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Equilibrium states of open quantum systems in the strong coupling regime
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In this work we investigate the late-time steady states of open quantum systems coupled to a thermal reservoir
in the strong coupling regime. In general such systems do not necessarily relax to a Boltzmann distribution
if the coupling to the thermal reservoir is nonvanishing or equivalently if the relaxation time scales are finite.
Using a variety of nonequilibrium formalisms valid for non-Markovian processes, we show that starting from a
product state of the closed system = system + environment, with the environment in its thermal state, the open
system which results from coarse graining the environment will evolve towards an equilibrium state at late times.
This state can be expressed as the reduced state of the closed system thermal state at the temperature of the
environment. For a linear (harmonic) system and environment, which is exactly solvable, we are able to show
in a rigorous way that all multitime correlations of the open system evolve towards those of the closed system
thermal state. Multitime correlations are especially relevant in the non-Markovian regime, since they cannot be
generated by the dynamics of the single-time correlations. For more general systems, which cannot be exactly
solved, we are able to provide a general proof that all single-time correlations of the open system evolve to those
of the closed system thermal state, to first order in the relaxation rates. For the special case of a zero-temperature
reservoir, we are able to explicitly construct the reduced closed system thermal state in terms of the environmental
correlations.
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I. INTRODUCTION

Equilibrium states are typically discussed and derived in
one of three settings or scenarios. In the more-common equi-
librium (Gibbs) perspective, originally based upon classical
ensemble theory, the entire system consisting of a system
of interest plus its environment is taken to have some well-
defined state or set of states, and upon coarse graining the
environment, the system can appear thermal [1,2]. In the less
common nonequilibrium perspective, the environment is taken
to be initially thermal, whereas the open system is allowed
to dynamically relax from an arbitrary initial state into an
equilibrium state [3–6]. This approach is referred to as the
Langevin paradigm [7]. Both scenarios described above apply
to situations where there is a clear distinction and separation
between the system and environment degrees of freedom.
When there is no clear distinction or the separation is not
physically justifiable, as in a molecular gas where each particle
is identical, a very different set of physical variables and
different kind of coarse graining measure need be considered.
One can examine the behavior of the n-particle distribution
functions and perform the coarse graining (e.g., “slaving”
in Ref. [7]) on the Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) hierarchy [8]. This approach is referred to as the
Boltzmann paradigm.

The equilibrium and nonequilibrium perspectives can be
made to complement each other rather naturally within the
Langevin or open system paradigm. In the former case,
Popescu et al. [1] have shown that for an overwhelming
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majority of pure states of the system + environment (within
a narrow energy interval), the reduced density matrix is very
close to the reduced density matrix corresponding to the
microcanonical state of the system + environment (defined in
the same energy interval). In their approach the comparison is
done without explicitly determining an equilibrium state. The
authors emphasize that for strong coupling, the equilibrium
state is not of Boltzmann type, and yet their results are valid
in this domain. It is important to note that dynamics does not
play any role in their derivation; the entire argument is based
on kinematics. The beauty of this approach is that one can
explain the abundance of thermal-like states without referring
to ensembles or time averages.

Linden et al. [9] expands upon the approach of Refs. [1,2]
to demonstrate dynamical relaxation1 under very weak as-
sumptions. Specifically, they proved that any subsystem of a
much larger quantum system will evolve to an approximately
steady state. On the other hand Reimann [10] showed that the
expectation value of any “realistic” quantum observable will
relax to an approximately constant value. (Reference [11] gave
a clear analysis and unification of these two results.) Finally
Ref. [12] proves relaxation over a finite amount of time in the
sense of both Refs. [9,10].

Dynamical relaxation of an open quantum system has been
studied in the limit of vanishing coupling to the environment
in Refs. [3–6]. In this limit the equilibrium state is shown
to be of Boltzmann form in which case the result is called
thermalization, rather than just relaxation. In our work reported

1See Sec. I A for the definition of the terms relaxation, equilibration,
and thermalization as used in this work. There we also describe the
meaning of the term equilibration as used in Refs. [9–12], which
differ from our definition.
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here, we derive the equilibrium state of an open system coupled
to a thermal reservoir explicitly, even in the strong coupling
regime. Moreover for the N oscillator quantum Brownian
motion (N-QBM) model we are able to show the relaxation
of multitime correlations of the open system as well. To do so
we need to restrict the environment to be in a thermal initial
state.

Another difference between our work and Refs. [9–12]
is in the methods and emphasis. We take the open quantum
systems approach [6,13–17] of assuming an environment (E)
which the system (S) interacts with, keeping some coarse-
grained information about the environment and accounting for
its systematic influences on the system in a self-consistent
manner. The time evolution of the open quantum system is in
general governed by nonunitary dynamics. In contradistinc-
tion, Refs. [9,10,12] consider the unitary time evolution of the
closed system (S + E) and then trace out the environment to
get the system state. Both approaches are equally valid, each
providing a different perspective into the physics with different
emphasis. We will provide a more detailed comparison of our
results to those in the literature in the Discussion section.

A. Relaxation, equilibration, and thermalization

Before we present our approach, we want to define carefully
what is meant by equilibration in this paper. To begin with let
us consider a system in contact with two thermal reservoirs2

at different temperatures. The system relaxes into a late-time
steady state, which can be described by a reduced density
matrix. All expectation values of system operators will also be
time-independent at late times. Yet there will be a steady heat
flux from the hot reservoir to the cold reservoir through the
system. This is an example of a nonequilibrium steady state.

In general we define steady states via time independent
density matrices: dρ(t)/dt = 0 and use the term relaxation
to describe the generic convergence of the reduced density
matrix to a fixed but arbitrary state in the late-time limit. If
the density matrix is diagonal in the energy eigenbasis of the
system we call it a stationary state. An isolated stationary state
is also a steady state, but this is not true for open systems with
nonvanishing coupling to their environments.

In this work we reserve the term equilibrium for sys-
tems whose multitime correlations can be derived from the
thermal state of a possibly extended closed system which
is governed by Hamiltonian dynamics. As a result of our
definition, equilibration implies relaxation, but the reverse is
not true. The thermal reservoir distinguishes itself from other
possible environments by the universality of its fluctuation-
dissipation relation (FDR),3 detailed-balance conditions, and

2We call an environment a reservoir if the environment has an
infinite number of degrees of freedom, and a reservoir at constant
temperature, a thermal reservoir.

3As long as the environment is modelled after a physical system,
fluctuations will be related to dissipation; hence there will be a
FDR. However, for general environments this relation depends on the
specifics of the system-environment coupling. Thermal environments
are unique in that the FDR does not depend on the details of the system
and the coupling to the system [18]. This is why our proof does

FIG. 1. Depiction of a system embedded in its environment,
with short-range interactions. The typical argument for neglecting
the interaction energy is that in the macroscopic limit the boundary
becomes immeasurable in relation to the bulk.

Kubo-Martin-Schwinger (KMS) relations. In the vanishing
coupling limit thermal reservoirs lead to the thermalization
of the system as defined below. However, for nonvanishing
coupling to a thermal reservoir the equilibrium state of the
system does not need to be of the Boltzmann form

ρS(β) = e−βHS

TrS[e−βHS ]
. (1.1)

The asymptotic states we derive in this paper in the strong
coupling limit describe equilibration and not thermalization.

The term thermalization is reserved for the relaxation of
the density matrix of a system to the Boltzmann form (1.1)
irrespective of the initial state of the system. Thermalization
defined in this sense can take place only if the system-
environment coupling is vanishingly weak. To be specific,
one requires (1) decaying environmental correlation functions,
defined in Sec. III, (2) an initially thermal reservoir, and
(3) vanishing relaxation rates4 or, equivalently, vanishing
environmental correlation functions.

These conditions are customarily achieved by assuming
short-range interactions and a relatively large system size; see
Fig. 1. However, this assumption is generally not justifiable
for small systems as Fig. 2 suggests. In this paper, we address
the steady state of open quantum systems in contact with
a thermal reservoir at temperature T = 1/β, without the
assumption of a vanishing interaction strength, and allow for
finite relaxation time scales. Relation (1.1) is known not to
hold under these conditions [19]. Phenomenologically, one
can estimate the corrections we describe by the ratio of the

not extend to nonequilibrium steady states arising from nonthermal
environments such as two thermal reservoirs at different temperatures.

4To see a simple example of a relaxation rate consider the N-QBM
model of Sec. II B for N = 1. In the Markovian limit the damping
kernel can be written as γ (t,s) = γ0Mδ(t − s), where γ0 acts as the
damping rate.
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FIG. 2. (Color online) Depiction of systems of decreasing particle
number. For systems consisting of a small number of particles, the
argument in Fig. 1 obviously does not apply. Furthermore, it is known
that neglecting the interaction energy in these finite systems always
results in infinite relaxation and thermalization times.

relaxation rates γ to the system’s energy level splittings �,
or γ /�.5

As thoroughly discussed in Ref. [19], this fact is often
overlooked in many circumstances, due to the effects of
ancillary approximations such as the rotating-wave approx-
imation, renormalization of environmentally induced energy-
level shifts, and overly simplistic models. As we explain in
Appendix A, this fact may also be overlooked due to its absence
in the case of classical, Gaussian noise.

Finally, the term equilibrium is used in Ref. [9] to describe
what in our terminology are steady states and in Ref. [10]
to describe what in our terminology are stationary states.
Both cases have been covered in Refs. [11,12] with the single
term equilibrium. These states do necessarily meet our more
stringent criteria of equilibrium described above. Here we refer
to the result of these works using the terminology we defined
above.

B. Model and assumptions

We consider unitary dynamics of the closed system (C)
described by the Hamiltonian HC consisting of the system of
interest (S) and its environment (E) with interaction (I):

HC = HS + HE + HI + HR, (1.2)

where HR contains all of the “renormalization” (R) effects.
The interaction generates environmental correlation functions
[cf. Eqs. (3.4) and (3.8)], and we assume these correlations to
be decaying functions. This assumption allows for irreversible
dynamics in the open system. Implicit in this assumption is

5A well-known example is the density of states for an atom or
molecule, which is necessarily interacting with the electromagnetic
field to a degree which cannot be ignored when considering the Lamb
shift, black-body radiation shifts, etc. For optical frequencies, the
emission rates of atoms are very small relative to their transition
frequencies, and so these corrections are very small. However, in other
systems, such as condensates, these corrections can be of considerable
size.

that the environment contains a continuum of modes (e.g.,
infinite volume). This latter assumption can be satisfied by
coupling the system directly to field degrees of freedom that are
uncountably infinite, such as the electromagnetic field. Note,
however, that we do not assume the interaction Hamiltonian
to be negligible compared to the system Hamiltonian.

