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Entropy production and nonlinear Fokker-Planck equations
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The entropy time rate of systems described by nonlinear Fokker-Planck equations—which are directly related
to generalized entropic forms—is analyzed. Both entropy production, associated with irreversible processes, and
entropy flux from the system to its surroundings are studied. Some examples of known generalized entropic
forms are considered, and particularly, the flux and production of the Boltzmann-Gibbs entropy, obtained from
the linear Fokker-Planck equation, are recovered as particular cases. Since nonlinear Fokker-Planck equations are
appropriate for the dynamical behavior of several physical phenomena in nature, like many within the realm of
complex systems, the present analysis should be applicable to irreversible processes in a large class of nonlinear
systems, such as those described by Tsallis and Kaniadakis entropies.
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I. INTRODUCTION

Entropy represents one of most outstanding concepts of
physics; in particular, its statistical definition in terms of
probabilities allows a direct connection between the micro-
scopic (described by statistical mechanics) and macroscopic
(described by thermodynamics) worlds. The H theorem, and
consequently the second law of thermodynamics, which states
that the entropy of an isolated system always increases for
irreversible processes, leads to the interesting phenomenon
of entropy production [1–4]. Within the statistical definition
of entropy, the entropy production depends directly on the
time derivative of the corresponding probability; for this
purpose one may use, e.g., the Boltzmann or Fokker-Planck
equation in the case of continuous probabilities [4], or the
master equation, when dealing with discrete probabilities [5].
Most investigations in the literature are concerned with the
production of Boltzmann-Gibbs entropy (see, e.g., Refs. [4–7])
and so one makes use either of the standard master equation
or of the linear Fokker-Planck equation.

In many physical situations the linear differential equations
are applicable to idealized systems, characterized by specific
properties, such as homogeneity, isotropy, and translational in-
variance, with particles interacting through short-range forces
and with a dynamical behavior described by short-time memo-
ries. However, it is very common, particularly within the realm
of complex systems, to find physical systems that do not fulfill
these requirements, e.g., those presenting one (or more) of the
following properties: spatial disorder, competing interactions,
long-range interactions, long-time memories. Usually, in these
cases, the associated equations have to be modified, and
very frequently, nonlinearities are considered in order to take
into account such effects. Among these equations one should
mention the nonlinear Fokker-Planck equations (NLFPEs) [8]
that are intimately related to anomalous diffusion [9]. These
types of phenomena may be found in the motion of particles in
porous media [10–13], the dynamics of surface growth [13],
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the diffusion of polymer-like breakable micelles [14], and the
dynamics of interacting vortices in disordered superconductors
[15–17], among other physical systems.

A general NLFPE may be written as [8,18,19]

η
∂P (x,t)

∂t
= −∂{A(x)�[P (x,t)]}

∂x

+D
∂

∂x

{
�[P (x,t)]

∂P (x,t)

∂x

}
, (1)

where η represents an effective friction coefficient, D is a
constant with dimensions of energy, and the external force
A(x) is associated with a potential φ(x) [A(x) = −dφ(x)/dx].
The functionals �[P (x,t)] and �[P (x,t)] should satisfy
certain mathematical requirements, e.g., positiveness [18,19];
moreover, to ensure normalizability of P (x,t) for all times one
must impose the conditions

P (x,t)|x→±∞ = 0;
∂P (x,t)

∂x

∣∣∣∣
x→±∞

= 0;

(2)
A(x)�[P (x,t)]|x→±∞ = 0 (∀t).

Although the present analysis may be carried in higher
dimensions, e.g., considering N -dimensional NLFPEs, like
those of Refs. [20–22], herein for simplicity we will restrict
ourselves to the one-dimensional form of Eq. (1).

The proof of the H theorem by using NLFPEs has been
carried out by many workers in recent years [8,18,19,23–26].
In the case of a system under an external potential φ(x), the
H theorem corresponds to a well-defined sign for the time
derivative of the free-energy functional,

F = U − θS; U =
∫ ∞

−∞
dx φ(x)P (x,t), (3)

with θ representing a positive parameter with dimensions of
temperature. Herein, the entropy will be considered in a very
general form [18],

S[P ] = k�[Q[P ]]; Q[P ] =
∫ ∞

−∞
dx g[P (x,t)];

