of ek(x), we
arrive at

Lk(∂χ )ARk(χ )|χ=x = PkN [ψ0]. (27)

Here, Pk is an operator to single out the coefficients of ek(x).
In practice, this operation is equivalent to identifying the
coefficients of ek(x) by inspection and separating them out
(to be more mathematical, we must assume that {ek} makes a
function ring with polynomial coefficients, and this is usually
the case in pattern formations).

If ψ is a conserved quantity (i.e., ψ integrated over the
spatial domain is constant), then it is often the case that the
perturbation term N [ψ] takes the form �M[ψ], where � is
the Laplacian with respect to r and M is some function(al) of
ψ . It is impossible to respect this conservation law order by
order with the above naive perturbation calculation. Thus, we
need a nonperturbative method to impose the conservation law.
The most natural approach is to rewrite the original equation
as

L̃ψ ≡ �−1Lψ = εM[ψ] + H, (28)

where H is a spatial harmonic function. The solution to the
zeroth order equation L̃ψ0 = H may be written as

ψ0(x) =
∑

k

Akek(x). (29)

The subsequent development is quite parallel to the above
“nonconserved” case. From an analog of Eq. (17) we obtain∑

k

L̃(∂x + ∂χ )ARk(χ )ek(x)

=
∑

k

L̃(∂x + ∂χ )P k(χ,AR)ek(x) + H (x). (30)

Applying (∂x + ∂χ )2 to the above equation, we obtain

L(∂x + ∂χ )ARk(χ )ek(x) = L(∂x + ∂χ )P k(χ,AR)ek(x).

(31)

Then, we find the proto-RG equation of the same form as
before, i.e., Eq. (25).

The first order proto-RG equation in the conserved case can
be obtained similarly by noting

PkL(∂x + ∂χ )Y [r]
1 (x,{χm},A)

= Pk(∂x + ∂χ )2M

[∑
k

ARk(χ )ek(x)

]
, (32)
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or [see Eq. (20)]

Lk(∂χ )P k
1 (χ,AR)

= Pk(∂x + ∂χ )2M

[∑
k

ARk(χ )ek(x)

] ∣∣∣∣∣
x=χ

. (33)

Thus, we find that

Lk(∂χ )ARk(χ ) =Pk(∂x + ∂χ )2M

[∑
k

ARk(χ )ek(x)

] ∣∣∣∣∣
x=χ

.

(34)

IV. ILLUSTRATIONS

We shall illustrate the proto-RG approach with the aid of
the phase-field crystal (PFC) equation:

∂tψ = ∂2
r

[−εψ + (
∂2

r + k2
0

)2
ψ + sψ2 + ψ3

]
, (35)

where ψ is a real scalar order parameter field. The ∂r is a
gradient operator (∇) with respect to the position vector r ,
and ∂2

r is the Laplacian (�). ε is a bifurcation parameter. It
is well known that, when s = 0, the competition between the
surface energy contribution given by the ∂2

r ψ term in the square
brackets on the RHS of Eq. (35) and the curvature energy term
∝(∂2

r )2ψ gives rise to spatially modulated structures (called
stripes or lamellae) with a period of ∼2π/k0 for ε > 0. For
s �= 0, the hexagonal and the bcc structure exist as a stable
phase.

Since we wish to consider the situation where each term of
−εψ + sψ2 + ψ3 in Eq. (35) plays an equally relevant role in
dynamics, we scale ψ as

√
εψ and

√
εs as s and denote the

scaled ψ and s with the same symbols. The model (35) then
reads

∂tψ = ∂2
r

[(
∂2

r + k2
0

)2
ψ + ε(−ψ + sψ2 + ψ3)

]
,

i.e.,

L(∂x)ψ = ε�M(ψ), (36)

where

L(∂x) = ∂t − ∂2
r

(
∂2

r + k2
0

)2
, (37)

M(ψ) = −ψ + sψ2 + ψ3. (38)

Since the actual calculation for Eq. (36) is a little involved,
we first illustrate the approach using the simpler and noncon-
served version of Eq. (36), which is the Swift-Hohenberg (SH)
equation:

∂

∂t
ψ = ε(ψ − ψ3) − (

∂2
r + k2

0

)2
ψ. (39)

For Eq. (39),

L(∂x) = ∂t + (
∂2

r + k2
0

)2
. (40)