Finally, for mathematical simplicity we assume the initial
state of the system and environment to be uncorrelated at
t = 0:6

ρC(0) = ρS(0) ⊗ e−βHE

ZE(β)
, (1.3)

where the environment (a thermal reservoir) is in its isolated
equilibrium state with partition function ZE(β) = TrE[e−βHE ],
and the system (S) is in an arbitrary state. The proofs in this
paper depend crucially on the properties of thermal states as
discussed before.

The assumption of a thermal state for the environment
can be justified, for instance, by the approach of Popescu
et al., [1] in the weak-coupling limit, by giving the environment
its own environment, without any restriction on the system-
environment coupling strength. In this sense the work of
Popescu et al., and those prior, serve as a pedagogical
springboard for our analysis of strongly coupled systems.

C. Results

It is well known that in the limit of vanishing interaction
strength, an open system coupled to a single thermal reservoir
relaxes to its thermal state [3,6,19,22]:

lim
γ→0

lim
t→∞ ρS(t) = e−βHS

ZS(β)
, (1.4)

where ρS(t) = TrE[ρC(t)] denotes the reduced density matrix
and γ a generic relaxation rate of the open system. Note
that all relaxation rates are, at minimum, second order in
the interaction, being primarily determined by the two-time
correlations of the environment.

In Ref. [23], it was shown to second order in the interaction,
and for a single tensor-product coupling of system and
environment operators, that an open system coupled to a single
thermal reservoir can be confirmed to relax to the reduced
closed system thermal state:

lim
t→∞ ρS(t) = TrE

[
e−βHC

ZC(β)

]
. (1.5)

We extend this proof to general system-environment cou-
plings. For zero-temperature environments we demonstrate
agreement with the ground state obtained from the time-
independent Schrödinger equation. Moreover, we give a
nonperturbative proof of Eq. (1.5) for the exactly solvable
model of N -oscillator quantum Brownian motion (N-QBM),
wherein the interacting system and environment are linear.

6The implication of initial correlations are considered in
Refs. [20,21]: Correlated initial states are more physical, particularly
in the early time evolution, but they have essentially no bearing on
the mathematical results we derive herein, which are focused upon
the asymptotic time evolution.
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In that model we are also able to rigorously prove that all
multitime correlations of the open system relax to those of
the closed system thermal state with nonvanishing interaction.
Correspondence of the multitime correlations is an important
consideration as, outside of the Markovian regime, the dynam-
ics of the multitime correlations cannot be generated by the
dynamics of the single-time correlations, as per the quantum
regression theorem (QRT) [24].

1. The reduced, closed system thermal state

It is important to emphasize that Eq. (1.5) pertains strictly
to the open system S and not to the closed system (S + E), as
equilibration requires not only a reservoir and late-time limit,
but also a degree of coarse graining. As we show in Sec. II F, if
one considers any individual mode of the environment, then its
dependence upon the initial state of the system never decays.
In this sense, information pertaining to the system’s past is
encoded in the environment, but only when considering the
state of the closed system (S + E). However, upon coarse
graining the environment by considering the time evolution of
a continuum of environment energies, and not one individual
mode energy, then all dependence upon the initial state of the
system is seen to decay away in time. In this sense, information
pertaining to the system’s past is only measurable for a finite
span of time.

The above statement is based on the fact that, while the open
system experiences irreversible dynamics, dissipation, diffu-
sion and decoherence, the closed system (S + E) experiences
reversible dynamics. Consider, for instance, the coupling of
a mixed state of the system to a zero-temperature reservoir.
Given unitary dynamics, the joint state of the system and
environment cannot relax from a mixed state into a pure
state (the ground state of the interacting theory). However,
the environment is exceedingly large when compared to the
system, and so the system’s entropy, when spread out over
every mode of the environment, can become immeasurable.
This is a general phenomena of environmentally induced
irreversible dynamics: Conserved quantities such as energy
and entropy can flow into the environment and, owing to the
overwhelmingly large number of degrees of freedom, become
difficult to track or retrieve.

The paper is organized as follows: In Sec. II we derive
the equilibrium state for the linear N-QBM model. In Sec. III
we extend our analysis to nonlinear systems via perturbation
theory. In Sec. IV we summarize our results and compare
them to relevant works in the literature and provide some new
insights into the key issues. Some technical details have been
provided, and the notation is defined in the Appendices.

II. LINEAR SYSTEMS

Calculation of the late-time steady-state and multitime cor-
relations of an open quantum system requires the knowledge of
and the ability to treat the dynamics with due consideration to
initial state. The dynamics of quantum and classical linear
systems are identical and exactly solvable by finding the
transformation which maps the system into a set of uncoupled
harmonic oscillators (eigenmodes) undergoing undamped
oscillations of a single eigenfrequency. This method, referred
to as the “diagonalization of the Hamiltonian” or a generalized

Bogoliubov transformation, gives the time evolution of all
oscillators as superpositions of the eigenmodes. In the limit of
an infinite environment (and only then) the superposition for
the system oscillators can result in dissipative and stochastic
behavior at late times.

However, the initial conditions are different for thermal
states in quantum mechanics versus classical mechanics, the
difference being especially pronounced at low temperatures.
This is the main source of nontriviality of our result Eq. (1.5)
as it applies to linear systems. As has been detailed in
Appendix A, it is relatively simple to account for the effects
of a linear environment in classical mechanics. This is not
so in quantum mechanics because the Wigner function of
the thermal state is quite complicated (especially for systems
with multiple degrees of freedom) and coarse graining the
environmental degrees of freedom remains challenging.

In this section we adopt the open quantum system approach
in following the dissipative dynamics of our system in the
form of a Langevin equation wherein the noise terms fully
incorporate the influence of the environmental degrees of
freedom. This method produces the same result as the explicit
diagonalization of the Hamiltonian of the closed system,
yet it shifts the focus on the reduced system early in the
derivation and is mathematically more straightforward. A
trivial observation allows us to simplify the derivation even
further. Since the thermal state of a closed Hamiltonian system
is stationary we can replace the closed system thermal state by
its own late-time steady state. This way we have a symmetry
between the quantities we want to compare and less terms to
calculate overall.

A. The Lagrangian

Our treatment of the N-QBM model is based on Ref. [25].
The model is that of a continuous and linear system with finite
and countable degrees of freedom, with Lagrangian Lsys(X,Ẋ),
bilinearly coupled, via a Lagrangian Lint(X,x), to a linear
environment with an infinite (and possibly continuous) number
of degrees of freedom, with Lagrangian Lenv(x,ẋ):

L = Lsys(X,Ẋ) + Lenv(x,ẋ) + Lint(X,x) + Lren(X), (2.1)

L = 1
2 (ẊTM Ẋ − XTC X) + 1

2 (ẋTm ẋ − xTc x)

− xTg X + Lren(X). (2.2)

We assume that the spring constant matrices C,c as well as
the mass matrices M,m are real and positive definite and
can be considered in general to be symmetric. If necessary,
one can relax the positivity condition and even consider
time-dependent mass matrices, spring constant matrices, and
system environment coupling matrix g [26]. Such a model
environment can emulate any source of Gaussian noise with
proper choice of coupling. To ensure that the free and inter-
acting system are similar in behavior, we will also include the
“renormalization” Lren(X). Our choice of “renormalization”
will be equivalent to inserting the entire system-environment
interaction in the square of the potential:

L = 1
2 (ẊTM Ẋ − XTC X)

+ 1
2 (ẋTm ẋ − [x − c−1g X]Tc[x − c−1g X]) (2.3)
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since this keeps the phenomenological system-system cou-
plings from changing.

B. The Langevin equation

For the linear system there are several formalisms which
produce the same Langevin Equation. The most direct is
via integrating out environment degrees of freedom in the
Heisenberg equations of motion [27] and then consider-
ing the symmetrized moments. Another is to consider the
characteristic curves of the system + environment’s Fokker-
Plank equation [26]. Finally, one can integrate out both the
environment degrees of freedom and the relative system
coordinate � = X − X′, while leaving only the average system
coordinate � = (X + X′)/2, in the double path integral of
the reduced system propagator in the influence functional
formalism [28]. In general (for nonlinear systems) there is no
necessary correspondence between these formalisms and only
the first may be well defined, but here the Langevin equation
is simply

M Ẍ(t) + 2
∫ t

0
ds γ (t,s) Ẋ(s) + C X(t) = ξ (t) − 2 γ (t) X0,

(2.4)

where γ is the damping kernel and ξ is the noise given by

γ (t,s) = +gTm− 1
2

cos (ω[t − s])

2 ω2
m− 1

2 g, (2.5)

ξ (t) = gT[ḟ(t) m x0 + f(t) p0], (2.6)

f(t) = m− 1
2

sin(ωt)

ω
m− 1

2 , (2.7)

ω2 ≡ m− 1
2 c m− 1

2 , (2.8)

where f is the free Green’s function of the reservoir positions
and ω is the free reservoir frequencies upon diagonalization.
Note that the damping kernel is independent of the envi-
ronment’s initial state, whereas the properties of noise are
determined by the environment’s initial state.

We consider the case in which the system and environment
are uncorrelated at t = 0 and the environment is in its thermal
state e−βHE/ZE(β). The noise has zero mean, and the two-time
correlation is given by the noise kernel

ν(t,t ′) = 〈ξ (t) ξ (t ′)T〉ξ , (2.9)

where the Gaussian average over the stochastic process ξ is
equivalent to tracing over the environment degrees of freedom.
The noise and damping kernels satisfy then the fluctuation-
dissipation relation (here in the Fourier domain)

ν̃(ω) = κ̃(ω) γ̃ (ω), (2.10)

κ̃(ω) ≡ h̄ω coth

(
h̄ω

2kBT

)
, (2.11)

with the Fourier transform defined

f̃ (ω) ≡
∫ +∞

−∞
dt e−ıωt f (t), (2.12)

and where κ̃ is the (quantum) FDR kernel. Therefore, the
problem is completely specified in terms of the damping
kernel.

