
PHYSICAL REVIEW E 86, 061137 (2012)

Spectral relations between products and powers of isotropic random matrices
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We show that the limiting eigenvalue density of the product of n identically distributed random matrices from
an isotropic unitary ensemble is equal to the eigenvalue density of nth power of a single matrix from this ensemble,
in the limit when the size of the matrix tends to infinity. Using this observation, one can derive the limiting density
of the product of n independent identically distributed non-Hermitian matrices with unitary invariant measures.
In this paper we discuss two examples: the product of n Girko-Ginibre matrices and the product of n truncated
unitary matrices. We also provide evidence that the result holds also for isotropic orthogonal ensembles.
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I. INTRODUCTION

Free probability theory arose from merging the concepts
of noncommutative probability and free independence. Since
the link between free probability theory and random matrix
theory was established [1], several new results have been
proven in an easy way in the limit of infinitely large random
matrices [2–4]. In this paper we demonstrate a simple albeit
quite counterintuitive result that the spectral density of the
product of n free, identically distributed random matrices
from an isotropic unitary ensemble (IUE) is equal to the
spectral density of the nth power of a single matrix from
this ensemble in the limit of infinite matrix size. The proof
is based on the multiplicative properties of the S transform
and the Haagerup-Larsen theorem [5].

The motivation for the present work comes from the
observation made in Refs. [6–9] that the eigenvalue density of n

independent Girko-Ginibre matrices [10,11] is the same as the
eigenvalue density of the nth power of a single Girko-Ginibre
matrix in the limit of infinite size. This observation leads to
the question whether this is a feature of only this particular
class of matrices or there exists a larger class of matrices that
have this property. In the present paper we show that there
indeed exists a larger class of matrices sharing this property,
a class of random isotropic matrices. We begin with defining
isotropic matrices. Then we present the main result and its
derivation. Finally we outline a few simple applications related
to the recent interest in the literature. In particular we apply our
result to the product of Girko-Ginibre matrices and rederive the
limiting density obtained in Ref. [6]. We also consider classes
of truncated unitary [12] and orthogonal matrices. We compare
our predictions to Monte Carlo simulations and identify finite
size corrections to the limiting distribution. We conclude the
paper with a summary.

II. ISOTROPIC RANDOM MATRICES

It is convenient to introduce the concept of isotropic random
matrices in analogy to isotropic complex random variables
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z that have a circularly symmetric probability distribution
depending only on the module |z|. Using the polar decompo-
sition, one can write z = reiφ , where r is a real non-negative
random variable and φ is a random variable (phase) with a
uniform distribution on [0,2π ). Isotropic random matrices
are defined by a straightforward generalization of isotropic
complex random variables. A square N × N matrix x is said
to be an isotropic random matrix if it has a polar decomposition
x = hu in which h is a positive semidefinite Hermitian random
matrix and u is a unitary random matrix independent of h that is
distributed on the unitary group U (N ) with the Haar measure.
In short, u is a Haar unitary matrix. The random matrix h plays
the role of the radial part of x. Such random matrices form an
ensemble of isotropic unitary matrices. More precisely, this
means that we consider ensembles of random matrices with a
probability measure that is right invariant under multiplication
by a unitary matrix or, in other words, that depends only on
xx†. An example is an ensemble generated by the partition
function [13,14]

Z =
∫

Dx e−NTrV (x†x), (1)

where Dx = ∏
ij d(Rexij )d(Imxij ) is a flat measure and V (a)

is a polynomial in a. Another natural class of IUE matrices
consists of random matrices of the form x = vdu, where d is an
N × N diagonal random matrix having real positive random
eigenvalues drawn independently from the given probability
distribution and v and u are two independent random unitary
matrices with the Haar measure on the unitary group U (N ).
Isotropic random matrices have been considered, for example,
in the context of isotropic random inputs for multiple antenna
[15]. By analogy one can also consider the isotropic orthogonal
ensemble (IOE) given by the decomposition x = so, with s

being a positive semidefinite real symmetric matrix and o being
a Haar orthogonal matrix. In this case x is a real random
matrix with a probability measure that is right invariant under
multiplication by an orthogonal matrix or, in other words, that
depends only on xxT .