(4)

g(0) = g(1) = 0;
d2g

dP 2
� 0,
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where k denotes a positive constant with dimensions of
entropy, �[Q[P ]] represents a monotonically increasing
functional at least once differentiable, whereas the inner
functional g[P (x,t)] should be at least twice differentiable.
Considering the NLFPE of Eq. (1), for a well-defined sign of
the time derivative of the free energy (which was considered as
(dF/dt) � 0 in Refs. [18,19,26]), one gets that the functionals
of Eq. (1) should be directly related to the entropic form,

−d�[Q]

dQ

d2g[P ]

dP 2
= �[P ]

�[P ]
, (5)

and we are assuming that D = kθ .
As far as we know, an analysis of the entropy production

within the framework of generalized entropies, i.e., consider-
ing general NLFPEs, has not been carried out in the literature;
as an exception, one could mention the anomalous-diffusion
analysis of Ref. [27], where the porous-medium equation [10]
was used. One should be reminded that the same problem has
been also investigated by means of a linear fractional-diffusion
equation [28,29]. In the present work we study the entropy
production related to general entropic forms, as defined in
Eq. (4), associated with the general NLFPE of Eq. (1), through
the relation of Eq. (5). In the next section, we derive general
expressions for the entropy production, entropy flux, and
dissipated energy per unit time (i.e., dissipated power). In
Sec. III, we introduce a Langevin-like equation associated with
the NLFPE considered herein and reobtain the expression for
the dissipated power, which is valid in this case for a general
external force (conservative or not). In Sec. IV, we analyze
the entropy-flux and entropy-production contributions, by
considering some well-known entropic forms as particular
cases. Finally, in Sec. V, we present our main conclusions.

II. ENTROPY-PRODUCTION RATE

For the calculations that follow, it appears to be convenient
to write Eq. (1) in the form of a continuity equation,

∂P (x,t)

∂t
= −∂J (x,t)

∂x
;

J (x,t) = 1

η

{
A(x)�[P ] − D�[P ]

[
∂P (x,t)

∂x

]}
, (6)

in such a way that the time derivative of the entropy defined in
Eq. (4) becomes

d

dt
S[P ] = k

d�[Q[P ]]
dQ

d

dt

∫ +∞

−∞
dxg[P (x,t)]

= k
d�[Q]

dQ

∫ +∞

−∞
dx

dg

dP

∂P

∂t

= −k
d�[Q]

dQ

∫ +∞

−∞
dx

dg

dP

∂J (x,t)

∂x
. (7)

Carrying an integration by parts, the above equation may be
written as

d

dt
S[P ] = k

∫ +∞

−∞
dx

d�[Q]

dQ

d2g

dP 2
J (x,t)

×
{

A(x)�[P ] − ηJ (x,t)

D�[P ]

}
, (8)

and using the relation of Eq. (5), one obtains

d

dt
S[P ] = − k

D

∫ +∞

−∞
dxA(x)J (x,t)

+ kη

D

∫ +∞

−∞
dx

{J (x,t)}2

�[P ]
. (9)

Then, one may write [1–4]

d

dt
S[P ] = 	 − 
, (10)

where one identifies the entropy flux, representing the ex-
changes of entropy between the system and its neighborhood,


 = k

D

∫ +∞

−∞
dxA(x)J (x,t), (11)

as well as the entropy-production contribution,

	 = kη

D

∫ +∞

−∞
dx

{J (x,t)}2

�[P ]
. (12)

One should be reminded that k, η, D, and �[P (x,t)] were
all defined previously as positive quantities, leading to the
desirable result 	 � 0.

Next, we will show that the entropy flux of Eq. (11) is
directly related to the dissipated power P associated with the
conservative force A(x),

P =
〈
A(x)

dx

dt

〉
, (13)

with the brackets 〈 〉 denoting an average over the probability
distribution P (x,t). In this case, one may rewrite the dissipated
power as

P = − d

dt
U (t) = − d

dt

∫ +∞

−∞
dxφ(x)P (x,t)

= −
∫ +∞

−∞
dxφ(x)

∂P (x,t)

∂t
=

∫ +∞

−∞
dxφ(x)

∂J (x,t)

∂x
, (14)

where we have used the continuity equation in the last equality.
Integrating by parts and using the conditions of Eq. (2), one
obtains

P = −
∫ +∞

−∞
dx

dφ(x)

dx
J (x,t) =

∫ +∞

−∞
dxA(x)J (x,t), (15)

which may be compared with Eq. (11) to yield

P = D

k

. (16)

This dissipated power may be expressed also in terms of the
functionals of the NLFPE of Eq. (1); for that, one substitutes
the current density of Eq. (6) in Eq. (15),