Given that our damping kernel is stationary, the Langevin
equation can be expressed in the Laplace domain as

[z2M + 2zγ̂ (z) + C]X̂(z) = [zM X0 + P0] + ξ̂ (z), (2.13)

where P = M Ẋ and (X0,P0) correspond to the initial values
at t = 0, and with the Laplace transform defined

f̂ (z) ≡
∫ ∞

0
dt e−zt f (t). (2.14)

Formally, the solutions can be easily found by inversion:

X̂(z) = Ĝ(z) [zM X0 + P0] + Ĝ(z) ξ̂ (z), (2.15)

Ĝ(z) = [z2M + 2zγ̂ (z) + C]−1. (2.16)

Note that since our damping kernel is symmetric, i.e., γ (t,s) =
γ (t,s)T, the same will be true for the propagator G(t,s) and its
Laplace transform. It is also useful to consider the following
representation:

Ĝ(z) = M− 1
2
[
z2 + 2z λ̂(z) + 
2]−1

M− 1
2 , (2.17)

λ̂(z) ≡ M− 1
2 γ̂ (z) M− 1

2 , (2.18)


2 ≡ M− 1
2 C M− 1

2 , (2.19)

where the eigenvalues of 
2 coincide with the squared
frequencies of the normal modes of the free system. Back
in the time domain we have

X(t) = Ġ(t) M X0 + G(t) P0 + (G ∗ ξ )(t), (2.20)

with ∗ denoting the Laplace convolution, defined as

(A ∗ B)(t) =
∫ t

0
ds A(t − s) B(s). (2.21)

For more general Gaussian states, for which the system and
environment are correlated, the noise can be correlated with
(X0,P0) and the noise kernel modified. This is the case for
the closed system thermal state given by the density matrix
e−βHC/ZC(β), which we investigate below.

C. Single-time correlations in the closed system thermal state

In this section we calculate the single-time correlations in
the closed system thermal state of the N-QBM model. The
partition function for the N-QBM model has been derived in
Appendix C, Eq. (C17). In the rest of the paper including
the appendices we suppress the dependence of the partition
function on β for brevity of notation. As a first step we take
the logarithm of the partition function and write it as

log ZC = log ZE − 1

2
Tr log M−1 − 1

2
Tr log C

−
∞∑

r=1

Tr log[M−1Ĝ(νr)
−1] + constant. (2.22)

We begin by making a general observation. Consider the
thermal state of a system described by a Hamiltonian where
the momenta appear only in the kinetic energy term of the
form

∑
a p2

a/2m. Then all correlations between position and
momentum operators vanish: 〈xapb〉 = 0. This can be seen
by noting that all correlations are time-translation-invariant

061132-5
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in equilibrium and forming the derivatives d
dt

〈xa(t)xb(t)〉 and
d

d(t−t ′) 〈xa(t)xb(t ′)〉|t=t ′ . This observation applies to N-QBM
model.

Let angular bracket with the subscript C denote expectation
values in the closed system thermal state. Expectation values
corresponding to the uncorrelated initial state are denoted by
attaching the subscript E to the bracket. For the purpose of
partial differentiation, the partition function is to be regarded
as a function of C, M, c, m, g and not (explicitly) of ω. With a
straightforward application of Theorem 1, the reduced system
correlations are given by

〈X XT〉C = − 2

β

∂ log ZC

∂C
, (2.23)

〈X PT〉C = 〈P XT〉 = 0, (2.24)

〈P PT〉C = − 2

β

∂ log ZC

∂M−1
. (2.25)

The position-position and position-momentum correlations
between system and reservoir modes are calculated similarly:

〈X xT〉C = 〈x XT〉T
C

= 1

β

∂ log ZC

∂gT
+ 〈X XT〉C gTc−1, (2.26)

〈X pT〉C = 〈p XT〉T
C = 0, (2.27)

〈P xT〉C = 〈x PT〉T
C = 0. (2.28)

To calculate the momentum-momentum correlations between
system and environment we take the time derivative of
〈X(t)pT(t)〉C and set it to zero. Since in the closed system
thermal state all expectation values are time independent, we
know that there is in fact no dependence on time. Using the
equations of motion it is straightforward to show that

〈P pT〉C = M 〈X xT〉C c − M 〈X XT〉C gT. (2.29)

The environment correlations can be calculated by direct
differentiation of the partition function:

〈x xT〉C = − 2

β

∂ log ZC

∂c
+ c−1g 〈X XT〉C gTc−1, (2.30)

〈x pT〉C = 〈p xT〉C = 0, (2.31)

〈p pT〉C = − 2

β

∂ log ZC

∂m−1
. (2.32)

Now we are in a position to determine all the single-time
correlations of the interacting theory in the closed system
thermal state. Since the equilibrium state is stationary these
single-time correlations are time independent. The details for
some of these formulas are provided in Appendix D. All the
nonzero correlations are given by

〈X XT〉C = 1

β
Ĝ(ν0) + 2

β

∞∑
r=1

Ĝ(νr), (2.33)

〈P PT〉C = 1

β

[
M − ν2

0 M Ĝ(ν0) M
]

+ 2

β

∞∑
r=1

[
M − ν2

r M Ĝ(νr) M
]
, (2.34)

〈X xT〉C = 〈X XT〉C gTc−1− 2

β

∞∑
r=1

νrĜ(νr) γ̂ (νr) g−1,

(2.35)

〈P pT〉C = M〈X xT〉C c − M〈XXT〉C gT, (2.36)

〈
p0 pT

0

〉
C = 〈

p0 pT
0

〉
E − 2

β

∞∑
r=1

ν2
r m f̂(νr) g Ĝ(νr) gT f̂(νr) m,

(2.37)〈
x0 xT

0

〉
C = 〈

x0 xT
0

〉
E + c−1g〈X0 X〉C gTc−1

− 2

β

∞∑
r=1

ν2
r [c−1m f̂(νr) g Ĝ(νr) gT f̂(νr)]

− 2

β

∞∑
r=1

ν2
r [f̂(νr) g Ĝ(νr) gT f̂(νr) m c−1]

− 2

β

∞∑
r=1

ν4
r [c−1m f̂(νr) g Ĝ(νr) gT f̂(νr) m c−1],

(2.38)

where f̂ is the Laplace transform of the free reservoir propa-
gator given by Eq. (2.7) and νr = 2π r/h̄β are the Matsubara
frequencies.

D. Equivalence of single-time correlations for the open system

In this subsection we show that the single-time correla-
tions of system variables for the uncorrelated initial state
are asymptotically identical to the single-time correlations
corresponding to the closed system thermal state. We start by
calculating the variances for the closed system thermal state.
The requirement that G(t) is a decaying function means that
the Laplace transform Ĝ(z) is analytic in the right half-plane.
Hence Ĝ(−ıω) is analytic in the upper-half plane. On the other
hand coth(βh̄ω/2) has simple poles on the imaginary axis at the
Matzubara frequencies νr. The summations over r in Eq. (2.33)
can be written as a contour integral using Cauchy’s theorem:

〈X XT〉C = βh̄/2

2πı

2

β

∫
C

dz coth(βh̄z/2) Ĝ(−ız). (2.39)

The contour of integration is chosen to encircle the upper-
half plane in a counterclockwise direction. The poles on
the imaginary axis at Matzubara frequencies νr for r � 1
are encircled, but only half of the pole at the origin is enclosed.
The arc of the contour does not contribute to the integral
when the radius is taken to infinity. Hence we can write this
expression as an integral on the real line. Furthermore, by
the symmetry of the integrand, the real part vanishes and the
integral is given by

〈X XT〉C = h̄

2π

∫ +∞

−∞
dω coth(βh̄ω/2) Im[Ĝ(−ıω)]. (2.40)

A similar argument can be used to derive

〈P PT〉C = h̄

2π

∫ +∞

−∞
dω ω2 coth(βh̄ω/2) Im[Ĝ(−ıω)].

(2.41)
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Equations (2.40) and (2.41) are identical to the results
obtained by Ref. [25] for the asymptotic values of variances
corresponding to an uncorrelated initial state. Therefore we
have proven that the single-time correlations of the open
system relax to those of the closed system thermal state.

E. Equivalence of multitime correlations

In this section we generalize the results of the previous
section to include multitime correlations. We begin by calcu-
lating the two-time correlation function 〈X(t) X(t ′)T〉C using
the trajectories obtained from the Langevin equation. Note that
for the closed system thermal state this quantity is stationary.
To simplify the proof we make use of this observation and take
the late-time limit of the closed system thermal state as well
without loss of generality. This trick makes the comparison of
the two cases easier and reduces the amount of computation.

The dynamics of the system is given by the solution (2.20)
of the Langevin equation which is valid for any initial state.
The dependence on initial state is hidden in the correlations
between X0, P0 and ξ (t). The two-time position correlation is
given by

〈X(t) X(t ′)T〉C

= Ġ(t) M
〈
X0 XT

0

〉
C M Ġ(t ′) + G(t)

〈
P0 PT

0

〉
C GT(t ′)

+ Ġ(t) M
∫ t ′

0
ds ′ 〈X0 ξ (s ′)T〉C G(t ′ − s ′)

+
∫ t

0
ds G(t − s)

〈
ξ (s) XT

0

〉
C M Ġ(t ′)

+ G(t)
∫ t ′

0
ds ′ 〈P0 ξ (s ′)T

〉
C G(t ′ − s ′)

+
∫ t

0
ds G(t − s)

〈
ξ (s) PT

0

〉
C Ġ(t ′)

+
∫ t

0
ds

∫ t ′

0
ds ′ G(t − s)〈ξ (s) ξ (s ′)T〉C G(t ′ − s ′).

(2.42)

As mentioned earlier unlike the uncorrelated initial state the
terms in the second through fifth lines do not vanish in the
closed system thermal state. We consider the case where

lim
t→∞ G(t) = lim

t→∞ γ (t) = 0. (2.43)

This is the criteria for dissipative dynamics. Under these
assumptions the first two terms in Eq. (2.42) vanish in the
late-time limit for any initial state. The terms in the second
and third lines have one factor of G(t) or Ġ(t) that goes to
zero in the late-time limit multiplied by a convolution integral.
In Appendix D we show that these convolution integrals are
finite. Hence the terms in second and third lines also vanish
asymptotically. Finally we show the equivalence of the term
in the last line for the uncorrelated and thermal initial states at
late times in Appendix E.