From this, we get the bases of the null space as

ek(x) = exp[ω(k)t + ik · r] (41)

with the dispersion relation ω(k) = −(k2 − k2
0)2, where k =

|k|. In the following, however, for simplicity, we consider
the case of time-independent unperturbed states (stationary

patterns in space as the basic patterns), so we assume k =
k0. Other operators in the general discussion above read [see
Eq. (19) with χ = {τ,ρ}]

L(∂x,∂χ ) = ∂τ + {[
(∂r + ∂ρ )2]2 − (

∂2
r

)2}
+ 2k2

0

[
(∂r + ∂ρ )2 − ∂2

r

]
(42)

and [see Eq. (20)]

Lk(∂χ ) = ∂τ + �2
k(ρ), (43)

where �k(ρ) = ∂2
ρ + 2ik · ∂ρ (k = k0 is assumed). Therefore,

the amplitude for ek(x) obeys the following proto-RG equation
[see Eqs. (21) and (27)] to order ε:

Lk(∂χ )ARk(χ ) = εPk
(
ψ0 − ψ3

0

)
. (44)

If we assume a striped pattern as the unperturbed pattern, then
ψ0 = Aeik·r + c.c., where c.c. denotes the complex conjugate.
In Eq. (44) A in ψ0 must be replaced with AR(χ ). Therefore,
after replacing χ → x and writing A for AR accordingly, we
obtain

∂tA + �2A = ε(A − 3|A|2A), (45)

where � ≡ �k(r). This operator is a rotationally covariant
operator [16].

Now, let us return to the PFC equation Eq. (36). The crucial
difference from the case of SH equation Eq. (39) is that there
is a zero-wave-vector mode [17], so even if the unperturbed
pattern is stationary, we have the zeroth order solution in the
form

ψ0(x) = B +
⎛
⎝ m∑

j=1

Ajekj
(x) + c.c.

⎞
⎠ . (46)

Here, B is the amplitude of the zero-wave-vector mode, and

ekj
(x) = exp[ω(kj )t + ikj · r], (47)

with the dispersion relation ω(kj ) = −k2
j (k2

j − k2
0)2 (but again,

we set kj ≡ |kj | = k0 here). Each possible planform is
characterized by m pairs of wave vectors {ki ,−ki} with critical
wave numbers ki = k0, and the respective wave vectors add
up to satisfy the resonant condition

∑m
i=1 ki = 0. With the

structural form of (46), the equilibrium states of the PFC
model (36) are found [18] to be stripes (m = 1), hexagons
(m = 3), and bcc (m = 6). In the present discussion we restrict
ourselves to these planforms.

Other operators in the general discussion above read

L(∂x,∂χ ) = ∂τ − (∂r + ∂ρ )2
[
(∂r + ∂ρ )2 + k2

0

]2

+ ∂2
r

(
∂2

r + k2
0

)2
(48)

and

Lkj
(∂χ ) = ∂τ − [

�j (ρ) − k2
0

]
�2

j (ρ), (49)

L0(∂χ ) = ∂τ − ∂2
ρ
(
∂2
ρ + k2

0

)2
, (50)

with �j (ρ) ≡ �kj
(ρ), j = 1, . . . , m.

Now let us evaluate the first-order proto-RG equation
Eq. (34), first for the case m = 3 corresponding to the
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hexagonal pattern in two-dimensional systems. The pattern
is supported by resonant interaction among a triplet of modes:

k1 = k0

(
−

√
3

2
,−1

2

)
, k2 = k0(0,1),

(51)

k3 = k0

(√
3

2
,−1

2

)
.

Then, we find

M(ψ0) = 6AR1AR2AR3 + 6A∗
R1A

∗
R2A

∗
R3 − BR

+ 6|AR1|2BR + 6|AR2|2BR + 6|AR3|2BR + B3
R

+ s
(
2|AR1|2 + 2|AR2|2 + 2|AR3|2 + B2

R

)
− [

eik1·r{AR1 − 3|AR1|2AR1 − 6|AR2|2AR1

− 6|AR3|2AR1 − 6A∗
R2A

∗
R3BR − 3AR1B

2
R

− 2s(A∗
R2A

∗
R3 + AR1BR)

}
+ eik2·r{AR2 − 6|AR1|2AR2 − 3|AR2|2AR2

− 6|AR3|2AR2 − 6A∗
R3A

∗
R1BR − 3AR2B

2
R

− 2s(A∗
R3A

∗
R1 + AR2BR)

}
+ eik3·r{AR3 − 6|AR1|2AR3 − 6|AR2|2AR3

− 3|AR3|2AR3 − 6A∗
R1A

∗
R2BR − 3AR3B

2
R

− 2s(A∗
R1A

∗
R2 + AR3BR)

} + · · · + c.c.
]
. (52)

In the above the ellipsis represents the nonfundamental mode
contributions with wave vectors 2kj ,3kj ,km − kn,2km + kn,
where m �= n.