P = 1

η

∫ +∞

−∞
dxA2(x)�[P ] − D

η

∫ +∞

−∞
dxA(x)�[P ]

∂P (x,t)

∂x

= 1

η

∫ +∞

−∞
dxA2(x)�[P ] + D

η

∫ +∞

−∞
dxP (x,t)

∂

∂x
(A(x)�[P ]),

(17)
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where an integration by parts was carried in the second integral.
This later equation may be written as

P = 1

η

〈
A2(x)�[P ]

P (x,t)
+ D

∂

∂x
(A(x)�[P ])

〉
. (18)

In the next section, we will show that the above relation is
very general, and it may be obtained also from a Langevin
equation; as a consequence, it holds for a more general
force, characterized by two contributions, a conservative and
a nonconservative one.

III. THE ASSOCIATED LANGEVIN EQUATION

In this section, we will be concerned with a Langevin-like
equation, defined in terms of a multiplicative noise ζ (t),

η
dx

dt
= f (x,t) + h(x,t)ζ (t), (19)

where f (x,t) and h(x,t) are arbitrary functions, whereas the
stochastic variable ζ (t) is characterized by

〈ζ (t)〉 = 0; 〈ζ (t)ζ (t ′)〉 = 2ηDδ(t − t ′). (20)

In the equations above the brackets 〈 〉 denote time averages;
as usual, we will assume that these averages coincide with
those over the probability distribution P (x,t) (i.e., ensemble
averages), as defined in Eq. (13). Within the Stratonovich
prescription, one may show that Eq. (19) is associated to the
following Fokker-Planck equation [30],

η
∂P (x,t)

∂t
= −∂[f (x,t)P (x,t)]

∂x

+D
∂

∂x

{
h(x,t)

∂

∂x
[h(x,t)P (x,t)]

}
. (21)

One should notice that the linear Fokker-Planck equation
may be recovered from Eq. (21) in the particular case of the
standard Langevin equation [31], by considering an additive
noise [i.e., h(x,t) = constant]; moreover, the function f (x,t)
defined in Eq. (19) can be associated with a general force,
conservative or not. In order to recover the the NLFPE
of Eq. (1), we will restrict ourselves to h(x,t) written as
a functional of P (x,t), i.e., h(x,t) ≡ h[P (x,t)]; a similar
procedure has already been applied in Ref. [32], through
the power-dependence form, h(x,t) ∝ [P (x,t)]ν , to derive
the NLFPE of Refs. [33,34], associated with Tsallis entropy
[35,36]. Moreover, f (x,t) does certainly depend on the
external force and may also present a functional dependence
on the probability P (x,t). Therefore, we write

h(x,t)
∂

∂x
[h(x,t)P (x,t)]

= h[P (x,t)]
∂

∂P
{h[P (x,t)]P (x,t)} ∂P (x,t)

∂x
(22)

in such a way that Eq. (21) becomes

η
∂P (x,t)

∂t
= −∂[f (x,t)P (x,t)]

∂x
+ D

∂

∂x

{
h[P (x,t)]

∂

∂P

× {h[P (x,t)]P (x,t)} ∂P (x,t)

∂x

}
. (23)

Comparing the equation above with Eq. (A2) of the
Appendix, one has the following relations,

f (x,t)P (x,t) = Ã(x)�[P (x,t)], (24)

h[P (x,t)]
∂

∂P
{h[P (x,t)]P (x,t)} = �[P (x,t)]. (25)

In the present case Ã(x) represents a general force, which may
be written as

Ã(x) = A(x) + A∗(x), (26)

i.e., composed by a conservative part, A(x) = −dφ/dx, as
well as a nonconservative one, A∗(x).

In what follows we will derive an expression for the
dissipated power associated with the general force Ã(x),
making use of the Langevin equation; one has that

P =
〈
Ã(x)

dx

dt

〉
= 1

η
〈Ã(x)f (x,t)〉 + 1

η
〈h(x,t)Ã(x)ζ (t)〉,

(27)

where we have substituted Eq. (19). Applying Novikov’s
theorem [37], the second term becomes

〈h(x,t)Ã(x)ζ (t)〉
= D

〈
h(x,t)

∂

∂x
[Ã(x)h(x,t)]

〉

= D

∫ +∞

−∞
dxh(x,t)

{
∂

∂x
[Ã(x)h(x,t)]

}
P (x,t). (28)

Carrying integrations by parts and substituting Eq. (25), one
may write this term as

〈h(x,t)Ã(x)ζ (t)〉 = D

∫ +∞

−∞
dx

∂

∂x
{Ã(x)�[P ]}P (x,t)

=
〈
D

∂

∂x
{Ã(x)�[P ]}

〉
. (29)

Now, using the result above together with Eq. (24), the
dissipated power of Eq. (27) becomes

P = 1

η

〈
Ã2(x)�[P ]

P (x,t)
+ D

∂

∂x
{Ã(x)�[P ]}

〉
, (30)

showing the same form of Eq. (18), derived in the case of a
conservative force.