Isotropic matrices for N → ∞ are called R diagonal in
mathematical literature [16]. In this paper we prefer to stick
to the name isotropic (or IUE or IOE) even in the large-N
limit. Isotropic unitary ensemble matrices have an eigenvalue
distribution independent of the polar angle on the complex
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plane. In the limit N → ∞ one can find an explicit relation
between the eigenvalue densities of the matrix h2 and of the
matrix x [5,13,14,17]. We briefly recall this relation below.
We note that the angular independence of the eigenvalue
density does not imply that the random matrix is isotropic.
For example, a block diagonal matrix of the form

x =
(

h1u1 0
0 h2u2

)
, (2)

where h1 and h2 are independent Hermitian matrices of di-
mensions N1 and N2, N1 + N2 = N , and u1 and u2 are Haar
unitary matrices on U (N1) and U (N2), respectively, has a
circularly symmetric eigenvalue density in the complex plane,
but is not isotropic since the block structure of the matrix is not
preserved under right multiplication by every unitary matrix
from the U (N ) group.

III. MAIN RESULT

The main result of this paper is as follows. Consider n

identically distributed isotropic matrices x1,x2, . . . ,xn gener-
ated independently from a given IUE. In the limit N → ∞ the
eigenvalue density of the product Xn = x1x2 · · · xn is identical
to the eigenvalue density of the nth power xn of a single
matrix x from this ensemble (e.g., x = x1). In other words, the
probability that a randomly chosen eigenvalue of Xn lies within
a circle of radius r: Prob(λXn

< r) approaches for N → ∞ the
probability that a randomly chosen eigenvalue of xn lies within
the same circle: Prob(λn

x < r). One can use this observation to
derive the eigenvalue density of the product Xn = x1x2 · · · xn

if the eigenvalue density of x is known. In particular one
can immediately show that the eigenvalue distribution of the
product of n independent Girko-Ginibre matrices has a simple
form

ρ(z,z̄) = 1

πn
|z|−2+2/n for |z| � 1 (3)

and zero for |z| > 1, in agreement with Refs. [6–9]. It is
interesting to note that the matrices XnX

†
n obtained from

the products Xn of Girko-Ginibre matrices generate a Fuss-
Catalan family of distributions [18] that have, however, a much
more complicated limiting eigenvalue density [19]. Another
interesting case is the product of n independent truncated
unitary matrices [12] that is

ρ(z,z̄) = κ

nπ
|z|−2+2/n(1 − |z|2/n)−2 for |z| �

(
1

1 + κ

)n/2

(4)

and zero otherwise. The truncated matrices have dimensions
N × N . They are obtained by removing L columns and L rows
from an (N + L) × (N + L) Haar unitary random matrix. The
result holds for N → ∞ and κ = L/N fixed.

This is a counterintuitive result, so let us stress that it
holds only in the limit N → ∞. For finite N the eigenvalue
distributions of the product of x1 · · · xn and of the power xn

differ. The difference, however, disappears when N tends
to infinity, as we illustrate below. The finite-N distribution
of eigenvalues for the product n independent Girko-Ginibre
matrices has been analytically derived in Ref. [20].

IV. DERIVATION

Consider an IUE of random matrices x = hu of dimensions
N × N . In the large-N limit the random matrices can be
represented as free random variables. In this case one can apply
the Haagerup-Larsen theorem [5], which relates the eigenvalue
density of x to the eigenvalue density of h2 by the following
formula:

Sh2 (Fx(r) − 1) = 1

r2
, (5)

where Fx(r) is the cumulative density function for the density
of eigenvalues of x on the complex plane and Sh2 (x) is the S
transform for the matrix h2. The cumulative density function

Fx(r) =
∫

|z|�r

d2zρx(z,z̄) = 2π

∫ r

0
dss�x(s) =

∫ r

0
dspx(s)