Combining Eq. (52) with Eq. (34), we find for AR1

∂τAR1 − (
Lk1 − k2

0

)
L2

k1
AR1

= ε
(
Lk1 − k2

0

)[(−1 + 2sBR + 3B2
R

)
AR1 + 2(s + 3BR)

×A∗
R2A

∗
R3 + 3AR1{|AR1|2 + 2(|AR2|2 + |AR3|2)}].

(53)

The appropriate cyclic permutation of the indices {1,2,3} gives
the other equations for AR2 and AR3. For BR , the result is

∂τBR − (
∂2
ρ + k2

0

)2
∂2
ρBR

= ε∂2
ρ

{−BR + sB2
R + B3

R + 2(s + 3BR)(|AR1|2
+ |AR2|2 + |AR3|2) + 6(AR1AR2AR3 + c.c.)

}
. (54)

Therefore, we have finally obtained the proto-RG equa-
tions for the hexagonal patterns. Replacing the now dummy
variables as AR → A,BR → B,ρ → r,τ → t , they read

∂tAj = (
�j − k2

0

){(
�2

j − ε
)
Aj + ε(2sB + 3B2)Aj

+ 2ε(s + 3B)
3∏

i=1
i �=j

A∗
i + 3ε

(
2

3∑
i=1

|Ai |2 − |Aj |2
)

Aj

}
,

(55)

∂tB = ∇2

{(∇2 + k2
0

)2
B + ε(−B + sB2 + B3)

+ 2ε(s + 3B)
3∑

i=1

|Ai |2 + 6ε

(
3∏

i=1

Ai + c.c.

)}
,

(56)

where �j ,j = 1,2,3 are the rotationally covariant operators,
�j ≡ ∇2 + 2ikj · ∇. These equations are identical to the
amplitude equations given in Ref. [19], which are obtained
with the multiple-scales method truncated at O(ε7/2). We
emphasize, however, that the latter results are to be regarded as
ones which have been obtained by enforcing the conservation
by hand. The reason is that the finite order result in the
multiple-scales method always breaks the conservation law,
as expounded in Ref. [4].

The amplitude equation for the stripe pattern formation can
be obtained from our results (55) and (56) by simply setting
A1 = A,A2 = A3 = 0. In particular, for s = 0 the resulting
equations agree with those derived earlier in Ref. [4].

The case of m = 6, i.e., the bcc crystalline state in three
dimensions can be treated in the same way by repeating the
steps outlined above for the hexagonal structure. The basic
wave vectors in Eq. (46) are

k1 = k0√
2

(1,1,0), k2 = k0√
2

(1,0,1),

k3 = k0√
2

(0,1,1), k4 = k0√
2

(0,1,−1), (57)

k5 = k0√
2

(1,−1,0), k6 = k0√
2

(−1,0,1).

Thus for M(ψ0) we have

M(ψ0) = B̃ +
6∑

p=1

(
Ãpeikp ·r + c.c.

) + · · · , (58)

where the ellipsis represents the nonfundamental mode con-
tributions and

B̃ = 6(A∗
1A2A4 + A∗

2A3A5 + A1A
∗
3A6 + A4A5A6 + c.c.)

−B + 6B(|A1|2 + |A2|2 + |A3|2 + |A4|2 + |A5|2
+ |A6|2) + B3 + 2s(|A1|2 + |A2|2 + |A3|2 + |A4|2
+ |A5|2 + |A6|2) + sB2, (59)

Ã1 =−A1 + 3A1(|A1|2 + 2|A2|2 + 2|A3|2 + 2|A4|2 + 2|A5|2
+ 2|A6|2) + 6A3A4A5 + 6A2A

∗
5A

∗
6 + 6A2A4B

+ 6A3A
∗
6 + 3A1B

2 + 2s(A2A4 + A3A
∗
6 + A1B), (60)

Ã4 = −A4 + 3A4(2|A1|2 + 2|A2|2 + 2|A3|2 + |A4|2
+ 2|A5|2 + 2|A6|2) + 6A1A

∗
3A

∗
5 + 6A∗

2A3A
∗
6

+ 6A1A
∗
2B + 6A∗

5A
∗
6B + 3A4B

2

+ 2s(A1A
∗
2 + A∗

5A
∗
6 + A4B). (61)