The comparison of more general multitime correlations
can be done similarly using the trajectories of the Langevin
equation. The above example demonstrates how in the late-
time limit the effects of initial conditions of the system die
out and the noise statistics of both preparations converge. The

equivalence at the level of trajectories ensures that all the
multitime correlations will be identical.

Let us reiterate the result we just obtained: A linear system
linearly coupled to a linear thermal reservoir (with uncountably
many degrees of freedom) at inverse temperature β does
relax to the equilibrium state described by (1.5). This state
is different from the Boltzmann state given by (1.4) whenever
the interaction between the system and environment is not
negligible. Moreover the multitime correlations of system
observables also relax to their corresponding values in the
closed system thermal state.

F. The effect of coarse graining

Up until this point we only focused on the system degrees
of freedom. Now we turn our attention to the environment.
Following Refs. [25,26], the trajectories of the environment
oscillators, as driven by the system oscillators, are given by

x(t) = [ḟ(t) m x(0) + f(t) p(0)] + f(t) ∗ g X(t), (2.44)

in terms of their free propagator f(t) given by Eq. (2.7).
Into Eq. (2.44) we substitute the system trajectories, which
are damped oscillations driven by noise for the continuum
environment:

X(t) = [Ġ(t) M X(0) + G(t) P(0)] + G(t) ∗ ξ (t). (2.45)

We then find the environmental dependence upon the initial
state of the system to be

x(t) = f(t) g ∗ [Ġ(t) M X(0) + G(t) P(0)] + · · · (2.46)

with all additional terms only dependent upon the initial state
of the environment. The system-dependent terms correspond to
a convolution of harmonic oscillations of the environment with
nonlocally damped oscillations of the system. Resolving these
integrals leads to some terms which oscillate with environment
frequencies ω and do not decay.

As a simple example, consider the local damping of a single
system oscillator. The open-system propagator or Green’s
function is given by

G(t) = sin(�̃t)

M�̃
e−γ0t , (2.47)

�̃ =
√

�2 − γ 2
0 . (2.48)

The environment’s dependence upon the initial state of the
system is given by

xk(t) =
{
X(0)

d

dt
+ P (0)

M

}{
d2

dt2
− 2γ0

d

dt
+ �2

}
hk(t)

+ · · · , (2.49)

hk(t) ≡ gkfk(t)(
ω2

k − �2
)2 + 4γ 2

0 ω2
k

, (2.50)

plus terms that decay exponentially and the terms which
depend upon the initial state of the environment. The function
hk(t) oscillates forever, the same as fk(t), and therefore
the environment retains information pertaining to the initial
state of the system forever. However, this information is
not measurable forever. The system only interacts with the
integrated trajectories, which resolve to a convolution of the
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damping kernel and open-system propagators:

gTx(t) = −2 γ̇ (t) ∗ [Ġ(t) M X(0) + G(t) P(0)] + · · · (2.51)

and upon integrating over a continuum of environment
frequencies (here performed by multiplication with the infinite
matrix gT) the oscillatory terms decay in time. Thus the
late-time limit and coarse graining together are responsible
for the erasure of all information pertaining to the initial state
of the system.

III. GENERAL SYSTEMS

Here we consider the single-time correlations of a discrete
or nonlinear quantum system with arbitrary (linear or nonlin-
ear) coupling to a quantum thermal environment, but under
the assumption that the influence of the environment on the
open system may be treated perturbatively. First, we derive
the second-order steady state, as much as is possible, from the
second-order master equation. Second, we derive the reduced
thermal state directly from the closed-system thermal state.
Finally, we derive the reduced thermal state via canonical
perturbation theory, for the case of zero temperature. All of
these formalisms will be shown to produce equivalent results
where valid.

A. Steady state

The time evolution of the reduced density matrix of the open
system can be generated by a perturbative master equation

ρ̇S(t) = L(t){ρS(t)}, (3.1)

where the Liouville operator can be expanded in terms of the
interaction Hamiltonian by a variety of methods [22,29–31]:

L(t) = L0 + L1(t) + L2(t) + · · · , (3.2)

L0{ρ} = −ı[HS,ρ], (3.3)

In general, L1(t) can be absorbed into the system Hamiltonian
HS and so we will primarily concern ourselves with the
second-order term. For simplicity we will assume there is no
degeneracy or near-degeneracy in the system energy spectrum;
generalization to degenerate or nearly degenerate systems is
straightforward.

Expanding the interaction Hamiltonian in terms of system
Ln and environment ln operators

HI =
∑

n

Ln ⊗ ln, (3.4)

the multivariate master equation can be represented [22]

L2 ρ =
∑
nm

[Ln,ρ (Anm 
 Lm)† − (Anm 
 Lm) ρ], (3.5)

where the A operators and 
 product define the second-order
operators

(Anm 
 Lm)(t) ≡
∫ t

0
ds αnm(t,s) {G0(t,s) Lm(s)} (3.6)

in terms of the zeroth-order (state) propagator of the system

G0(t,s){ρ} = e−ı(t−s)HS ρ e+ı(t−s)HS (3.7)

and the (multivariate) environmental correlation function

αnm(t,s) ≡ 〈ln(t) lm(s)〉E. (3.8)

The second-order operator can be expressed as the Hadamard
product

〈ωi |Anm 
 Lm|ωi ′ 〉 = A(ωi − ωi ′) 〈ωi |Lm|ωi ′ 〉, (3.9)

and, in the late-time limit, the second-order coefficients resolve

Anm(ω) = 1

2
α̃nm(ω) − ı P

[
1

ω

]
∗ α̃nm(ω), (3.10)

where α̃(ω) denotes the Fourier transform of the station-
ary environment correlation function α(t − s) = α(t,s), P
the Cauchy principal value, and ∗ the appropriate Fourier
convolution.

With the multivariate master equation detailed, we can
prove relation (1.5) to second order in the interaction. This
generalizes the univariate proof in Ref. [23], which considered
a single tensor-product interaction between the system and
environment. As the proof is straightforward in either case, we
will give an outline and focus upon differences which arise in
the multivariate treatment.

We are looking for the steady state ρβ , such that

L{ρβ} = 0, (3.11)

we know from detailed balance that the zeroth-order steady
state is the thermal state (1.4); e.g., see Ref. [22]. Second-order
corrections can be generated from the second-order master
equation via canonical perturbation theory. More explicitly,
we have

〈ωi |ρβ |ωj 〉i �=j ∝ e−β ωi δij − ı
〈ωi |L2{e−β HS}|ωj 〉

ωi − ωj

, (3.12)

but only for the denoted off-diagonal perturbative corrections
(in the energy basis |ω〉). As explained in Ref. [32], due
to unavoidable degeneracy, specifically that the diagonal
elements are all stationary to zeroth-order, the second-order
master equation cannot determine the second-order corrections
to the diagonal elements of the density matrix. Calculating
these second-order diagonal terms would require knowledge
of the fourth-order master equation, and, unfortunately the
general fourth-order master equation has never been rendered
to the degree of tractability that the second-order master
equation has.

By a simple application of the multivariate master equation
to Eq. (3.12), we easily obtain these second-order corrections
to the thermal state of the system. Corrections to the steady
state can be represented

〈ωi |δρβ |ωj 〉 =
∑
nmk

Cnm
ijk

Z0(β)
〈ωi |Lm|ωk〉〈ωk|Ln|ωj 〉, (3.13)

where Z0(β) is the partition function of the free system and
with the off-diagonal (and nonresonant) coefficients given by

Cnm
ijk |ωi �=ωj

= +An

[
e−βωk

Anm(ωik) − Anm(ωjk)

ωi − ωj

]

+ An

[
e−βωi Amn(ωki) − e−βωj Amn(ωkj )

ωi − ωj

]
,

(3.14)
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where ωij = ωi − ωj and Anm(ω) are the second-order mas-
ter equation coefficients in Eq. (3.10). “An” denotes the
anti-Hermitian part; the Hermitian and anti-Hermitian parts
are defined

He[Qnm] ≡ 1
2 (Qnm + Q∗

mn), (3.15)

An[Qnm] ≡ 1
2 (Qnm − Q∗

mn), (3.16)

and for univariate noise (one collective coupling to the
reservoir) the Hermitian and anti-Hermitian parts are simply
the real and imaginary parts. In either case the anti-Hermitian
part of (3.10) is the second term.

B. Equilibrium state

We wish to compare the straightforward expansion of (3.12)
to the reduced closed system thermal state at second order, and
so we require a perturbative expansion of (1.5). There exists
such a perturbative expansion of exponential matrices utilizing
the identity

d

dε
eA+ε B = eA+ε B

∫ 1

0
du e−u(A+ε B) B e+u(A+ε B) (3.17)

to obtain an operator-Taylor series in the perturbation ε B.
After a fair amount of simplification, one can determine the
second-order reduced thermal state to be

ρβ ∝ e−β HS + e−β HS

∫ β

0
dβ ′

∫ β ′

0
dβ ′′〈HI(−ıβ ′) HI(−ıβ ′′)〉E

(3.18)

in terms of the complex-time operators

HI(−ıβ) ≡ e+β(HS+HE) HI e
−β(H+HE), (3.19)

where the noise average is taken with respect to the free thermal
state of the environment and factors inside the environmental
trace have been written to suggest their correspondence with
the environmental correlation function evaluated at imaginary
times. Finally, note that the weak-coupling expansion of the
thermal state has the potential for secular behavior in β, due to
the fact that a factor of β necessarily accompanies every factor
of the interaction. Therefore, some terms in the expansion will
only be accurate in the high-temperature regime if they retain
polynomial dependence in β after integration.

The double integrals in Eq. (3.18) reduce to

∑
nm

∫ β

0
dβ ′

∫ β ′

0
dβ ′′ αnm(−ıβ ′,−ıβ ′′) Ln(−ıβ ′) Lm(−ıβ ′′)

(3.20)
in terms of the complex-time operators

L(−ıβ) ≡ e+β HS L e−β HS . (3.21)

After a Fourier expansion of the complex-time correlation
functions, expressions (3.12) and (3.20) can be compared
term-by-term in the energy basis wherein the imaginary-time
integrals of Eq. (3.20) can be resolved as the master equation
operators were. Though the two expressions will then be
composed of the same objects, they will not immediately
appear to be equivalent. The final step is to apply the relevant
multivariate Kubo-Martin-Schwinger (KMS) relations (also

found in Refs. [22]):

α̃(+ω) = α̃T(−ω) e−βω = α̃∗(−ω) e−βω, (3.22)

and then one can see that the two expressions are equivalent
in their off-diagonal elements. Moreover, as can be seen in
Eq. (3.14), the off-diagonal expressions are free of behavior
secular in β and are, therefore, valid in the low-temperature
regime.