(6)

can be interpreted as the fraction of eigenvalues of x in the
circle of radius r centered at the origin of the complex plane.
It is related to the eigenvalue density ρx(z,z̄) = �x(|z|), which
depends on the distance from the origin |z|. The integrand
dspx(s) = 2πdss�x(s) is interpreted as the probability of
finding eigenvalues of x in a ring of radii |z| and |z| + d|z|:

F ′
x(r) = px(r) = 2πr�x(r). (7)

The prime denotes the derivative with respect to the radial
variable. The cumulative density function Fx(r) enters Eq. (5)
through the argument of the S transform Sh2 (z), which is
related to the eigenvalue density ρh2 (λ) of the matrix h2

(see Appendix A). The Haagerup-Larsen theorem states also
[5,13,14,17] that the support of the eigenvalue density of x is
a ring of radii Rmin and Rmax or a disk (if Rmin = 0):

R2
max =

∫ ∞

0
dλλρh2 (λ), R−2

min =
∫ ∞

0
dλλ−1ρh2 (λ). (8)

For an R-diagonal (isotropic) matrix x given by the radial
decomposition x = hu, where h is Hermitian and u is a Haar
unitary matrix, the two matrices xx† = h2 and x†x = u†h2u

have identical eigenvalues and therefore the S transforms for
xx† and x†x are identical: Sxx† (z) = Sx†x(z) = Sh2 (z). This
means that Eq. (5) can be written as

Sx†x(Fx(r) − 1) = 1

r2
. (9)

Let us now apply this equation to the product of n identically
distributed R-diagonal (isotropic) matrices Xn = x1 · · · xn.
The resulting matrix has eigenvalues identical to Hnun, where
H 2

n = X
†
nXn, so we can apply Eq. (9) by replacing in this

equation x by Xn:

S
X

†
nXn

(
FXn

(r) − 1
) = 1

r2
. (10)

The S transform for the matrix X
†
nXn, which appears in

Eq. (10), can be replaced by the S transforms for individual
terms in the product. Indeed, writing

X†
nXn = x†

nX
†
n−1Xn−1xn, (11)

where Xn−1 = x1 · · · xn−1, we see that

S
X

†
nXn

= S
X

†
n−1Xn−1

S
x
†
nxn

(12)
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since, due to the cyclic properties of the trace, the moments of
x
†
nX

†
n−1Xn−1xn are identical to those of xnx

†
nX

†
n−1Xn−1. Thus

the moments of xnx
†
n are identical to those of x

†
nxn. By applying

Eq. (12) recursively we eventually obtain

S
X

†
nXn

=
n∏

i=1

S
x
†
i xi

. (13)

By taking into account that all xi are identically distributed
and having the same S transform (which we denote by Sx†x)
we can write Eq. (13) as

S
X

†
nXn

= Sn
x†x. (14)

Inserting this into Eq. (10) we get

Sx†x

(
FXn

(r) − 1
) = 1

r2/n
. (15)

This equation is identical in form to Eq. (9) except that on the
left-hand side Fx(r) is replaced by FXn

(r) and on the right-hand
side r is replaced by r1/n. From this observation it immediately
follows that

FXn
(r) = Fx(r1/n) = Fxn (r). (16)

The equality (16) follows from the fact that eigenvalues of
the matrix xn are equal to the nth power of the correspond-
ing eigenvalues of x: Fxn (r) ≡ Prob(|λ|n � r) = Prob(|λ| �
r1/n) ≡ Fx(r1/n). So we see that indeed the product of n

identically distributed isotropic matrices Xn = x1x2 · · · xn has
the same eigenvalue distribution as the nth power xn of a single
matrix in the product. In practice, the eigenvalue distribution of
Xn can be calculated directly from the eigenvalue distribution
of a single matrix x by substituting r → r1/n in the cumulative
distribution function Fx(r) [Eq. (6)]. The corresponding
eigenvalue densities may be found using Eq. (7). They read

pXn
(r) = 1

n
r1/n−1px(r1/n) (17)

and

�Xn
(r) = 1

n
r2/n−2�x(r1/n). (18)