The coefficients Ã2 and Ã3 are obtained by separately
operating cyclic permutations on {1,2,3} and {4,5,6} in
Eq. (60). For example, the term 6A2A

∗
5A

∗
6 in Ã1 becomes
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6A3A
∗
6A

∗
4 in Ã2 and 6A1A

∗
4A

∗
5 in Ã3. Similarly, Ã5 and Ã6 are obtained by the same cyclic permutations performed on

Eq. (61). Therefore, we find the proto-RG equations for the bcc crystal formation as follows (writing A1 for AR1 and
so on):

∂B

∂t
= ∇2

[(∇2 + k2
0

)2
B + ε(−B + sB2 + B3) + 2ε(s + 3B)

6∑
p=1

|Ap|2 + 6ε(A4A5A6 +A∗
1A2A4 + A∗

2A3A5 + A∗
3A1A6 + c.c.)

]
,

(62)

∂Aj

∂t
= (

�j − k2
0

)⎡⎣(
�2

j − ε
)
Aj + ε(2sB + 3B2)Aj + 2ε(s + 3B)(AkAm + AiA

∗
�)

+ 6ε(AiAmAn + AkA
∗
�A

∗
n) + 3εAj

⎛
⎝2

6∑
p=1

|Ap|2 − |Aj |2
⎞
⎠

⎤
⎦, (63)

∂Am

∂t
= (

�m − k2
0

)⎡⎣(
�2

m − ε
)
Am + ε(2sB + 3B2)Am + 2ε(s + 3B)(AjA

∗
k + A∗

�A
∗
n)

+ 6ε(AiA
∗
kA

∗
� + A∗

i AjA
∗
n) + 3εAm

⎛
⎝2

6∑
p=1

|Ap|2 − |Am|2
⎞
⎠

⎤
⎦, (64)

where the indices (i,j,k) and (�,m,n) are cyclic permutations
of (1,2,3) and (4,5,6), respectively. To our knowledge, the
multiple-scales analysis is not available for the amplitude
equations of the bcc crystalline formation. However, Yeon
et al. [19] obtained the same result as above employing what
they called a variational approach. This approach, however,
does not fall under the class of singular perturbation methods,
and since this approach does not have any parameter to regulate
the order of approximation, it cannot be systematic and must
remain ad hoc.

V. REMARKS

The derivation of the proto-RG equation is not the final
goal of system reduction; the system reduction is not yet
completed. Do not forget that these equations are called
proto-RG equations because usually they require further
modifications [2,3]. First of all, we must specify what we
wish to observe, or more precisely, we must specify on what
space-time scale we wish to study the system. If we wish to
observe a system to a given scale of precision, all the scales
up to the specified precision must be consistently preserved
(e.g., if order ε3 is the specified precision, all the terms not
exceeding order ε3 must be collected). Thus, the consistency
of the orders of various terms is probably the chief guiding
principle to obtain physically meaningful reduced equations.
In other words, we should demand that the obtained equation
describe a certain intermediate asymptotic processes allowed
to the system under study.

Consider, for example, the proto-RG equation Eq. (45)
for striped patterns exhibited by the SH equation. If one
wishes to describe a diffusive behavior of the order parameter
ψ , a natural requirement is ∂t ∼ ∂2

r ∼ ε [this expression
implies that these derivatives are of the order specified (e.g.,
∇ψ ∼ ε1/2)]. If k0 ∼ 1 (this is the usual interpretation; we are

interested in the global and slow change of the pattern of the
basic scale of order 1), the operator � consists of two operators
of order ε and of order ε1/2. Thus, to order ε, �2 = (2ik · ∇)2,
and (45) gives

∂tA = 4(k · ∇)2A + ε(A − 3|A|2A), (65)

which loses the rotational covariance in the original proto-RG
equation. Therefore, if we wish to describe the diffusive
space-time dynamics with rotational covariance, since keeping
the whole �2 requires retention of O(ε2) terms, the O(ε)
reduction (45) is not enough; we need the next order reduction
[i.e., the proto-RG equation to order O(ε2) is required] [3].
Incidentally, do not misunderstand the proto-RG approach as
a method to preserve appropriate symmetries. As emphasized
above, the approach is the simplest reduction method that
allows reduction; the preservation of symmetry is a byproduct
(and it is a side issue).