Whereas the second-order diagonal corrections to the
steady state could not be obtained from the second-order
dynamics due to unavoidable degeneracy, there is no such
obstruction for the equilibrium state here. As studied in
Ref. [33], these terms can be obtained by analytic continuation:

Cnm
iik = lim

ωi→ωj

Cnm
ijk , (3.23)

Cnm
iik = d

dωi

An[e−βωkAnm(ωik) + e−βωi Amn(ωki)]. (3.24)

However, notice that the second term will contain a
d/dω e−βω = −β e−βω, and therefore this term is secular in
β. So whereas the diagonal corrections of the second-order
steady state could not be determined from the second-order
master equation, here they can be determined, but they are only
generally valid at high temperature. Despite this, Ref. [33]
reported good agreement for an harmonic oscillator at low
temperature.

C. Zero-temperature analysis

Though correspondence was established where valid, the
previous analysis was seen to be insufficient for the complete
calculation of low-temperature equilibrium states of the open
system. However, as we shall now show, at least for zero-
temperature noise, it is still possible to easily construct
the reduced closed system thermal states in terms of the
same environmental correlation functions which occurred in
the previous analysis. The following relations were applied
towards the inspection of two-level atoms interacting via a
zero-temperature quantum field in Ref. [34].

In the zero-temperature regime we can apply mundane
perturbation theory to derive the steady state perturbations.
One merely considers the perturbed ground state of the
system + environment:

ψ = ψ0 + ψ1 + ψ2 + · · · , (3.25)

ψ0 ≡ |0〉 ⊗ |0〉E, (3.26)

and then traces out the environment:

ρβ = |0〉〈0| + 〈ψ2 ψ
†
0 + ψ1 ψ

†
1 + ψ0 ψ

†
2〉E + · · · , (3.27)

where we neglect the first moment of the reservoir as
previously discussed. Without loss of generality let us set the
ground-state energy of the system to zero. The calculation
of the reduced state is then a straightforward application of
canonical perturbation theory with some coarse graining. In
doing this we obtain the same off-diagonal corrections (3.14),
however, for the diagonal (and similarly, resonant) corrections

061132-9
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we obtain

Cnm
iik = An

[
e−βωk

d

dωi

Anm(ωik) + e−βωi
d

dωi

Amn(ωki)

]
,

(3.28)

where the Boltzmann weights are guessed, as these relations
have only been derived here at zero temperature. Note that the
second term here is different from its analytically continued
value in Eq. (3.24). Whereas the analytically continued values
may diverge in the zero-temperature limit, obviously these val-
ues cannot. Therefore Eq. (3.28) is exact for zero-temperature
and our best guess for the positive-temperature coefficients:
It has the correct functional dependence upon the Boltzmann
weight and fourth-order master equation coefficients. At worst
this is an interpolation of the zero and high-temperature states.

IV. DISCUSSION

In this work we investigate the equilibrium states of open
quantum systems from dynamics or nonequilibrium point of
view. We show that starting from a product state (1.3) the open
system which results from coarse graining the environment
will evolve to a late-time steady state. This state can be
expressed as the reduced state of the closed system thermal
state at the temperature of the environment, i.e., Eq. (1.5). This
result is important when the system-environment coupling is
not negligible,7 or alternatively, when relaxation rates are not
insignificant in relation to the system frequencies. In this case
the steady state of the system (1.5) differs from the canonical
Boltzmann state (1.4).8 One might argue that this state is the
closest one can get to thermalization in the strong coupling
regime.9 However, in this paper we use the term equilibrium
state for Eq. (1.5) and reserve the term thermal state to the
standard Boltzmann form (1.4).

Our proof is exact for the linear model and to second order
in interaction strength for nonlinear models. Moreover, for
the exactly solvable linear case we prove the equivalence of
multitime correlations. The issue of multitime correlations
in the context of equilibration or thermalization seems to
be mostly ignored in the literature. We argue that multitime
correlations are important outside the Markovian regime, as
was pointed out in Ref. [28]. For instance, the relaxation of
multitime correlations cannot be deduced from the relaxation
of the reduced density matrix of the system; neither can
the explicit value of the multitime correlations be derived
from the equilibrium state, if the dynamics is non-Markovian.
In this respect our analysis of the linear N-QBM model

7Based on the discussion of Fig. 2, we expect our results to be most
relevant to small systems.

8In this paper we have not focused on the nature of this difference.
A quantification in terms of the Hamiltonian of mean force for the
special case of an Ohmic environment is given by Hilt et al. [35]. We
intend to address this issue in our future work.

9Alternatively one could define this state to be the thermal state
in the strong coupling regime. However, this state depends on the
specifics of the reservoir and the coupling to the reservoir. Hence it
is not specified by the system parameters alone, and referring to it as
the thermal state is, in our opinion, misleading.

provides insight into equilibration phenomena beyond the
density matrix formalism.

A complete proof, which would be nonperturbative for
nonlinear systems, would have to be very different than
the second-order proof presented here. Our nonlinear proof,
though very general in its application to different systems
and environments, is not robust enough for nonperturbative
multitime correlations. It is not immediately clear how such
a proof could be attempted, whereas the elegance of the
final result makes the possibility of its existence seem
reasonable.

An analogous proof for classical systems should be at-
tempted by coarse graining the symplectomorphic (Hamil-
tonian) time evolution of the system and environment in
much the same way that quantum master equations result
from coarse graining the unitary time evolution of the system
and environment. Unfortunately the literature on such an
analog is not well developed (e.g., it would involve higher-
order Fokker-Plank equations which might only perturbatively
preserve probability), and this would be more mathematically
challenging than the quantum proof. Note that the h̄ → 0
limit of the quantum results obtained in this paper yields
the corresponding classical results, as has been argued in
Appendix A.

An essential ingredient of our proofs is the continuum
limit for the environment. For a finite environment the
t → ∞ limit of the reduced state does not exist within the
formalism presented here, and another ingredient is necessary
to ensure relaxation to equilibrium. Having classical molecular
dynamics in mind, we entertain the possibility that quantum
chaos might be one avenue to explore.

On the other hand we can consider a large but finite envi-
ronment. It can be argued that for any relevant times t > 0 the
effect of an infinite reservoir can be approximated arbitrarily
closely by a large but finite reservoir. Then equilibration is
observed for the time interval between the relaxation time
and the recurrence time. Note that this interval is huge for
a large environment, since the recurrence time grows very
rapidly with the number of degrees of freedom. As a result
the system stays close to its equilibrium most of the time.
This interpretation helps us touch base with the results of
Refs. [9,10,12] where relaxation in finite systems is proven for
time-averaged quantities.

A. Comparison with recent literature

To put this work in developmental context, here we compare
more specifically our results to that of Linden et al. [9],
Reimann [10], and Short and Ferrelly [12].10 All these works
have in common with us the setup of a small system coupled
to a large environment, and relaxation is achieved dynamically
via time evolution. A major difference is the choice of initial
conditions: They allow for any initial state, which is spread
over sufficiently many energies, whereas we restrict our
environment to be in a thermal state. In turn we can derive
the form of the equilibrium state explicitly.

10See Sec. I A for the clarification of the different use of the term
equilibration in the literature and here.
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Unlike what is done here these authors all make the
assumption of nondegenerate energy gaps (this assumption
is relaxed to a certain degree in Ref. [12]) and assume
finite dimensional Hilbert spaces. The linear model we solved
exactly here has infinitely degenerate energy gaps, and we
considered a reservoir consisting of an infinite number of
degrees of freedom. Reference [9] considers only pure states
for the closed system (in the sprit of Refs. [1,2]). Finally they
all define relaxation in terms of time averaged quantities; i.e.,
systems behave as if they are in their steady state most of
the time. Reference [12] also provides an upper limit for the
relaxation time.

The proofs of Ref. [9–12] rely on the much greater dimen-
sionality of the Hilbert space of the environment compared
to that of the system. The system + environment state is
propagated as a whole using unitary dynamics. The fact that
the environment is large is utilized in the tracing out of the
environment at the end of time evolution. In this derivation the
effect of the environment on the system dynamics is not so
easily accessible.

In our proof, the fact that the environment consists of
a large number of degrees of freedom manifests itself in
the form of its decaying correlations. These correlations in
turn determine the nonunitary aspects of the open system
dynamics. We use this nonunitary open system dynamics
to evolve the reduced state of the system to its equilibrium
state. In particular we do not refer to the state of the closed
system explicitly.11 Our derivation is more in the idioms of
open quantum systems paradigm, where the influence of the
environment on the system dynamics can be continuously
monitored and explicitly expressed (e.g., consistent back reac-
tion from the environment is fully embodied in the influence
functional [13]).

Relaxation is demonstrated in Refs. [9,10,12] for very
general Hamiltonians, including strong coupling between the
system and the environment. In their derivation the strong
coupling regime does not present any extra difficulty. In
the open system approach we adopted in this paper strong
coupling is difficult to handle. On the other hand, as a benefit
of our method we can describe the nature of the equilib-
rium state, i.e., Eq. (1.5), besides proving its existence and
uniqueness.
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APPENDIX A: THE TRIVIALITY OF CLASSICAL,
GAUSSIAN NOISE

While Ref. [19] gives many cases in quantum mechanics
in which the effect of system-environment coupling on the
equilibrium state may be overlooked, here we would like to
motivate the fact that this point is often overlooked in the
classical regime as well, perhaps due to the ubiquitous em-
ployment of Gaussian noise. Let us consider the Hamiltonian
of a system coupled linearly, via the system operator L, to
an environment of harmonic oscillators, indexed by k, which
mock our Gaussian noise [13,36]:

HC = HS +
∑

k

[
p2

k

2mk

+ mkω
2
k

2
x2

k

]
+ L

∑
k

gkxk + HR,

= HS +
∑

k

[
p2

k

2mk

+ mkω
2
k

2

(
xk − gkL

mkω
2
k

)2]
, (A1)

where the linear interaction is included in the square of the
environment potential as a means of “renormalization.” Other-
wise, the influence of the environment effectively introduces
a negative L2 term proportional to the cutoff into the system
Hamiltonian when considering the open-system dynamics.