V. APPLICATIONS

Let us apply these formulas to a couple of examples. First
consider Girko-Ginibre matrices [10,11] that have a uniform
distribution �x(r) = 1/π inside the unit circle |z| � 1. We
have

Fx(r) = 2
∫ r

0
r ′dr ′ = r2 for r � 1 (19)

and 1 otherwise. For the product of n independent Girko-
Ginibre matrices we have [Eq. (16)]

FXn
(r) = r2/n for r � 1 (20)

and one otherwise. Taking the derivative with respect to r

[Eq. (7)], we find the corresponding densities

pXn
(r) = 2

n
r2/n−1θ (1 − r) (21)

and

�Xn
(r) = 1

πn
r2/n−2θ (1 − r), (22)

where θ denotes the Heaviside step function. This result agrees
with that obtained using different methods in Refs. [6,21–24],
as mentioned in the Introduction of the paper.

As the second example we consider the product of n

truncated unitary matrices [12]. The cumulative eigenvalue
distribution of a single matrix from this ensemble is

Fx(r) = κr2

1 − r2
for r �

(
1

1 + κ

)1/2

(23)

and 1 otherwise. The coefficient κ = L/N is the ratio of the
number of rows and columns L removed from a Haar unitary
matrix of dimensions (N + L) × (N + L). This truncation
leaves a matrix of dimensions N × N . In Appendix B we
show how to derive this result using free random variables.
The corresponding density reads

�x(r) = κ

π
(1 − r2)−2θ

( (
1

1 + κ

)1/2

− r

)
. (24)

Using Eq. (16) we find the distribution of eigenvalues for the
product of n such matrices:

FXn
(r) = κ

r2/n

1 − r2/n
for r �

(
1

1 + κ

)n/2

(25)

and 1 otherwise. The corresponding eigenvalue density is

�Xn
(r) = κ

nπ
r2/n−2(1 − r2/n)−2θ

( (
1

1 + κ

)n/2

− r

)
.

(26)

VI. NUMERICAL COMPARISON AND
FINITE SIZE EFFECTS

In order to cross-check our results, we use Monte Carlo
simulations to generate (sample) finite size random matrices
from the ensembles in question. Agreement between the
analytical formula (3) or (4) and numerical results is observed,
taking into account finite size corrections. The shape of the
obtained distributions p(r) = F ′(r) [Eq. (7)] is shown in Fig. 1.
In the limit N → ∞, the distributions have compact support
and a sharp drop at the edge. For finite N the spectra do not have
a sharp threshold, but instead tend to zero continuously in an
extended crossover region. The difference between the product
of independent matrices and the corresponding power of a
single matrix is visible in this region (Fig. 2). The eigenvalue
density of the product of independent matrices approaches the
theoretical curve faster than that of the corresponding power
of a single matrix. Only radial distributions p(r) = F ′(r)
[Eq. (7)] are shown since eigenvalue densities are circularly
symmetric on the complex plane. The shape of the finite size
corrections for the Girko-Ginibre distribution was discussed
in Refs. [21,22]. The exact shape of this crossover behavior
has been analytically derived recently in Ref. [20].

We also performed numerical simulations for the products
of truncated orthogonal matrices as an example of multipli-
cation of IOE matrices. In the large-N limit both the IUE
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FIG. 1. (Color online) Numerical verification of theoretical formulas (a) (3) and (b) and (c) (4) for the radial part p(r) = F ′(r) [Eq. (7)]
of the mean spectral density ρ (z,z̄) of the product of independent matrices. (a) Numerical histograms for the product of three independent
Gaussian random matrices N = 400 (black pluses), N = 200 (red circles), and N = 100 (blue crosses) compared to the theoretical prediction
for N → ∞ (solid green line). Each histogram is made for 107 eigenvalues. The numerical histograms approach the theoretical curve as the size
of matrices increases. (b) Plot analogous to (a) for the product of two independent truncated unitary matrices with ratio κ = 1

9 and N = 360
(black pluses), N = 180 (red circles), and N = 90 (blue crosses). Each histogram is made for 9 × 106 eigenvalues. (c) Plot analogous to (a)
and (b) for the product of three independent truncated unitary matrices with ratio κ = 1