Instead, if we are interested in the spatial pattern of order 1
(i.e., k0 ∼ 1) with evolution on the space-time scale ∂t ∼ ε and
∂r ∼ ε1/4, the proto-RG equation (45) is consistent to order ε;
without dropping or adding any term, we may interpret it as a
properly reduced equation to O(ε).

A similar conclusion applies to the proto-RG equations (55)
and (56) for striped patterns in the PFC equation. With ∂t ∼
ε3/2,∂r ∼ ε1/4, and k0 ∼ 1, we may consistently interpret these
proto-RG equations as properly reduced equations (consistent
to order ε3/2; notice that no further contribution comes from
the RHS).

On the other hand, if pattern evolution of the scale ∂t ∼
ε, ∂r ∼ ε1/2 (this is the scale the multiple-scales analysis
employs) is of interest to us, the reduced equations in which the
rotational invariance and conservation law are preserved are
obtained only at O(ε3). As can easily be guessed, higher order
reduction then requires us to retain numerous terms on the RHS
of the proto-RG equations; the number of terms is expected

061138-7



Y. OONO AND Y. SHIWA PHYSICAL REVIEW E 86, 061138 (2012)

to increase exponentially. This implies that, for example, the
O(ε3) reduction is almost impractical, defeating the purpose
of system reduction.

The reader might think that the reductive renormalization
approach is quite similar to the multiple-scales (MS) expan-
sion approach that has been standard in systematic system
reductions. Notice, however, that there is a crucial difference.
As is clear from the above discussion, the derivation of the
RG equation does not aim at the reduction of the system that
is consistent in space-time scales; the method concentrates
on removing secular space-time dependence that ruins any
naive reduction. Only after obtaining the reduced equation
that is guaranteed to have no secular discrepancy from the
original equation do we start paying attention to the scaling
consistency.

One important aspect of the present proto-RG formalism
is that the proto-RG equation respects the conservation law
irrespective of the order in ε to which the perturbation
expansion is truncated. On the other hand, it is not the case
with the MS formalism. (Although this point has already
been emphasized in Ref. [4], we here recapitulate it for the
sake of adding clarity to our present formulation.) To see
this, let us take up the proto-RG equation (55) for the PFC
model. Without losing generality of the following argument,
we simply consider the particular case of striped patterns
with s = 0. Then the proto-RG equation for A takes the
form

∂tA = (
� − k2

0

)
[(�2 − ε)A + 3ε(|A|2 + B2)A + h.o.t.],

(66)

where h.o.t. denotes the higher order (in ε) terms. First, notice
that

d

dt

∫
dxA(t,x)eik·x = 0, (67)

owing to the presence of the operator � − k2
0 in (66). This is

in accord with the order parameter (ψ) conservation inherent
in the PFC equation. Now consider the pattern evolution of
the scales ∂t ∼ ε, ∂x ∼ ε1/2 as in the MS analysis. In the MS
analysis the expansion parameter is δ ≡ ε1/2, and the operator
� acting on the amplitudes (A, B) operates in the combination

2iδk · ∇X + δ2∇2
X ,

where ∇X operates on the slow variables X = δx. Thus the
conserving operator � − k2

0 is mixed order in ε. This fact
then forces an inescapable conclusion that in the MS analysis
the finite-order result always breaks the conservation law. For
example, the correct term proportional to

ε2
(
� − k2

0

)
A|A|4

will appear on the RHS of Eq. (66) if the amplitude equation
is truncated at O(δ6), whereas at O(δ4) we only obtain
−ε2k2

0A|A|4, which violates the conservation. Since at any
finite order there always appear such nonconserving terms, we
cannot escape the aforementioned conclusion [20].

How reliable is the lowest nontrivial order reduction
satisfying a particular planform? For the case of ODEs there is
a theorem due to Chiba [6], demonstrating (roughly speaking)
the C1 diffeomorphism between the invariant manifold of
the original equation and that of the RG equation. More

precisely, the original vector field and that governing the
renormalized perturbation result are diffeomorphic. That is,
they are qualitatively the same. Thus, for example, if the RG
equation has a stable limit cycle as in the case of the van der
Pol equation, this proves that the original van der Pol equation
has a stable limit cycle. There is no analogous theorem known
for PDEs, but if the spatial pattern in a big box is not very
different from the infinite space case, as is usually the case, we
could reduce the PDE as a set of ODEs. Then, Chiba’s theorem
applies. Thus, we may conclude that even for the PDE case
the order-ε reductive renormalization result is qualitatively the
same (diffeomorphic) as the original result.