Tracing over the environmental degrees of freedom is
equivalent to integrating over the environmental dimensions
in phase space,

TrE[· · · ] =
∏
k

∫
dxk

∫
dpk · · · , (A2)

where, classically speaking, xk and pk are independent,
commuting variables. Therefore, in the classical and Gaussian
model, relations (1.4) and (1.5) are equivalent as tracing over
the environmental degrees of freedom constitutes a trivial
Gaussian integral in phase space. The classical result can
also be reached as the h̄ → 0 limit of the quantum result.
This limit is most straightforward when applied to the Wigner
function [37] defined as

W (x,p) = 1

2πh̄

∫
du e

ι
h̄
puρ(x − u/2,x + u/2). (A3)

The description in terms of the Wigner function is equivalent
to the density matrix approach. Hence the Wigner function
contains complete information about the quantum system.
As a result the Wigner function should not be treated as a
phase space distribution, since it can assume negative values.
However the h̄ → 0 limit of the thermal state Wigner function
is well defined and gives the classical Boltzmann distribution
function:

lim
h̄→0

Wβ(x,p) = e−βH (x,p)

Z(β)
. (A4)

For classical open systems it is well known that if the
system + environment is in a thermal state of the full Hamil-
tonian, which includes the system-environment coupling, then
the reduced distribution of the system is in general not the
thermal distribution of the system Hamiltonian alone. The term
potential of mean force is used in chemical-physics literature
for the quantity that replaces the Hamiltonian in the familiar
Boltzmann distribution [38]. The linear reservoir is a special
case where the potential of mean force coincides with the
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system Hamiltonian. The potential of mean force is defined
by12

H∗(X,P) ≡ − 1

β
log

∏
k

∫
dxk

∫
dpk e−β HC(X,P;x,p)∏

k′
∫

dxk′
∫

dpk′ e−β HE(x,p)
. (A5)

To the best of our knowledge, the asymptotic time evo-
lution of a general classical open system, with a nonlinear
environment initially in its thermal state, is not known. We
conjecture that the reduced system is asymptotically described
by e−βH∗

as described in the previous paragraph, and as would
follow from (1.5). In this paper we provide a proof of the
analogous statement for quantum systems to second order
in interaction strength. Obviously, our second-order proof
extends to classical systems which can arise in the limit
h̄ → 0. For linear systems we have an exact proof, and unlike
its classical counterpart, the quantum linear case is highly
nontrivial.

APPENDIX B: THEOREMS ON MATRIX DERIVATIVES

Notation and Remarks: A letter in bold like A indicates
a matrix. Referring to an element of the matrix we use
subscripts: Aab. The inverse of the matrix is indicated by
A−1. An element of the inverse matrix is written as (A−1)ab

to avoid confusion with 1/Aab. Transpose of the matrix is
denoted by AT. Tr without a subscript indicates ordinary matrix
trace. TrC indicates quantum mechanical trace over the closed
system Hilbert space. A systematic study of matrix derivatives
including some of the theorems below is given by Ref. [39].

Before proceeding to the derivations we clarify a mathe-
matical subtlety. The theorems derived in this appendix will
mostly be applied to symmetric matrices for which Aab = Aba.
When taking the derivative of such a matrix with respect to
one of its elements one can adopt two different conventions. If
the derivative is taken under the constraint that only symmetric
variations of the matrix are allowed, the result is

∂Aab

∂Acd
= δacδbd + δadδbc(1 − δab). (B1)

On the other hand, if independent variations of all matrix
elements are allowed, the second term in the above equation
is absent. In the following theorems we adopt the second
convention.

Theorem 1. Consider a system in a thermal state at inverse
temperature β described by a Hamiltonian with parametric
dependence on a set of variables {λn}. Then the expectation
value of the derivative of the Hamiltonian with respect to these
parameters can be calculated from the partition function by〈

∂H
∂λn

〉
C

≡ TrC

[
∂H
∂λn

e−βH

Z

]
= − 1

β

∂

∂λn

ln(Z). (B2)

Proof. In this proof we will make use of the following
operator identity valid for an arbitrary operator O:

∂

∂λn

eO =
∫ 1

0
du euO ∂O

∂λn

e(1−u)O. (B3)

12In most treatments HR is absent. In that case even for linear
reservoir H∗ differs from HS by a frequency “renormalization.”

Using this formula we can write the right-hand side of Eq. (B2)
as

− 1

β

∂

∂λn

ln(Z) = − 1

βZ
TrC

[
∂

∂λn

e−βH
]
, (B4)

= 1

βZ
TrC

[
−

∫ 1

0
du e−uβH ∂βH

∂λn

e−(1−u)βH
]
.

(B5)

We use the cyclic property of trace to get

− 1

β

∂

∂λn

ln(Z) = 1

Z
TrC

[ ∫ 1

0
du

∂H
∂λn

e−βH
]
, (B6)

= 1

Z
TrC

[
∂H
∂λn

e−βH
]
, (B7)

=
〈
∂H
∂λn

〉
C

. (B8)

�
Theorem 2. For a matrix A

Tr log A = log det A. (B9)

Proof. Trace operation is basis-independent. In the basis
in which A is diagonal log A is also a diagonal matrix with
entries log an where an are the eigenvalues of A. Taking the
trace gives

Tr log A =
∑

n

log an = log

(∏
n

an

)
. (B10)

The last expression is recognized to be log det A since the
product of eigenvalues equals the determinant. �

Theorem 3. For an arbitrary number of matrices Ak indexed
by k, the following is true:

Tr log

(∏
k

Ak

)
=

∑
k

Tr log(Ak). (B11)

Proof. To show this equality we make use of Theorem 2,
the well-known fact that the determinant of the product of
matrices equals the product of the determinants and properties
of ordinary logarithms:

Tr log

(∏
k

Ak

)
= log det

(∏
k

Ak

)
, (B12)

= log

(∏
k

det Ak

)
, (B13)

=
∑

k

log det Ak, (B14)

=
∑

k

Tr log(Ak). (B15)

�
A corollary of this theorem is the fact that Tr log is invariant

under any permutation of its arguments.
Theorem 4. Consider a matrix A and a parameter λ. Then

∂

∂λ
Tr log A = Tr

[
A−1 ∂A

∂λ

]
. (B16)
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In particular,

∂

∂A
Tr log A = (A−1)T, (B17)

where ∂
∂A is defined as the matrix obtained by differentiating

with respect to the entries of matrix A.
Proof. Let A ≡ 1 + B and use

log(1 + B) = B − B2/2 + B3/3 + · · · (B18)

to write the left-hand side of Eq. (B16) as

∂

∂λ
Tr

[
B − B2

2
+ B3

3
+ · · ·

]

= Tr

[
∂B
∂λ

− 1

2

(
∂B
∂λ

B + B
∂B
∂λ

)

+ 1

3

(
∂B
∂λ

B2 + B
∂B
∂λ

B + B2 ∂B
∂λ

)
+ · · ·

]
. (B19)

Using the cyclic property of trace we obtain

Tr

[
∂B
∂λ

(1 − B + B2 − B3 · · · )

]
. (B20)

Note that ∂B/∂λ = ∂A/∂λ and

1 − B + B2 − B3 + · · · = (1 + B)−1 = A−1, (B21)

which proves Eq. (B16). To prove Eq. (B17) let λ ≡ Aab,

∂

∂Aab
Tr log A = Tr

[
A−1 ∂A

∂Aab

]
, (B22)

=
∑

cd

(A−1)cd
∂Adc

∂Aab
, (B23)

= (A−1)ba. (B24)

�
Theorem 5. Let A be an invertible matrix and λ a parameter.

Then

∂A−1

∂λ
= −A−1 ∂A

∂λ
A−1. (B25)

In particular,

∂(A−1)ab

∂Amn
= −(A−1)am(A−1)nb. (B26)

Proof. We write A−1 = A−1A A−1, and differentiate both
sides with respect to λ. Looking at an element of this matrix
equation we have

∂(A−1)ab

∂λ
=

∑
cd

[
∂(A−1)ac

∂λ
Acd(A−1)db + (A−1)ac

∂Acd

∂λ
(A−1)db

+ (A−1)acAcd
∂(A−1)db

∂λ

]
, (B27)

= ∂(A−1)ab

∂λ
+

(
A−1 ∂A

∂λ
A−1

)
ab

+ ∂(A−1)ab

∂λ
.

(B28)

This proves Eq. (B25). For the proof of Eq. (B26) we set
λ = Amn. �

A corollary of this theorem is the following identity valid
for independent matrices Ak:

∂

∂A1
Tr

[
A2 A−1

1 A3
] = −(

A−1
1 A3 A2 A−1

1

)T
. (B29)

APPENDIX C: N-QBM PARTITION FUNCTION

In this section we calculate the partition function of the
N-QBM model. Our treatment mimics and generalizes that
of Weiss [16], which treats one system oscillator only and
does not allow for interactions among reservoir oscillators
and nondiagonal mass matrix.13 The partition function has an
imaginary-time path integral representation given by

ZC =
∮

DxDX exp(−S(E)[x,X]/h̄), (C1)

S(E) =
∫ h̄β

0
dτ L(E)(τ ), (C2)

L(E)(τ ) = 1

2
(ẊTM Ẋ + XTC X)

+ 1

2
(ẋTm ẋ + [x − c−1g X]Tc[x − c−1g X]), (C3)

where S(E) is the Euclidean action, τ the imaginary time, and
the path integral is over all periodic trajectories in the interval
[0,h̄β]. This path integral is Gaussian and can be evaluated
exactly. It is convenient to represent the integration paths
via their Fourier series, which takes care of the condition on
periodicity:

x(τ ) =
∞∑

r=−∞
xr e

ıνrτ , (C4)

X(τ ) =
∞∑

r=−∞
Xr e

ıνrτ , (C5)

where x−r = x†r , X−r = X†
r (dagger stands for Hermitian

conjugation) since x(τ ) and X(τ ) are real and νr ≡ 2π r/h̄β

are the bosonic Matsubara frequencies. Written in terms of the
Fourier coefficients the Euclidean action becomes

S(E) = h̄β

2

∞∑
r=−∞

(
X†

r

(
ν2

r M + C
)

Xr
)

+ h̄β

2

∞∑
r=−∞

(
x†r ν2

r m xr + [xr − c−1g Xr]
†

× c[xr − c−1g Xr]
)
. (C6)