4 and N = 320 (black pluses), N = 160 (red circles),
and N = 80 (blue crosses). Each histogram represents 8 × 106 eigenvalues.

and IOE densities are expected to have the same limiting
distribution, while for finite N the distribution in the IOE
case is expected to display a characteristic pattern that weakly
breaks the circular symmetry of the eigenvalue distribution on
the complex plane. More precisely, one expects that a fraction
of eigenvalues accumulates on the real axis and disappears
from a narrow depletion region close to the axis. The effect
was first discussed for real Girko-Ginibre matrices [25,26]
and later also for orthogonal truncated matrices [27]. It is
known to be a finite size effect in the sense that the fraction of
eigenvalues forming the pattern tends to zero for N → ∞,
so the full circular symmetry of the eigenvalue density is
restored in the limit. In fact, this is exactly what we see in our
numerical simulations of the product of truncated matrices.
First we observe that the radial distribution of eigenvalues of
the product of two truncated unitary matrices is identical to
the case of truncated orthogonal matrices except in a small
region close to r = 0 [see Fig. 3(a)]. In Fig. 3(b) we compare
finite size distributions for the product of the IUE (bottom

part) and the IOE (top part). We see that the IUE distribution is
circularly symmetric up to the statistical noise while the IOE
distribution has an elongated shape close to the real axis, as
expected. Finally, in Fig. 3(c) we show the full spectrum on
which one can clearly see an accumulation of eigenvalues on
the real axis.

VII. DISCUSSION

In this paper we have shown a simple relation between the
spectral properties of the product of n identically distributed
isotropic random matrices from the given IUE and spectral
properties of nth power of a single matrix from this ensemble.
We stress a nonintuitive aspect of this result that the product
of independent matrices has the same eigenvalue density as
the product of fully correlated (identical) matrices. In a sense
it is a self-averaging effect: A single random matrix from
an isotropic ensemble is a good representative to describe
products of matrices from this ensemble in the limit N → ∞.
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FIG. 2. (Color online) Numerical analysis of the finite size effects for the radial part p(r) = F ′(r) [Eq. (7)] of the mean spectral density
ρ (z,z̄) of the product of independent matrices in comparison to the power of a single matrix. (a) Numerical histograms for the product of three
independent Gaussian random matrices N = 200 (black pluses) and one matrix raised to the third power for N = 200 (blue circles) compared
to theoretical prediction for N → ∞ (solid green line). Each histogram is made for 107 eigenvalues. Plots are zoomed in the region, where
the difference in the shape is visible. (b) Plot analogous to (a) for the product of two independent truncated unitary matrices (black pluses)
and the second power of a single truncated unitary matrix (blue circles) with ratio κ = 1

9 and N = 180. Each histogram is made for 9 × 106

eigenvalues. (c) Plot analogous to (a) and (b), but the product of three independent truncated unitary matrices (black pluses) and the third power
of a single truncated unitary matrix (blue circles) with ratio κ = 1

4 and N = 160. Each histogram is made for 8 × 106 eigenvalues.
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FIG. 3. (Color online) Numerical comparison of the eigenvalues of the product of two truncated orthogonal and unitary matrices. (a) Radial
part p(r) = F ′(r) [Eq. (7)] of the mean spectral density ρ(z,z̄) for unitary (black pluses) and orthogonal (red circles) matrices for N = 100 and
κ = 1

9 . Each histogram is made for 9 × 106 eigenvalues. The theoretical prediction for N → ∞ is shown for comparison (solid green line).
(b) Full eigenvalue distribution of orthogonal (top half of the complex plane) and unitary (bottom half of the complex plane) truncated matrices
for N = 100 and κ = 1

9 . (c) Full eigenvalue distribution of orthogonal truncated matrices for the same N and κ parameters. The real eigenvalue
band is clearly visible.