One may see easily that the relation between dissipated
power and entropy flux [cf. Eq. (16)] applies also for the case
of the general external force of Eq. (26), described by the
NLFPE of Eq. (A2). Therefore,


 = k

ηD

〈
Ã2(x)�[P (x,t)]

P (x,t)
+ D

∂

∂x
{Ã(x)�[P (x,t)]}

〉

= k

ηD

〈
A2(x)�[P (x,t)]

P (x,t)
+ D

∂

∂x
{A(x)�[P (x,t)]}

〉

+ k

ηD

〈
[A∗(x)]2�[P (x,t)]

P (x,t)
+ D

∂

∂x
{A∗(x)�[P (x,t)]}

〉

+ 2k

ηD

〈
[A(x)A∗(x)]�[P (x,t)]

P (x,t)

〉
, (31)

where one notices three contributions for the entropy
flux, coming respectively from the conservative and
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nonconservative forces, in addition to a mixed contribution.
Splitting this later term into the two first ones, one may write

 = 
1 + 
2,


1 = k

ηD

〈
A(x)Ã(x)�[P (x,t)]

P (x,t)
+ D

∂

∂x
{A(x)�[P (x,t)]}

〉
,


2 = k

ηD

〈
A∗(x)Ã(x)�[P (x,t)]

P (x,t)
+ D

∂

∂x
{A∗(x)�[P (x,t)]}

〉
.

(32)

One should stress the similarity of the entropy fluxes above
with the time derivative of the ensemble average of a given
function B(x,t) in the Appendix [cf. Eq. (A8)]. In the particular
case of the internal energy in Eq. (3), one has B(x,t) ≡ φ(x),
and so comparing the above expression for 
1 with Eq. (A9),
one notices that


1 = − k

D

dU (t)

dt
. (33)

IV. SOME PARTICULAR CASES

Since the NLFPE of Eq. (1) is appropriate for describing the
dynamical behavior of several nonlinear physical phenomena
in nature, in this section we will work out the entropy
production, as well as entropy flux, associated with well-
known entropic forms. Other physical situations will be left
for future investigations, such as quantum systems modeled
through nonlinear classical equations of evolution, e.g., those
proposed for bosons and fermions [38–41]. As pointed out in
Ref. [18], a given entropic form is associated with a family of
Fokker-Planck equations of the type presented in Eq. (1), with
their functionals satisfying

�[P ] = a[P ]b[P ]; �[P ] = a[P ]P. (34)

All such equations are related to the same entropy, through the
relation of Eq. (5), which becomes

−d�[Q]

dQ

d2g

dP 2
= b[P ]

P
, (35)

whereas the current density of Eq. (6) is given by

J (x,t) = a[P ]

η

{
A(x)P (x,t) − D b[P ]

[
∂P (x,t)

∂x

]}
. (36)

The freedom for choosing the functional a[P ] generates
different Fokker-Planck equations, characterized by distinct
dynamical behaviors, although presenting the same stationary
state and same entropic form. These characteristics are
reflected in the current density above, where the entropic
form is identified through the functional b[P ], whereas the
possible dynamical behaviors, described by the NLFPE of
Eq. (1), are distinguished by means of the multiplicative
functional a[P ]. These two functionals will appear in the time-
dependent quantities defined in Eqs. (10)–(12), leading to the
following entropy-flux and entropy-production contributions,


 = k

ηD

∫ +∞

−∞
dxA(x)a[P ]

{
A(x)P (x,t)

−D b[P ]

[
∂P (x,t)

∂x

] }
, (37)

	 = k

ηD

∫ +∞

−∞
dx

a[P ]

P (x,t)

{
A(x)P (x,t)

−D b[P ]

[
∂P (x,t)

∂x

] }2

. (38)

Interestingly, although the entropic form does not depend
explicitly on a[P ], this functional appears naturally in the
time derivative dS/dt through its associated Fokker-Planck
equation; however, one should notice that in each family
the simplest Fokker-Planck equation associated with a given
entropic form is obtained by considering a[P ] = 1. In what
follows we consider some examples of well-known entropic
forms, within these simplest Fokker-Planck equations.