Our general conjecture is as follows: If the original ODE
or PDE is (C1) structurally stable (or at least � stable
for an invariant set �), then the reductive RG result and
that of the original equation are qualitatively the same (C1

diffeomorphic). In the case of maps (i.e., the dynamical
systems defined by maps), a necessary and sufficient condition
for the original system and the C1-perturbed system to be
diffeomorphic (i.e., the system is C1 structurally stable) is that
the system is normally hyperbolic [21]. Unfortunately, as far
as we are aware, there is no differential equation counterpart of
this equivalence theorem. What Chiba demonstrated is that if
this theorem holds for ODE, the reductive renormalization
preserves the qualitative features of the structurally stable
system. Thus, our conjecture should be a very natural one.

Since we may generally expect that, for sufficiently small
ε, the reduced system to order ε should be qualitatively the
same as the original system, one might be tempted to obtain
higher order reduction results (and to order ε2 they may still
be reasonably practical) to understand the cases with slightly
larger ε. However, if there is no new bifurcation for larger ε,
the ε order (i.e., the lowest nontrivial order) result should be
enough. If there is a new bifurcation, then it may be practical
to devise the reduction around this new bifurcation point so
that the lowest nontrivial order result would be used.

APPENDIX: RENORMALIZABILITY TO ALL ORDERS

The purpose of this appendix is to demonstrate that the
renormalization constant determined solely from the resonant
secular terms can successfully eliminate all the secular terms
in the perturbation series to all orders. This appendix is self-
contained.

We consider an autonomous equation (no explicit x de-
pendence, where x collectively denotes all the independent
variables)

Lψ = εN [ψ], (A1)

where L is a linear differential operator with constant coef-
ficients and we assume that its eigenfunctions ei are plane
waves (or we assume that their derivatives are proportional to
themselves) [22]. We consider a set � of such eigenfunctions
(not necessarily the totality of the eigenfunctions, but as in the
illustrations given in the main part of this paper, � may be
chosen to be a set of eigenfunctions generating a finite group).
As a notational convention we identify � and the set of suffixes
of the functions in � (i.e., if � = {e1,e2,e3}, the set {1,2,3}
is also denoted as �). The general solution to the unperturbed
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equation Lψ0 = 0 reads

ψ0 =
∑
i∈�

Aiei(x). (A2)

We write the formal expansion of the solution to Eq. (A1) as

ψ(x,A) =
∑

Aiei(x) + εψ1(x,A) + ε2ψ2(x,A) + · · · ,
(A3)

where A collectively denotes {Ai}i∈�.
Let X ⊂ �, and write eX = ∏

i∈X ei . Let us define LX

by Lf eX = eXLXf . If we may assume LXei �= 0 for X

containing more than one element, then a special solution to
Lf = ψ ei satisfies f = φ ei , so Liφ = ψ . This implies that
φ is secular [not a bounded function (usually polynomial) of
x]. For example, for a constant c, Lic = 0 because Lcei = 0.
Hence, Lf ei = ei implies Lif = 1, so f must be unbounded
for the usual L.

First, let us look at the RG procedure up to the third order
in ε. This will help to introduce streamlined notations and will
serve to initiate a mathematical induction later.

The first order perturbation equation reads (symbolically)

Lψ1(x,A) = N [Ae(x)] = N

[∑
i

Aiei

]
. (A4)

N [f ] is usually a polynomial of f and its derivatives. The
derivatives of ei can be written in terms of ei . Hence, N may
be decomposed as

N

[∑
i

Aiei

]
=

∑
X

nX(Ae). (A5)

Here, Ae collectively denotes {Aiei}, and nX(Ae) is a
monomial

∏
i∈X Aiei (times a constant), where X consists

of elements of � with specified multiplicities; for example,
X = {1,1,3,4,7,7,7} denotes (using the Hadamard notation)
(Ae)X = (A1e1)2A3e3A4e4(A7e7)3. Sometimes eX = eY for
X �= Y . We do not reduce and combine such products to a
single monomial. Notice that this structure Eq. (A5) is uniquely
determined by N itself (up to the just mentioned reduction).
Hence, a special solution may always be written as

ψ1 =
∑
X

L−1nX(Ae). (A6)

Consequently, we have ψ to order ε as

ψ [1] = Ae + ε
∑
X

L−1nX(Ae). (A7)

Here, the first term Ae denotes ψ0 (while Ae as a variable
of nX denotes the set {Aiei} throughout the appendix). A is
renormalized as [which is the same as Eq. (7)]