We have supplemented our analytic proof with numerical
simulations, allowing us to see how the finite size effects vanish
in the thermodynamical limit. The obtained eigenvalue density
for finite size Girko-Ginibre matrices agrees with the analytic
form conjectured in Refs. [21,22] and derived in Ref. [20].
Our result elucidates the transparent analytic structure noted
in several papers on the products of random matrices [6–9,12,
21–24,28–33] and provides a powerful tool for the derivation
of similar results for products of some application-designed
isotropic random matrices of large (infinite) size.
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APPENDIX A

In this Appendix we briefly recall basic facts about
the S transform, introduced by Voiculescu in free random
probability [34]. Consider a Hermitian random matrix a. One
usually defines the Green’s function

Ga(z) = lim
N→∞

1

N
〈Tr(z − a)−1〉 =

∫
dλ

ρa(λ)

z − λ
, (A1)

which is directly related to the eigenvalue density ρa(λ). The
complex variable z in the Stieltjes transform (A1) lies outside
the cut on the real axis corresponding to the support of ρa(λ).
Note that the density is a function of a real variable while
the Green’s function is a function of a complex variable. The
Green’s function generates moments μak (if they exist)

Ga(z) = 1

z
+

∞∑
k=1

μak

zk+1
(A2)

of the eigenvalue density

μak = lim
N→∞

1

N
〈Tr ak〉 =

∫
dλρa(λ)λk. (A3)

Sometimes it is more convenient to use another generating
function, given by a power series in z rather than in 1/z:

ψa(z) = 1

z
Ga

(
1

z

)
− 1 =

∞∑
k=1

μakz
k (A4)

and to introduce its functional inverse χa:

χa[ψa(z)] = ψa[χa(z)] = z, (A5)

which can also be expressed as a power series in z if the first
moment is nonzero: μa1 �= 0. The S transform for the matrix
a is related to the χ transform as

Sa(z) = 1 + z

z
χa(z). (A6)

The relevance of the S transform in free probability stems
from the fact that it allows one to concisely formulate the
law of free multiplication. The S transform of the product of
two free (independent) matrices from invariant ensembles is a
product of the S transforms of individual matrices:

Sab(z) = Sa(z)Sb(z). (A7)

The multiplication law was formulated in free random proba-
bility [34], but it also can be rederived in a random matrix setup
using field theoretical techniques for the summation of planar
Feynman diagrams and it can be generalized to non-Hermitian
matrices [23].

APPENDIX B

In this Appendix we rederive the distribution of a single
unitary truncated matrix (23) using free probability and the
Haagerup-Larsen theorem. We first construct the density of an
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(N + L) × (N + L) matrix y = pu, where

p = diag(1, . . . ,1︸ ︷︷ ︸
N

, 0, . . . ,0︸ ︷︷ ︸
L

) (B1)

is a projection matrix and u is an Haar unitary matrix
of dimensions (N + L) × (N + L). In order to calculate
the S transform for the projector p = p2 we first observe
that all moments of p are equal μk = N/(N + L). Hence
ψp(z) = N

N+L
z

1−z
[Eq. (A4)], χp = z

N/(N+L)+z
[Eq. (A5)], and

eventually [Eq. (A6)]

Sp = 1 + z

N/(N + L) + z
. (B2)

Inserting this into Eq. (5) we find

Fy(r) = L

N + L

1

1 − r2
for r �

√
N/(N + L) (B3)

and 1 otherwise. We see that Fy(0) = L/(L + N ). This means
that there are L eigenvalues equal to zero. They are inherited
from the zero eigenvalues of the projector. The matrix y is
of dimensions (N + L) × (N + L). When we remove L last
columns and L last rows we are left with an upper-left block
of dimensions N × N that has no trivial zero eigenvalues. We
denote the matrix corresponding to this block by x, whose
cumulative eigenvalue distribution is given in Eq. (23),

Fx(r) = N + L

N

(
Fx(r) − L

N + L

)
= L

N

r2

1 − r2
for

r �
√

N/(N + L) (B4)

and one otherwise. The term −L/(N + L) removes L zero
eigenvalues out of all (N + L) eigenvalues and the factor (N +
L)/N restores the total normalization.
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