Next we decompose xr = x̄r + yr, where

x̄r = (
ν2

r m + c
)−1

g Xr (C7)

13Since a set of noninteracting oscillators can represent the most
general Gaussian thermal reservoir, considering a nondiagonal mass
matrix may appear superfluous. However, we need the nondiagonal
elements to generate the correlation function of two different reservoir
momenta by partial differentiation of the partition function.
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is chosen such that S(E) does not have a term linear in yr. The
action can be written as

S(E) = S(E)
reservoir[y] + S

(E)
system[X], (C8)

= h̄β

2

∞∑
r=−∞

(
y†r

(
ν2

r m + c
)

yr
)

+ h̄β

2

∞∑
r=−∞

(
X†

r

(
ν2

r M + C + 2 νrγ̂ (νr)
)

Xr
)
, (C9)

where the damping kernel is given by

γ̂ (z) = 1

2
gTm− 1

2 ω−1 z

ω2 + z2
ω−1m− 1

2 g, (C10)

which is the Laplace transform of Eq. (2.5). The partition
function of the closed system is given by

ZC = N
∫ ∞∏

r=−∞
dXr exp

(−S
(E)
system[X]/h̄

)

×
∫ ∞∏

r=−∞
dyr exp

(−S(E)
reservoir[y]/h̄

)
. (C11)

The normalization factor N is yet unspecified because it is
not easy to determine the measure of the path integral. N will
be determined indirectly at the final stage of this calculation
by considering the limiting case of no system-environment
coupling.

The integrals in Eq. (C11) are all Gaussian. Ignoring the
normalization for now the integration gives

ZC ∝
∞∏

r=−∞

1√
det

[
ν2

r m + c
] 1√

det
[
ν2

r M + C + 2 νrγ̂ (νr)
] ,

(C12)

∝ 1√
det[c]

1√
det[C]

∞∏
r=1

1

det
[
ν2

r m + c
]

× 1

det
[
ν2

r M + C + 2 νrγ̂ (νr)
] . (C13)

In the second line we used the fact that the elements of the
product corresponding to positive and negative values of r

are identical to restrict the product to positive r and pulled out
the r = 0 entry. To determine the normalization let us recall
the partition function for a simple harmonic oscillator:

Z1HO = 1

2 sinh(βh̄ω/2)
= 1

βh̄ω

∞∏
r=1

ν2
r

ω2 + ν2
r

. (C14)

This naturally generalizes to N harmonic oscillators by

ZNHO = 1

det[2 sinh(βh̄ω/2)]
= 1

βh̄ det[ω]

∞∏
r=1

ν2
r

det
[
ω2 + ν2

r

] .

(C15)

In the limit of no coupling we demand that the partition
function be a product of two partition functions of this
form. This condition fixes the normalization and the final
answer is

ZC = ZE × det

(
1

βh̄


)

×
∞∏

r=1

det

(
ν2

r


2 + ν2
r + 2M− 1

2 νrγ̂ (νr)M− 1
2

)
, (C16)

where ZE = Tr[exp(−βHE)] is the partition function of
reservoir oscillators without coupling to the system. Using
the definition (2.16) the partition function can also be written
as

ZC = ZE × det

(
1

h̄β


) ∞∏
r=1

det
[
Mν2

r Ĝ(νr)
]
. (C17)

APPENDIX D: DERIVATION OF EQS. (2.33)–(2.38)

In this Appendix we derive some of the results presented
in Sec. II C. Angular bracket with the subscript C denotes
expectation values in the closed system thermal state. Expec-
tation values in the uncorrelated state are denoted by attaching
the subscript E to the bracket. Note that the damping kernel
depends on the environmental variables and the coupling
constants alone. There is no dependence on system variables.
Using Eq. (2.23) we calculate the single-time system position-
position correlation as

〈(X XT)AB〉C = 1

β

∂

∂CAB
Tr log C + 2

β

∂

∂CAB

∞∑
r=1

Tr log[M−1Ĝ(νr)
−1], (D1)

= 1

β
(C−1)AB + 2

β

∞∑
r=1

Tr

{
[M−1Ĝ(νr)

−1]−1M−1 ∂Ĝ(νr)−1

∂CAB

}
, (D2)

= 1

β
Ĝ(ν0)AB + 2

β

∞∑
r=1

Ĝ(νr)AB, (D3)

〈X XT〉C = 1

β
Ĝ(ν0) + 2

β

∞∑
r=1

Ĝ(νr), (D4)

where we used the fact that C and Ĝ(νr) are symmetric matrices and Ĝ(ν0) = Ĝ(0) = C−1. The system momentum-momentum
correlations can be calculated in a similar way using Eq. (2.25):

〈(P PT)AB〉C = 1

β

∂

∂(M−1)AB
Tr log(M−1) + 2

β

∂

∂(M−1)AB

∞∑
r=1

(Tr log[M−1] + Tr log[Ĝ(νr)
−1]), (D5)
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= MAB

β
+ 2

β

∞∑
r=1

{
MAB + Tr

[
Ĝ(νr)

∂Ĝ(νr)−1

∂(M−1)AB

]}
, (D6)

〈P PT〉C = M
β

+ 2

β

∞∑
r=1

(
M − M ν2

r Ĝ(νr) M
)
. (D7)

We used Theorem 3 in the first line. In the second line we used Theorem 4 for all terms and Theorem 5 for the last term with
A1,A2,A3 → M−1,ν2

r Ĝ(νr),1.
For the system-environment position correlations note that only the damping kernel depends on the interaction matrix:

1

β

∂ log ZC

∂(gT)Aa
= − 1

β

∞∑
r=1

∂

∂(gT)Aa
Tr log[Ĝ(νr)

−1],

= − 2

β

∞∑
r=1

∑
BC

Ĝ(νr)BCνr
∂ γ̂ (νr)CB

∂(gT)Aa
. (D8)

The partial derivative of the damping kernel can be calculated explicitly. For this differentiation it is useful to rewrite γ̂ (νr) as

2νrγ̂ (νr) = ν2
r gTc−1

(
m−1 + ν2

r c−1
)−1

c−1g. (D9)

For brevity of notation we define a(νr) such that γ̂ (νr) = 1
2 gTνra(νr) g:

2νr
∂ γ̂ (νr)CB

∂(gT)Aa
= ∂

∂gaA

∑
ef

(gT)Ce
(
ν2

r a(νr)
)

ef gfB, (D10)

=
∑

ef

{
δeaδCA

(
ν2

r a(νr)
)

ef gfB + (gT)Ce
(
ν2

r a(νr)
)

ef δfaδBA
}
, (D11)

= (
ν2

r a(νr) g
)

aBδCA + (
gTν2

r a(νr)
)

CaδBA. (D12)

Plugging this result in Eq. (D8) we get

1

β

∂ log ZC

∂gT
= − 2

β

∞∑
r=1

νrĜ(νr) γ̂ (νr) g−1. (D13)

Using this result in Eq. (2.26) we get Eq. (2.35).
To derive Eq. (2.37) we start from Eq. (2.32):

− 2

β

∂ log ZC

∂m−1
= 〈p pT〉E + 2

β

∞∑
r=1

∂

∂m−1
Tr log[M−1Ĝ−1(νr)].

Using Theorem 4 we get

∂

∂(m−1)ab
Tr log[M−1Ĝ−1(νr)] = Tr

[
Ĝ(νr)

∂Ĝ−1(νr)

∂(m−1)ab

]
, (D14)

where

∂Ĝ−1(νr)

∂(m−1)ab
= 2νr

∂ γ̂ (νr)

∂(m−1)ab
. (D15)

Next use Theorem 5 and plug the result back into Eq. (D14):

2νr
∂ γ̂ (νr)

∂(m−1)ab
= −ν2

r gTa(νr)
−1 ∂a(νr)

∂(m−1)ab
a(νr)

−1g, (D16)

= −ν2
r gTc−1

(
m−1 + ν2

r c−1
)−1 ∂

(
m−1 + ν2

r c−1
)

∂(m−1)ab

(
m−1 + ν2

r c−1
)−1

c−1g, (D17)

Tr

[
Ĝ(νr)

∂Ĝ−1(νr)

∂(m−1)ab

]
=

∑
ABcd

Ĝ(νr)AB

(
− ν2

r (gTa(νr) c)Bc
∂
(
m−1 + ν2

r c−1
)

cd

∂(m−1)ab
(c a(νr) g)dA

)
. (D18)

Observe that
∂
(
m−1 + ν2

r c−1
)

cd

∂(m−1)ab
= δcaδdb. (D19)
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It follows that

Tr

[
Ĝ(νr)

∂Ĝ−1(νr)

∂(m−1)ab

]
= −

∑
AB

ν2
r Ĝ(νr)AB(gTa(νr)c)Ba (c a(νr) g)bA,

= − (
c a(νr) g ν2

r Ĝ(νr) gTa(νr) c
)

ba . (D20)

In the last step we used the fact that both Ĝ(νr) and a(νr) are symmetric matrices. Equation (D14) becomes

∂

∂(m−1)
Tr log[M−1Ĝ−1(νr)] = −c a(νr) g ν2

r Ĝ(νr)gTa(νr) c. (D21)

We plug this into Eq. (D14) and note that c a(νr) = m f̂(νr) to get Eq. (2.37).
The derivation of Eq. (2.38) is almost identical to that of Eq. (2.37) but with more terms. We do not show the details of that

derivation here.