Ai = ARi + εZi
1ARi + ε2Zi

2ARi + · · · + εkZi
kARi + · · · ,

(A8)

where the suffix i ∈ � will henceforth be suppressed unless
otherwise noted. The renormalization procedure to order ε

starts with

ψ [1] = (1 + εZ1)ARe + ε
∑
X

L−1nX(ARe). (A9)

Therefore, the following renormalization condition for each
i ∈ � removes the secular term to the first order:

Zi
1ARiei + L−1ni(ARe) = 0. (A10)

This secular term is, needless to say, a resonant secular term.
Thus, we have

ψ [1] = ARe + εψR1, (A11)

where we have introduced the following notation to keep
renormalized and nonsecular terms without distinguishing
them:

ψR1 = Z1ARe +
∑
X

L−1nX(ARe). (A12)

We understand that Z1 kills the secular term in the second
term.

The second order perturbation equation reads

Lψ2(x,A) = O[ε] terms of N

[
Ae + ε

∑
X

L−1nX(Ae)

]
.

(A13)

We need the Taylor expansion of nX:

nX(Ae + εB(x)e) = nX(Ae) + ε
∑

i

∂inX(Ae)Bi(x)ei

+ ε2

2

∑
i,j

∂i∂jnX(Ae)Bi(x)eiBj (x)ej

+ · · · , (A14)

where ∂i is the partial differentiation with respect to Aiei . We
abbreviate this as

nX(Ae + εB(x)e) = nX(Ae) + εn′
X(Ae)B(x)e

+ ε2

2
n′′

X(Ae)[B(x)e]2 + · · · . (A15)

Generally, we write∑
i1,···,ik∈�

∂i1 · · · ∂iknX(Ae)Fi1 · · ·Fik = n
(k)
X (Ae)Fk, (A16)

as long as the summations of suffixes run over all possible
elements in �. Eq. (A13) reads, with these notations,

Lψ2(x,A) =
∑
Y

n′
Y (Ae)

∑
X

L−1nX(Ae). (A17)

Here, the dummy summation variables X and Y both run over
the same suffix set (determined by N ). Therefore,

ψ2(x,A) = L−1
∑
X

n′
X(Ae)

∑
Y

L−1nY (Ae). (A18)

Here, L−1 acts on everything to its right (generally, until it
hits the unpaired closed parenthesis, if any). Thus, the bare
perturbation expression for ψ to order ε2 reads

ψ [2] = Ae + ε
∑
X

L−1nX(Ae)

+ ε2L−1
∑
X

n′
X(Ae)

∑
Y

L−1nY (Ae). (A19)
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The renormalization procedure is to replace A with AR +
εZ1AR + · · · and then to Taylor expand Eq. (A19) with respect
to ε.

At this juncture, notice that, since L−1 is a linear operator,
the expansion with respect to ε and application of L−1

commute. For example, we obviously have

L−1f (x + εg(x)) = L−1f (x) + εL−1f ′(x)g(x)

+ 1
2ε2L−1f ′′(x)g2(x) + o[ε2]. (A20)

Therefore, as long as we do not change the order of L−1

and functions of x and stick to the convention that it acts
on everything to its right (until it hits the unpaired closed
parenthesis, if any), we can virtually perform any transfor-
mation without calculating the explicit result of operating
L−1.

Let us return to the perturbative calculation. The needed
expansion result reads (to order ε2)

ψ [2] = (1 + εZ1 + ε2Z2)ARe + ε
∑
X

L−1nX(ARe + εZ1ARe) + ε2
∑
X

L−1n′
X(ARe)

∑
Y

L−1nY (ARe)

= ARe + ε

[
Z1ARe +

∑
X

L−1nX(ARe)

]
+ ε2

[
Z2ARe +

∑
X

L−1n′
X(ARe)

{
Z1ARe +

∑
Y

L−1nY (ARe)

}]
. (A21)

We may write this as a renormalized perturbation form:

ψ [2] = ARe + εψR1 + ε2ψR2. (A22)

Notice that

ψR2 = Z2ARe +
∑
X

L−1n′
X(ARe)

{
Z1ARe +

∑
Y

L−1nY (ARe)

}
(A23)

= Z2ARe +
∑
X

L−1n′
X(ARe)ψR1. (A24)

The term in { } has no singularity; this implies the singularities that have not been renormalized by the lower order calculations
(i.e., the nonresonant secular terms to the second order Y

[nr]
2 ) do not show up. The singularity produced anew from the last term

is the new second order singularity, which is killed by Z2.
The third order perturbative equation reads, in terms of self-explanatory abbreviations,