A. Boltzmann-Gibbs entropy

For completeness, we consider herein the production of the
Boltzmann-Gibbs entropy, which has already been studied by
many authors, making use of the linear Fokker-Planck equation
(see, e.g., Refs. [4,6,7]). In this case one has

SBG = −k

∫ +∞

−∞
dxP (x,t) ln P (x,t), (39)

which when compared with Eq. (4) corresponds to � ≡ I

(identity operator) and g[P ] = −P (x,t) ln P (x,t). From
Eq. (35) one gets b[P ] = 1, leading to


 = k

ηD

∫ +∞

−∞
dxA(x)

{
A(x)P (x,t) − D

[
∂P (x,t)

∂x

] }
,

(40)

	 = k

ηD

∫ +∞

−∞
dx

1

P (x,t)

{
A(x)P (x,t) − D

[
∂P (x,t)

∂x

]}2

.

(41)

One should recognize the above expressions as those already
known in the literature [4,6,7].

B. Tsallis entropy

Tsallis entropy is defined in terms of a real parameter q

[35,36],

Sq = k

∫ +∞

−∞
dx

P (x,t) − P q(x,t)

q − 1
, (42)

corresponding to � ≡ I and g[P ] = [P (x,t) −
P q(x,t)]/(q − 1). From Eq. (35) one gets b[P ] = qP q−1 and
so


 = k

ηD

∫ +∞

−∞
dxA(x)

{
A(x)P (x,t)

− qD [P (x,t)]q−1

[
∂P (x,t)

∂x

] }
, (43)

	 = k

ηD

∫ +∞

−∞
dx

1

P (x,t)

{
A(x)P (x,t)

− qD [P (x,t)]q−1

[
∂P (x,t)

∂x

] }2

. (44)

Considering A(x) = 0, the above entropy-production
contribution recovers the one obtained previously from an
anomalous-diffusion equation [27].

061136-4



ENTROPY PRODUCTION AND NONLINEAR FOKKER- . . . PHYSICAL REVIEW E 86, 061136 (2012)

C. Kaniadakis entropy

Kaniadakis entropy is also defined in terms of a real
parameter κ [42,43],

Sκ = − k

2κ

∫ +∞

−∞
dx

(
1

1+κ
[P (x,t)]1+κ − 1

1−κ
[P (x,t)]1−κ

)
,

(45)

from which one identifies � ≡ I and

g[P ] = − 1

2κ

(
1

1 + κ
[P (x,t)]1+κ − 1

1 − κ
[P (x,t)]1−κ

)
.

(46)

Substituting into Eq. (35) one obtains b[P ] = (P κ + P −κ )/2
and so


 = k

ηD

∫ +∞

−∞
dxA(x)

{
A(x)P (x,t)

−D
[P (x,t)]κ + [P (x,t)]−κ

2

[
∂P (x,t)

∂x

]}
, (47)

	 = k

ηD

∫ +∞

−∞
dx

1

P (x,t)

{
A(x)P (x,t)

−D
[P (x,t)]κ + [P (x,t)]−κ

2

[
∂P (x,t)

∂x

] }2

. (48)

D. Renyi entropy

Renyi entropy is defined as [44]

SR
q = k

ln
{ ∫ +∞

−∞ dx[P (x,t)]q
}

1 − q
, (49)

from which one finds [18]

�[Q[P ]] = ln Q[P ]

1 − q
;

d�[Q[P ]]
dQ

= 1

(1 − q)Q[P ]
;

g[P ] = [P (x,t)]q, (50)

leading to

b[P ] = q[P (x,t)]q−1∫ +∞
−∞ dx[P (x,t)]q

. (51)

The corresponding flux and entropy production are given
respectively by


 = k

ηD

∫ +∞

−∞
dxA(x)

{
A(x)P (x,t)

− qD[P (x,t)]q−1∫ +∞
−∞ dx[P (x,t)]q

[
∂P (x,t)

∂x

] }
, (52)

	 = k

ηD

∫ +∞

−∞
dx

1

P (x,t)

{
A(x)P (x,t)

− qD[P (x,t)]q−1∫ +∞
−∞ dx[P (x,t)]q

[
∂P (x,t)

∂x

]}2

. (53)

It is important to be reminded that the quantities above are
physically relevant only in the interval 0 < q < 1, for which
the entropy of Eq. (49) presents the appropriate concavity
required by the H theorem [18].