APPENDIX E: PROOF OF CONCLUSIONS OF SEC. II E

Using the fact that all position-momentum correlations vanish we get〈
ξ (s) XT

0

〉
C = gT ḟ(s) m

〈
x0 XT

0

〉
C, (E1)〈

ξ (s) PT
0

〉
C = gTf(s)

〈
p0 PT

0

〉
C, (E2)

where the expectation values on the right-hand side are given by Eqs. (2.35) and (2.36):

〈
ξ (s) XT

0

〉
C = gTm− 1

2
cos(ωs)

ω2
m− 1

2 g
〈
X0XT

0

〉
C + 2

β

∞∑
r=1

gTm− 1
2

cos(ωs) ν2
r

ω2
(
ω2 + ν2

r

)m− 1
2 g Ĝ(νr). (E3)

The first term on the right-hand side can be seen to decay by the fact that

gTm− 1
2

cos(ωs)

ω2
m− 1

2 g = 2γ (s). (E4)

The second term can be seen to decay by noting the inequality

gTm− 1
2

cos(ωs) ν2
r

ω2
(
ω2 + ν2

r

)m− 1
2 g � gTm− 1

2
cos(ωs)

ω2
m− 1

2 g, � 2γ (s) (E5)

in the sense of positive-definite matrix kernels, since both ω2 and (ω2 + ν2
r ) are positive matrices and cosine is a positive-definite

kernel. The summation over r in Eq. (E3) is finite as can be seen from Eq. (2.33). As a result 〈ξ (s) XT
0 〉C is a function that decays

over time like γ (s). When we take the convolution of this with another decaying function Ĝ(t − s) and let t → ∞ the overlap
goes to zero. This way we argue that second line of Eq. (2.42) vanishes. A similar calculation establishes the same goes for the
third line: 〈

ξ (s) PT
0

〉
C = gTf(s) c

〈
x0XT

0

〉
C M + gTf(s) g

〈
X0XT

0

〉
C M, (E6)

= 1

β

∞∑
r=1

gTf(s) c m− 1
2

ν2
r

ω2
(
ω2 + ν2

r

)m− 1
2 g Ĝ(νr) M, (E7)

= 1

β

∞∑
r=1

gTm− 1
2

sin(ωs) ν2
r

ω
(
ω2 + ν2

r

)m− 1
2 g Ĝ(νr) M, (E8)

= − 1

β

∞∑
r=1

d

ds

[
gTm− 1

2
cos(ωs) ν2

r

ω2
(
ω2 + ν2

r

)m− 1
2 g

]
Ĝ(νr) M. (E9)

The term inside square brackets decays as γ (s) as can be seen from Eq. (E5) and the argument following it. The summation
over r is finite as before. Hence 〈ξ (s) PT

0 〉C decays over time like γ̇ (s). The convolution of this with another decaying function
G(t − τ ) gives zero in the limit t → ∞.

The second and third lines of Eq. (2.42) are zero for the uncorrelated initial state as well. This follows trivially from
〈ξ (s) XT

0 〉E = 〈ξ (s) PT
0 〉E = 0.

Finally we need to show that the fourth line of Eq. (2.42) is the same for both cases. This requires showing that the late-time
limit of the noise kernel is the same. We know that the noise kernel is stationary for the uncorrelated initial state. Let us focus on
the noise kernel of the closed system thermal state:〈

ξ (s) ξ (s ′)T
〉
C = gT

(
ḟ(s) m

〈
x0xT

0

〉
C m ḟ(s ′) + f(s)

〈
p0pT

0

〉
C f(s ′)

)
g. (E10)
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We use Eqs. (2.37) and (2.38) on the right-hand side. The derivation is straightforward but tedious. The theorems in Appendix B
are utilized repeatedly.

The uncorrelated noise kernel is obtained if only the first terms in Eqs. (2.37) and (2.38) are kept and the rest ignored. Hence
we need to show that all the other terms vanish in the late-time limit. The strategy is the same as before: We show that these terms
are bounded by a function proportional to the damping kernel or its derivatives. We work out the details for two terms explicitly.

First, consider the term in the noise kernel Eq. (E10) due to the second term in Eq. (2.38):

gT ḟ(s) m c−1g
〈
X0XT

0

〉
C gTc−1m ḟ(s ′) g = gTm− 1

2 cos(ωs) m− 1
2 m m− 1

2 ω−2m− 1
2 g

〈
X0XT

0

〉
C gTm− 1

2 ω−2m− 1
2 m m− 1

2 cos(ωs ′) m− 1
2 g,

(E11)

= gTm− 1
2

cos(ωs)

ω2
m− 1

2 g
〈
X0XT

0

〉
C gTm− 1

2
cos(ωs ′)

ω2
m− 1

2 g, (E12)

= 4γ (s)
〈
X0XT

0

〉
C γ (s ′). (E13)

Unlike previous cases we were able to express this term exactly in terms of the damping kernel. It is a decaying function in both
s and s ′ variables. The convolution of γ (s) with Ĝ(t − s) in Eq. (2.42) goes to zero if we let t → ∞. Similarly the overlap of
γ (s ′) with Ĝ(t ′ − s ′) vanishes in the limit t ′ → ∞.

Second, consider the term in the noise kernel Eq. (E10) due to the third term in Eq. (2.38):

− 2

β

∞∑
r=1

gT ḟ(s) m m− 1
2

1

ω2
(
ω2 + ν2

r

)m− 1
2 g ν2

r Ĝ(νr) gTm− 1
2

1

ω2
(
ω2 + ν2

r

)ω2m− 1
2 m ḟ(s ′) g

= − 2

β

∞∑
r=1

gTm− 1
2

cos(ωs)

ω2
(
ω2 + ν2

r

)m− 1
2 g ν2

r Ĝ(νr) gTm− 1
2

cos(ωs ′)
ω2 + ν2

r

m− 1
2 g, (E14)

= 2

β

∞∑
r=1

[
gTm− 1

2
cos(ωs) ν2

r

ω2
(
ω2 + ν2

r

)m− 1
2 g

]
Ĝ(νr)

ν2
r

d2

ds ′2

[
gTm− 1

2
cos(ωs ′) ν2

r

ω2
(
ω2 + ν2

r

)m− 1
2 g

]
. (E15)

As before we conclude that the terms in square brackets decay like the damping kernel. The summation over r is finite as can be
seen from Eq. (2.33) and noting that νr > 1 for all positive r .

Close inspection of all the other terms in Eq. (E10) reveals that they have roughly the same form as those we worked out the
details explicitly. All these terms vanish in the late-time limit.

This proves the equivalence of the late-time limit of the uncorrelated initial state to that of the late-time limit of the closed
system thermal state. Since the closed system thermal state is stationary our proof is complete.

[1] S. Popescu, A. J. Short, and A. Winter, Nat. Phys. 2, 754 (2006).
[2] S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghı̀, Phys.

Rev. Lett. 96, 050403 (2006).
[3] L. van Hove, Physica 21, 517 (1954).
[4] E. B. Davies, Comm. Math. Phys. 39, 91 (1974).
[5] E. B. Davies, Math. Ann. 219, 147 (1976).
[6] E. B. Davies, Quantum Theory of Open Systems (Academic

Press, London, 1976).
[7] E. A. Calzetta and B. L. Hu, Nonequilibrium Quantum Field

Theory (Cambridge University Press, Cambridge, 2008).
[8] R. Balescu, Statistical Dynamics: Matter Out of Equilibrium

(Imperial College Press, London, 1997).
[9] N. Linden, S. Popescu, A. J. Short, and A. Winter, Phys. Rev. E

79, 061103 (2009).
[10] P. Reimann, New J. Phys. 12, 055027 (2010).
[11] A. J. Short, New J. Phys. 13, 053009 (2011).
[12] A. J. Short and T. C. Farrelly, New J. Phys. 14, 013063 (2012).
[13] R. P. Feynman and F. L. Vernon, Ann. Phys. 24, 118 (1963).
[14] A. O. Caldeira and A. J. Leggett, Physica A 121, 587 (1983).
[15] B. L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D 45, 2843 (1992).
[16] U. Weiss, Quantum Dissipative Systems (World Scientific,

Singapore, 1993).

[17] H. P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, New York, 2002).

[18] C. H. Fleming, B. L. Hu, and A. Roura, arXiv:1012.0681
[quant-ph] (2010).

[19] E. Geva, E. Rosenman, and D. Tannor, J. Chem. Phys. 113, 1380
(2000).

[20] S. Tasaki, K. Yuasa, P. Facchi, G. Kimura, H. Nakazato, I. Ohba,
and S. Pascazio, Ann. Phys. 322, 631 (2007).

[21] C. H. Fleming, A. Roura, and B. L. Hu, Phys. Rev. E 84, 021106
(2011).

[22] C. Fleming and B. Hu, Ann. Phys. 327, 1238 (2012).
[23] T. Mori and S. Miyashita, J. Phys. Soc. Jpn. 77, 124005

(2008).
[24] S. Swain, J. Phys. A 14, 2577 (1981).
[25] C. H. Fleming, A. Roura, and B. L. Hu, arXiv:1106.5752

[quant-ph] (2011).
[26] C. H. Fleming, Ph.D. thesis, University of Maryland College

Park, 2011.
[27] G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys. Rev. A 37,

4419 (1988).
[28] E. Calzetta, A. Roura, and E. Verdaguer, Physica A 319, 188

(2003).

061132-17

http://dx.doi.org/10.1038/nphys444
http://dx.doi.org/10.1103/PhysRevLett.96.050403
http://dx.doi.org/10.1103/PhysRevLett.96.050403
http://dx.doi.org/10.1016/S0031-8914(54)92646-4
http://dx.doi.org/10.1007/BF01608389
http://dx.doi.org/10.1007/BF01351898
http://dx.doi.org/10.1103/PhysRevE.79.061103
http://dx.doi.org/10.1103/PhysRevE.79.061103
http://dx.doi.org/10.1088/1367-2630/12/5/055027
http://dx.doi.org/10.1088/1367-2630/13/5/053009
http://dx.doi.org/10.1088/1367-2630/14/1/013063
http://dx.doi.org/10.1016/0003-4916(63)90068-X
http://dx.doi.org/10.1016/0378-4371(83)90013-4
http://dx.doi.org/10.1103/PhysRevD.45.2843
http://arXiv.org/abs/arXiv:1012.0681
http://dx.doi.org/10.1063/1.481928
http://dx.doi.org/10.1063/1.481928
http://dx.doi.org/10.1016/j.aop.2006.06.004
http://dx.doi.org/10.1103/PhysRevE.84.021106
http://dx.doi.org/10.1103/PhysRevE.84.021106
http://dx.doi.org/10.1016/j.aop.2011.12.006
http://dx.doi.org/10.1143/JPSJ.77.124005
http://dx.doi.org/10.1143/JPSJ.77.124005
http://dx.doi.org/10.1088/0305-4470/14/10/013
http://arXiv.org/abs/arXiv:1106.5752
http://dx.doi.org/10.1103/PhysRevA.37.4419
http://dx.doi.org/10.1103/PhysRevA.37.4419
http://dx.doi.org/10.1016/S0378-4371(02)01521-2
http://dx.doi.org/10.1016/S0378-4371(02)01521-2
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