Lψ3(x,A) = O[ε2] terms of N [Ae + εψ1 + ε2ψ2 · · ·] = N ′[Ae]ψ2 + (1/2)N ′′[Ae]ψ2
1 . (A25)

Therefore,

ψ3 = L−1
∑
Z

n′
Z(Ae)

∑
Y

L−1n′
Y (Ae)

∑
X

L−1nX(Ae) + 1

2
L−1

∑
Z

n′′
Z(Ae)

[∑
X

L−1nX(Ae)

]2

. (A26)

The renormalization procedure to order ε3 is as follows:

ψ [3] = (1 + εZ1 + ε2Z2 + ε3Z3)ARe + ε
∑
X

L−1nX((1 + εZ1 + ε2Z2)ARe)

+ ε2
∑
Y

L−1n′
Y ((1 + εZ1)ARe)

∑
X

L−1nX((1 + εZ1)ARe)

+ ε3

[ ∑
Z

L−1n′
Z(Ae)

∑
Y

L−1n′
Y (Ae)

∑
X

L−1nX(Ae) + 1

2
L−1

∑
Z

n′′
Z(Ae)

(∑
X

L−1nX(Ae)

)2 ]

= ARe + ε

[
Z1ARe +

∑
X

L−1nX(ARe)

]
+ ε2

[
Z2ARe +

∑
X

L−1n′
X(ARe)

{
Z1ARe +

∑
Y

L−1nY (ARe)

}]

+ ε3

[
Z3ARe +

∑
X

L−1n′
X(ARe)

{
Z2ARe +

∑
Y

L−1n′
Y (ARe)

(
Z1ARe +

∑
Z

L−1nZ(ARe)

) }

+ 1

2

∑
X

L−1n′′
X(ARe)

(
Z1ARe +

∑
Y

L−1nY (ARe)

)2 ]
. (A27)
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Recalling the results (A12) and (A23), we can write this in a
renormalized perturbation form:

ψ [3] = ARe + εψR1 + ε2ψR2 + ε3ψR3, (A28)

where ψR3, i.e., the coefficient of ε3 in (A27), is rewritten as

ψR3 = Z3ARe +
∑
X

L−1n′
X(ARe)ψR2

+ 1

2

∑
X

L−1n′′
X(ARe)ψ2

R1. (A29)

An important observation is that the renormalized perturbation
series has a branched and nested structure. When ψ1 and ψ2

appear in the calculation of ψ [3], their secular terms are exactly
killed by Z1 and Z2, and the newly produced secular term from
the resonant term of order ε3 is killed by Z3.

Introducing the abbreviations B = Ae and M = L−1N , we
can make the structure exhibited above more transparent. Our
problem reads

ψ = B + εM[ψ]. (A30)

Iterative substitution solves this equation as

ψ = B + εM[B + εM[B + εM[B + · · ·]]]. (A31)

If we renormalize this, we have, setting ARe = R, i.e., B =
R + εZR, where εZ = εZ1 + ε2Z2 + · · ·,

ψ = R + εZR + εM[R + εZR + εM[R + εZR

+ εM[R + · · ·]]]. (A32)

Let us write ψRk = Yk . Then, generally, we can write ψ to
order εk , ψ [k], as

ψ [k] = R + εY1 + · · · + εkYk = R + εZR + εM[ψ [k−1]],

(A33)

where now εZ = εZ1 + · · · + εk−1Zk−1 + εkZk . Thus, the
calculation above can be formally streamlined as

ψ [1] = R + ε(Z1R + M), M ≡ M[R],

ψ [2] = R + εY1 + ε2(Z2R + M ′Y1),

ψ [3] = R + εY1 + ε2Y2 + ε3
(
Z3R + M ′Y2 + M ′′Y 2

1

/
2
)
,

ψ [4] = R + εY1 + ε2Y2 + ε3Y3 + ε4
(
Z4R + M ′Y3

+M ′′Y1Y2 + M ′′′Y 3
1

/
6
)
, (A34)

and so on. Notice that

εkYk = R + εZR + εM[ψ [k−1]] − ψ [k−1]. (A35)

Therefore, if Zk−1 is determined by the resonant secular
terms in ψ [l] (l = 1, . . . ,k − 1), which have been successfully
renormalized, then the remaining secular term in ψ [k] is the
resonant secular term of order εk , which is removed by Zk .
We have already demonstrated such relations up to k = 3.
Therefore, we may conclude that the renormalization constants
are determined solely by the resonant secular terms.
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