V. CONCLUSIONS

We have analyzed the entropy rate of systems described
by nonlinear Fokker-Planck equations. The Fokker-Planck
equations considered are very general, written in terms of two
functionals of the probability P (x,t), appearing respectively
in the drift and diffusion terms. These equations are directly
related to generalized entropies by means of the H theorem
and are expected to describe appropriately several nonlinear
phenomena in nature. We have worked out the two contribu-
tions associated with time variations of the entropy, namely,
the entropy flux and entropy production, the second being
always positive for irreversible processes, as expected. Some
examples for generalized entropic forms are analyzed, and
particularly, the entropy production and flux associated with
the Boltzmann-Gibbs entropy and the linear Fokker-Planck
equation are recovered as particular cases. The present analysis
is relevant for irreversible processes in many physical systems
for which generalized entropic forms are applicable, like those
exhibiting anomalous diffusion. Although the above study
was restricted, for simplicity, to one dimension, it would be
interesting to investigate in future works whether novelties
could appear in higher dimensions.
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APPENDIX

In this Appendix we will derive an expression for the time
derivative of the ensemble average of a given function B(x,t),

〈B〉 =
∫ +∞

−∞
dxB(x,t)P (x,t). (A1)

For that, we will make use of a NLFPE similar to the one of
Eq. (1),

η
∂P (x,t)

∂t
= −∂{Ã(x)�[P (x,t)]}

∂x

+D
∂

∂x

{
�[P (x,t)]

∂P (x,t)

∂x

}
, (A2)

written also as

∂P (x,t)

∂t
= −∂J (x,t)

∂x
;

(A3)

J (x,t) = 1

η

{
Ã(x)�[P ] − D�[P ]

[
∂P (x,t)

∂x

]}
,

where Ã(x) represents now a general external force. One has
that

d

dt
〈B〉 = d

dt

∫ +∞

−∞
dxB(x,t)P (x,t)

=
∫ +∞

−∞
dxB(x,t)

∂P (x,t)

∂t
+

∫ +∞

−∞
dx

∂B(x,t)

∂t
P (x,t)

=
∫ +∞

−∞
dxB(x,t)

∂P (x,t)

∂t
+

〈
∂B(x,t)

∂t

〉
. (A4)
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Using Eq. (A3) and carrying an integration by parts, the first
term becomes∫ +∞

−∞
dxB(x,t)

∂P (x,t)

∂t

=
∫ +∞

−∞
dx

∂B(x,t)

∂x
J (x,t)

= 1

η

∫ +∞

−∞
dx

∂B(x,t)

∂x

{
Ã(x)�[P ] − D�[P ]

∂P (x,t)

∂x

}
,

(A5)

and a further integration on the last term of the equation above
leads to ∫ +∞

−∞
dxB(x,t)

∂P (x,t)

∂t

= 1

η

∫ +∞

−∞
dx

{
∂B(x,t)

∂x

Ã(x)�[P ]

P (x,t)

+D
∂

∂x

(
∂B(x,t)

∂x
�[P ]

) }
P (x,t). (A6)

Consequently, Eq. (A4) may be written as

d

dt
〈B〉 = 1

η

〈
∂B(x,t)

∂x

Ã(x)�[P ]

P (x,t)
+ D

∂

∂x

(
∂B(x,t)

∂x
�[P ]

)〉

+
〈
∂B(x,t)

∂t

〉
, (A7)

and particularly, in the case where B does not depend explicitly
on time (∂B/∂t = 0),

d

dt
〈B〉 = 1

η

〈
∂B(x)

∂x

Ã(x)�[P ]

P (x,t)
+ D

∂

∂x

(
∂B(x)

∂x
�[P ]

)〉
.

(A8)

Equations (A7) and (A8) express the time derivative d〈B〉/dt

for a system obeying the NLFPE of Eq. (A2) in the presence
of a general external force Ã(x), which may be written in
terms of two contributions, like in Eq. (26). Therefore, for the
particular case of the internal energy defined in Eq. (3), one
has B(x) ≡ φ(x), in such a way that Eq. (A8) becomes

d

dt
U (t) = −1

η

〈
A(x)Ã(x)�[P ]

P (x,t)
+ D

∂

∂x
(A(x)�[P ])

〉
. (A9)
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